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A Survey of Vision-Based Trajectory Learning and
Analysis for Surveillance

Brendan Tran Morris and Mohan Manubhai Trivedi

Abstract—This paper presents a survey of trajectory-based ac-
tivity analysis for visual surveillance. It describes techniques that
use trajectory data to define a general set of activities that are ap-
plicable to a wide range of scenes and environments. Events of in-
terest are detected by building a generic topographical scene de-
scription from underlying motion structure as observed over time.
The scene topology is automatically learned and is distinguished by
points of interest and motion characterized by activity paths. The
methods we review are intended for real-time surveillance through
definition of a diverse set of events for further analysis triggering,
including virtual fencing, speed profiling, behavior classification,
anomaly detection, and object interaction.

Index Terms—Event detection, motion analysis, situational
awareness, statistical learning.

I. INTRODUCTION

S OCIETY is rapidly accepting the use of cameras in a wide
variety of locations and applications: live traffic moni-

toring, parking lot surveillance, inside vehicles, and intelligent
spaces. These cameras offer data on a daily basis that need to
be analyzed in an efficient manner. Unfortunately, most visual
surveillance still depends on a human operator to sift through
this video. It is a tedious and tiring job, monitoring for inter-
esting events that rarely occur. The sheer volume of these data
impedes easy human analysis necessitating computer vision
solutions to help automate the process and assist operators.

Automatic behavior understanding from video is a very chal-
lenging problem [1]. It involves extraction of relevant visual in-
formation, suitable representation of that information, and in-
terpretation of the visual information for behavior learning and
recognition [2]. This is further complicated by wide variability
and unconstrained environments. Most monitoring systems are
designed for specific environmental situations, such as a spe-
cific time, place, or activity scenario. Traditionally, the knowl-
edge structures used for analysis were designed by hand. In
these cases, a well-versed expert defined the events of interest
for the particular application. By instead using machine learning
techniques to automatically construct activity models, it will be
better suited for online analysis because it is supported by real
data [3].
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Fig. 1. Relationship between analysis levels and required knowledge: high-
level activity analysis requires large amounts of domain knowledge while low-
level analysis assumes very little.

II. PROBLEM DESCRIPTION AND DEFINITIONS

Activity analysis in surveillance is a challenging problem. In
addition to the wide range of scenes, there are also many activi-
ties of interest each specified by the unique monitoring situation.
Homeland security and crime prevention are two hot topics that
require monitoring indoors and outdoors of critical infrastruc-
tures, highways, parking garages, and other public spaces. The
environment must be monitored as well as everything within the
scene, such as people, pets, or vehicles. With such a rich activity
space, it is difficult to imagine general procedures capable of
working over a wide range of scenarios.

The complementary pyramids in Fig. 1 depicts our view of
video surveillance. At the bottom of the analysis pyramid are
low-level processes such as tracking which uses very little prior
information, just motion. Moving up the analysis pyramid pro-
vides more complex event representations but also requires the
use of more domain-specific knowledge. The most complex be-
haviors can only be understood in the correct context.

Trajectory dynamics analysis provides a medium between
low- and high-level analysis. It is assumed that change, in par-
ticular from motion, is the cue of interest for surveillance. In ad-
dition, typical motion is repetitive whereas some of the most in-
teresting events rarely occur. This repetition enables event anal-
ysis in the context of learned motions. Rather than relying on
domain knowledge, low-level cues are used to build an activity
analysis procedure. This work formalizes activity analysis in
surveillance video based on object tracking. A summary of fre-
quently used terms and their definitions are presented Table I.

Trajectory dynamics analysis seeks to provide low-level sit-
uational awareness by understanding and characterizing the be-
havior of every object in the scene. Each object is identified and
tracked to describe their activity and produce video annotations
as outlined in the flow diagram of Fig. 2. The set of activities en-
countered in a surveillance scene reside in a high-dimensional
spatio-temporal activity space. The scene model is developed by
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TABLE I
TRAJECTORY ANALYSIS TERMS AND DEFINITIONS

Fig. 2. Activity analysis block diagram: trajectories are used to automatically
build a scene model which describes the surveillance situation and provides ac-
tivity annotation.

first defining points of interest (POIs) as image regions where
interesting events occur and the second learning stage defines
activity paths (APs) which characterize how objects travel be-
tween POIs. By learning the POI and AP, a vocabulary to ana-
lyze an arbitrary scene is constructed in an unsupervised fashion
based on the data. This vocabulary allows the following key
analysis: classification of past and current activity, detection of
abnormal activities, prediction of future activities, and charac-
terization of interactions between objects, all of which can be
performed in an online fashion on live video, which is para-
mount for active surveillance.

