A three-phase, 60 Hz, 4-pole, Y-connected induction motor is rated at 460V, and 1,760 rpm (at full load). In addition, the following information is known about the motor:
Friction and windage loss: \(P_{F&W} = 750 \) W
Core loss: negligible
Stray loss: negligible
\(R_1 = 0.5 \) \(\Omega \)
\(R_2 = 0.25 \) \(\Omega \)
\(X_1 = 1 \) \(\Omega \)
\(X_2 = 0.5 \) \(\Omega \)
\(X_m = 25 \) \(\Omega \)
Assume that the motor is running at full load. Calculate the following:

1) Source current is nearly,
 a) 20 A
b) 24 A
c) 31 A
d) 45 A

2) Motor power factor,
 a) 81.1%
b) 83.2%
c) 86.7%
d) 89.2%

3) Motor efficiency
 a) 84.2%
b) 85.3%
c) 86.9%
d) 88.3%

4) Motor starting torque.
 a) 67 Nm
b) 94 Nm
c) 106 Nm
d) 123 Nm

5) Approximate motor starting current.
 a) 24 A
b) 65 A
c) 274 A
d) 158 A

A 60 Hz, 208V, 4-pole synchronous motor has a synchronous reactance of 2.5 \(\Omega \). The motor delivers 15 hp to a mechanical load. The field current is adjusted so that the motor power factor is 80% leading. Ignore all losses. Find the following:
6) motor current,
 a) 38.8 A
 b) 42.1 A
 c) 55.0 A
 d) 64.2 A

7) Excitation voltage E (per-phase)
 a) 120 V
 b) 133 V
 c) 178 V
 d) 194.5 V

8) power angle δ.
 a) -10°
 b) -17°
 c) -23°
 d) -27°

If the mechanical load is increased to 25 hp, and the field current is kept as is, find the new

9) power angle δ.
 a) -14.1°
 b) -41.8°
 c) -34.5°
 d) -27.2°

10) motor current
 a) 42.1 A
 b) 52.6 A
 c) 60.2 A
 d) 73.3 A

11) motor power factor
 a) 80% lead
 b) 90% lead
 c) 98.2% lead
 d) 96% lag

A 13.2 kV, 60 Hz, 2-pole synchronous generator is rated at 100 MVA and 85% power factor (lag). It has a synchronous reactance of 1.2 Ω and negligible armature winding resistance. The machine is connected to the utility grid at a node where the voltage is equal to 13.2 kV (line-to-line).

12) If the machine is set to deliver 25 MW to the grid and 15 MVAR to the grid, calculate the generator current
 a) 4,374 A
 b) 1,275 A
 c) 631 A
 d) none of the above
13) If the machine is scheduled to deliver 50 MW at unity power factor, calculate the power angle δ.
 a) 10 deg.
 b) 13 deg.
 c) 19 deg.
 d) 28 deg.

14) Starting with the operating condition in 13) above, the field current is reduced such that the excitation voltage E drops by 10%. Calculate the new reactive power supplied by the generator
 a) 0 MVAR
 b) -16.33 MVAR
 c) +16.33 MVAR
 d) None of the above

15) Starting with the operating condition in 13) above. If the field current is increased such that the excitation voltage E increases by 10%. Calculate the new reactive power supplied by the generator
 a) +16.17 MVAR
 b) -16.17 MVAR
 c) 25.2 MVAR
 d) None of the above.