The main tasks involved in POI/AP learning are:
• activity learning—comparing trajectories in a manner that

preserves the intuitive notion of similarity in spite of length
mismatch;

• adaption—developing techniques to manage POI/AP
models. They must be adapted online for the introduction
of new activities, remove old activities with no support,
and have model validation;

• feature selection—determining the correct level of dy-
namic representation necessary for a particular task. It is
sufficient to use spatial information to determining what
lane a vehicle travels but velocity information might be
necessary for accident detection.

The POI/AP framework has successfully been used in many
application domains, which are summarized in Table II. The in-
telligent transportation community has used the AP framework
to model road lanes. By learning lanes, highway flow and con-
gestion can be monitored [4], [5], the frequency of lane changes
is estimated, the origin and destination (OD) information of ve-
hicles at intersections can be mapped [6], and cameras can even
be automatically calibrated [7]. The movements of people both

indoors and outdoors have been extensively studied to deter-
mine where people tend to travel. Parking lots have been mon-
itored to ensure proper use by detecting unusual driving pat-
terns [8] and people loitering around parked vehicles [9], [10].
New exciting work has come forward to analyze interactions
between humans, vehicles, and infrastructure, allowing moni-
toring of suspicious meetings [1] and luggage drops as well as
characterization of conflicts for road safety [12]–[15]. Here sus-
picious meetings or luggage drops may be monitored as well as
characterization of the conflicts for safety on shared roads.

It is important to note that POI/AP techniques require only
tracking information, meaning that activity is defined by mo-
tion (or lack of motion when an object stops). Ancillary infor-
mation sources must be used to describe more complex activi-
ties (higher level analysis). In order to distinguish a biker from
a jogger, appearance information might be needed and environ-
mental knowledge utilized to recognize the difference between
people queuing at an ATM and vehicles at a stop sign.

III. AUTOMATIC SCENE MODELING

The following sections describe the semantic scene model
introduced by Makris and Ellis [23]. A scene is modeled with a
topographical map consisting of nodes and edges (Fig. 3). The
nodes of the graph correspond to POIs while the edges, denoted
as APs, encode the activity of an object.

A. Tracking

Tracking requires the identity maintenance of each observ-
able object in every frame. An object tracked over frames
generates a sequence of inferred tracking states

(1)

where can depict things such as position, velocity, appear-
ance, shape, or other object descriptors. This trajectory informa-
tion forms the basic building block for further behavioral anal-
ysis. Through careful examination of these signatures, activity
can be recognized and understood.

Although tracking is well studied, there are still many dif-
ficulties due to perspective effects, occlusion, and real-time
adaptability to changing conditions. These cause errors in the
form of noisy measurements and incomplete or broken trajecto-
ries which must be accounted for by the scene learning process.
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TABLE II
TRAJECTORY ANALYSIS APPLICATIONS

Fig. 3. (a) POIs: pink ellipses indicate doorways (entry/exit zones) and the
green ellipses mark desks (stop landmarks). (b) Topological map: POI connected
through APs.

For further discussion, the interested reader is directed to
recent surveys that categorize existing tracking techniques and
identifies new trends [48] and the succinct review of tracking
techniques specifically for visual surveillance [49].

B. Interest Points

The first scene modeling task is to discover interesting image
regions. These are the nodes of the topographical map that in-
dicate destinations of tracked objects. The two types of nodes
considered are the entry/exit zones and stop zones as shown in
Fig. 3(a).

The entry and exit zones are the locations where objects
either enter or exit the camera field of view (FOV) or where
tracking targets appear and disappear. These zones are most
often modeled using a 2-D Gaussian mixture model (GMM)

with components and is learned
using expectation maximization (EM) [50]. The entry-point
dataset consists of the position from the first tracking state and
similarly the exit-point set uses just the last state in a trajectory.
The zones are over mixed to encompass all true zones and noise
sources. The two can be separated using a density criterion
[11]. The density of mixture is defined as

(2)

which measures the compactness of a Gaussian mixture. The
threshold

(3)

TABLE III
POINTS OF INTEREST

indicates the density of an average signal cluster where
is a user-defined weight and is the covariance ma-

trix of all of the points in the zone dataset. Using the threshold
, tight mixtures indicate true zones and while wide mixtures

imply tracking noise from broken tracks.
The second type of interest point comes from scene land-

marks. These are the locations where objects tend to idle or re-
main stationary for some time, e.g., an office desk. These stop
zones are locations that can be defined in two different ways,
either as any tracking points with speeds less than a very low
predefined threshold [23] or as all the points that remain in a
circle of radius for more than seconds [21]. By defining
a radius and time constant, this second measure ensures objects
actually remain in a particular location while the first could con-
tain points from slow moving targets, as could be the case in a
congested scene. The stop-point dataset can be constructed with
points generated from the two tests and modeled using a GMM
as described above for entry/exit zones. Besides knowing the
location, the amount of time spent at each stop zone needs to
be known for activity analysis. Yan and Forsyth [31] modeled
the duration of stay with an empirical cumulative distribution
while Makris [23] noted that stop duration could be adequately
approximated with an exponential distribution. Work learning
POI is summarized in Table III.

C. Activity Paths

To understand behavior, more than just the POIs are needed.
It is necessary to look at time-varying action. The POI can be
utilized to filter the training data removing noise from false de-
tections or from broken tracks. Only trajectories that begin in a
entry zone and end in an exit zone are retained. Tracks going
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Fig. 4. Trajectory learning schemes. (a) Flow vectors are quantized and the sequence of codebook words represents a path. (b) A full trajectory sequence is used
as input and output prototypes represent paths. (c) Video clips are broken into a set of motion words to describe behavior.

through a stop zone are divided into separate trajectories cor-
responding to an edge into and out of the zone. Activity is thus
defined between interest points, in the way an object moves from
one point of the topological graph to another.

In a highly structured environment, where the motion is con-
strained, it is relatively easy to learn the paths. Lane markers
have been exploited by the intelligent transportation community
for automatic discovery [7], [38], [41]. Because vehicles tend
to travel in the middle of a lane, the activity density (changing
pixels) has peaks at the lane centers and valleys at the lane di-
viders. These maxima provide a clear lane definition suitable for
lane assignment.

The highway lane problem is a rather simple one because
lanes are usually linear and viewed from an advantageous per-
spective which maintains the lane boundary/center distinction.
A general procedure to learn complex and arbitrary paths from
just tracking data is desired to remove any reliance on lane
structure or geometry. In addition to knowing where lanes are
located, activity paths denote behavior which is dependent on
higher order dynamic information and temporal characteristics.
In order to differentiate between a person walking or running
along a sidewalk, temporal dynamics must be included in the
path learning procedure to fully describe behavior. Fig. 4 de-
picts the basic structure of path learning algorithms. The three
dominant types differ in the types of inputs, flow vectors, tra-
jectories, or video clips, and the way motion is abstracted. In
Fig. 4(a) the input is a single trajectory point at time , points
are connected temporally for implicit ordering into paths. An
entire trajectory, Fig. 4(b), can be used as input into the learning
algorithm to directly build paths. Fig. 4(c) depicts the video de-
composition view of paths. Here, video clips are assigned an
activity based on the occurrences of motion words.

IV. LEARNING PATHS

Since a path characterizes how objects move, a raw trajectory
can be represented as sequence of dynamical measurements. For
example, a common trajectory representation is a flow sequence

(4)

where the flow vector

(5)

represents an objects’ dynamics, position , velocity
, and acceleration , at time as extracted through

Fig. 5. Trajectory learning steps.

visual tracking. Usually, only the position and/or velocity is
used because acceleration estimates are typically noisy. Tra-
jectories need not share the same length, even when traveling
along a similar route, because objects may move at different
speeds leading to mismatch in the number of samples.

Using only trajectories, it is possible to learn APs in an un-
supervised manner following the basic procedure depicted in
Fig. 5. The preprocessing step is used to set up the trajectories
for clustering which provides a summary and compact repre-
sentation of a modeled path. Though presented as three sequen-
tial tasks, often the path learning steps are blurred with prepro-
cessing, clustering, and modeling occurring in unison.

A. Trajectory Preprocessing

Most of the effort for path-learning research is spent pro-
ducing trajectory representations suitable for clustering. The
main difficulty when dealing with tracks is their time-varying
nature which leads to unequal length. Steps must be taken to en-
sure a meaningful comparison between differing sized inputs. In
addition, the trajectory representation should retain the intuitive
notion of similarity present in raw trajectories for meaningful
clusters.

Most researchers use some combination of trajectory normal-
ization or dimensionality reduction to manipulate raw trajecto-
ries in ways that allow use of standard clustering techniques.
Table IV summarizes the types of trajectory preprocessing pro-
cedures often encountered in literature.

1) Normalization: Normalization ensures that all trajectories
have the same length . Two simple techniques for length nor-
malization are zero padding [36] and track extension [13], [49].
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TABLE IV
TRAJECTORY PREPROCESSING APPROACHES

When zero padding, extra are concatenated to the end of
a trajectory while track extension uses the dynamics at the last
tracking time to estimate extra trajectory points as if it had
been tracked until time [49]. A large training database is first
analyzed and the prototypical size is chosen to be equal to the
length of the longest training trajectory. This makes the the tra-
jectory space very large and can be subject to outliers (objects
tracked for an unusually long time).

Instead of examining a training database to determine , it
can be chosen a priori with resampling and smoothing tech-
niques. Resampling guarantees all trajectories will be the same
length by interpolating the original trajectory. Two popular
choices are linear interpolation [22], [53], [55] or subsampling
[37] to reduce the number of points. Liao et al. [56] used the
Douglass–Peucker algorithm to find a minimal set of control
points for accurate portrayal of a trajectory’s shape by mini-
mizing reconstruction error. Smoothing is used to remove noise
from the trajectory and can be accomplished using a number
of simple filters [25], [57] or using a low-resolution signal
decomposition such as wavelets [39]. The resulting smoothed
track can then be interpolated and sampled to a fixed size.

Normalization techniques usually operate on entire tracks,
making them ill suited for analyzing incomplete trajectories ob-
tained during live tracking. However, they are computationally
simple and keep trajectories in an understandable space, pre-
serving natural intuition.

2) Dimensionality Reduction: The following dimensionality
reduction techniques map trajectories into a more computation-
ally manageable space. The new trajectory space is lower di-
mensional for more robust clustering given less training data.
The new space is chosen by assuming a trajectory model and
finding parameters that best describe the model.

Vector quantization reduction is achieved by limiting the
number of unique trajectories to a finite alphabet of prototypical
vectors which symbolize all trajectories [8], [33], [58], [59].

When ignoring trajectory dynamics and relying only on
spatial coordinates, trajectories can be treated as a simple 2-D
curve. This signal can be approximated by a least-squares
polynomial [6], [31]

(6)

or Chebyshev polynomials [6] of degree

(7)

The terms are used to describe a trajectory in the size m
coefficient space.

Wavelet techniques give a representation of a trajectory at dif-
ferent levels of resolution. This inherently smooths the trajec-
tory without destroying its shape or structural relationship. The
amount of smoothing is controlled by choosing the appropriate
wavelet level. Common wavelet basis functions are the simple
square Haar [60] functions or exponentials as used in the dis-
crete Fourier transform (DFT) [18], [19], [39].

Other modeling techniques assume that trajectories are pro-
duced by an underlying hidden stochastic process. Continuous
Gaussian emission hidden Markov models (HMM) characterize
the temporal dependencies between sample points well [61].
Each training trajectory is summarized by the hidden state pa-
rameters and the transition matrix which explains how to move
from one hidden state to another. Clustering then occurs in the
parameter space.

Principal component analysis (PCA) is a popular subpsace
method for constructing a new space of lower dimensionality
for improved clustering [26], [57]. The new space is spanned by
the largest eigenvectors of the training set. Trajectories are then
projected onto a subspace that accounts for most of the signal
and removes directions or low variance.

Another large class of transformations that have become very
popular for trajectory clustering are spectral methods [20], [37],
[57], [61], [62]. A similarity matrix is constructed for the
training set where indicates the similarity between trajec-
tories . A new matrix called the Laplacian is formed

(8)

where is a diagonal matrix whose th diagonal element is the
sum of row of . The matrix is decomposed to find its
largest eigenvalues. The eigenvectors are placed into a new ma-
trix whose rows correspond to the transformed trajectories in
spectral space. The spectral trajectories are then typically clus-
tered using k-means.

In a similar spirit, kernel methods have been derived from
large-margin research to account for nonlinear clusters yet pre-
serve structure and the ordering constraints of tracks [63], [64].
The kernel defines trajectory similarity in a very high di-
mensional space but provides simple rules to separate clusters.

While clustering is more robust using dimensionality reduc-
tion techniques because it avoids the curse of dimensionality,
the techniques are only as effective as the trajectory model. If
the chosen model does not represent well the tracking process,
the resulting clusters will be meaningless.

B. Trajectory Clustering

Clustering is a general machine learning technique to iden-
tify structure in unlabeled data. When observing a scene, mo-
tion trajectories are collected and are grouped into similar cat-
egories we have called routes. In order to generate meaningful
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clusters, the clustering procedures must address three main is-
sues: 1) definition of a distance (similarity) measure; 2) cluster
update methodology; and 3) cluster validation. Liao presents a
complete survey of clustering techniques for time-series data
[73] which is applicable to route learning.

1) Distance/Similarity Measures: Clustering techniques rely
on definition of a distance (similarity) metric in order to com-
pare tracks. As stated previously, the main difficulty with trajec-
tory clustering is the potential for differing length tracks gen-
erated by the same activity. This discrepancy can be combat
through the preprocessing techniques or by careful definition of
a size independent distance measures.

The Euclidean distance between two trajectories (of equal
size) is computed as

(9)

A simple size-invariant modification of the Euclidean distance
to compare two unequal length vectors, with length ,
respectively , uses the last point to accumulate
distortion [30]

(10)
Though simple, Euclidean distance performs poorly in the

presence of time shifts as only aligned sequences match well.
Trajectories can be optimally, aligned at the cost of added com-
putation, before computing distance to deal with mismatched
points. Dynamic time warping (DTW) [74] has been used
in speech recognition literature to find the distance between
unequal length signals. A dynamic program is solved to find
an optimal alignment between two trajectories by minimizing
the distance between matched points. Longest common subse-
quence (LCSS) analysis is another popular alignment technique
because of robustness to noise [75], [76]. Rather than find a
match between all points in each trajectory, outliers may be
disregarded and remain unmatched. In a similar spirit, Piciarelli
and Foresti [67] defined a new distance measure that does
not depend on having the entire trajectory for computation.
Assuming trajectory , have length

respectively,

(11)

where

(12)

is a normalization constant that measures the variance of
point . ( is used to compare trajectories to existing
clusters where a point variance measure makes sense. If com-
paring two trajectories, one would use .) This defines a
distance measure that is the mean of normalized distances from
every point to its best match in a sliding temporal window of
length centered on .

The Hausdorff distance that measures the distance between
two unordered sets has also been used to compare trajectories
[25]. The distance is defined for unequal length data, but because

it does not take into account ordering may incorrectly match dis-
similar trajectories (walking different directions on a sidewalk).
The Hausdorff distance is symmetrically defined as

(13)

where

(14)

A modified Hausdorff distance [62] better suited for
trajectory data has been introduced. It respects point ordering
by incorporating direction and minimizes the effect of outliers
from noisy points

(15)

where is the neighborhood of within , is
the set of points in that correspond to a point in , and

denotes the value of that is larger than
the fraction of all values of over .

Rather than using the distance calculation directly, a simi-
larity measure [37] can be derived from any of the distance mea-
sures as

(16)

where is a parameter to control how quickly similarity drops
with increasing distance between trajectories and .
This helps abstract the distance metric from data comparison
by adding another parameter to tune for performance.

2) Clustering Procedures: Once trajectories have been
properly preprocessed, they can be grouped using unsupervised
learning techniques. The grouping partitions the trajectory
space into perceptually similar clusters called routes. There are
a number of different techniques that have been employed for
route learning: 1) iterative optimization; 2) online adaptive; 3)
hierarchical; 4) neural networks; and 5) co-occurrence decom-
position. The primary algorithms along with their strengths and
weaknesses for route clustering are summarized in Table V. A
more detailed summary of general clustering is available in the
survey works of Jain and Berkin [77], [78].

1) Iterative Optimization—The most popular of the clus-
tering techniques because of simple and tractable opti-
mization procedures. Using standard Euclidean distance,
closed-form solutions exist to find all of the cluster proto-
types in a single iteration. Standard K-means along with
its soft variant fuzzy C means (FCM) are the most popular
of these techniques, though both require all trajectories be
normalized to a fixed length.

2) Online Adaptive—Unlike the iterative optimization tech-
niques, a large training database of trajectories does not
need to be collected before building routes. As new tracks
are seen they can be incorporated into the model set. In ad-
dition, there is no need to set the number of tracks a priori,
which is difficult to do for a new scene because this is usu-
ally unknown. An additional learning parameter must be
specified to control the rate of route update. These tech-
niques are of particular interest because they are very well
suited to long term, time-varying scenes because clusters
are continually updated and adapt to changes.
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TABLE V
SUMMARY OF WIDELY USED CLUSTERING TECHNIQUES FOR AUTOMATIC ACTIVITY PATH LEARNING

3) Hierarchical—There are two main hierarchical clustering
variants, agglomerative and divisive, which define sim-
ilarity relationships between trajectories in a tree-like
structure following a bottom-up or top-down procedure,
respectively. The root node corresponds to the full dataset
while the bottom nodes to individual tracks. The tree
structure provides clusters at different resolutions al-
lowing a suitable clustering to be chosen by cutting the
tree at a given level without knowledge of the true number
of clusters. While multiscaled, each similarity decision
is usually “hard” preventing adjustment further along,
meaning errors can propagate.

4) Neural Networks—Using the self-organizing map (SOM)
introduced by Kohonen [71] trajectories can be clustered
in a low-dimensional arrangement preserving topological
properties. Each output node of the neural network corre-
sponds to a single route and neighboring nodes correspond
to more similar routes. By employing neural networks,
highly nonlinear clusters can be learned in trajectory space.
These networks can be trained sequentially and easily up-
dated with new examples but may suffer from long con-
vergence time due to the complexity of setting weights and
learning parameters as well as the need for large amounts
of data.

5) Co-Occurrence Decomposition—The extensive work and
success of document retrieval (document-keyword clus-
tering) and natural language processing inspires similar
frameworks for route learning. Trajectories are viewed as a
bags of words where similar bags contain similar words. A
co-occurrence matrix is formed from training data and de-
composed to build document subjects (routes). These tech-
niques must define a set vocabulary which may be limited
in size.

3) Cluster Validation: The quality of path learned with a
clustering algorithm must be verified because the true number
of clusters is unknown. Most clustering algorithms require an
initial choice for the number of expected clusters which is un-
likely to be correct. Morris and Trivedi [16], [55] over clus-

tered the scene and used an agglomerative merge procedure to
combine similar cluster prototypes. Other techniques find the
correct number of clusters by minimization (maximization) of
some optimality criterion. Clustering is performed a number of
times by varying the initial number of clusters . The that
performs best is chosen for the true number of clusters. One
such criterion is the tightness and separation criterion (TSC)
[36], [37] which measures how close trajectories in clusters are
compared to the distance between clusters. Given a training set

, then

(17)

where is the fuzzy membership of trajectory to cluster
as represented by prototype . A similar distortion score was
adopted by Atev et al. [62] and Porikli designed luster validity
score [61] for spectral clustering. Other validation criteria have
come from information theory, such as Bayesian information
criterion (BIC) [8].

C. Path Modeling

Once trajectories have been clustered, the resulting paths are
modeled for efficient inferencing. The path model is a compact
representation of a cluster partition. Paths have been modeled
in two different fashions. The first considers a path in its en-
tirety, from endpoint to endpoint [Fig. 6(a)], while the second
decomposes a path into smaller atomic parts called subpaths
[Fig. 6(b)]. A summary of the different path models and the re-
search work they can be found in is provided in Table VI.

A path is minimally specified by its centroid. The centroid
corresponds to a cluster prototype and specifies how an expected
trajectory from the given activity should appear. The path can
be further specified by augmenting the centroid with a path en-
velope. The envelope functions as the lane markers on a road,
denoting the extent of a path. This idea can be further extended
through probabilistic modeling where the path centroid is the
model mean and the envelope represents the variance. The prob-



MORRIS AND TRIVEDI: SURVEY OF VISION-BASED TRAJECTORY LEARNING AND ANALYSIS FOR SURVEILLANCE 1121

Fig. 6. (a) Full path model: paths have an average center and an envelope denoting path extent with optional internal states to model measurement ordering. (b)
Paths represented as a tree of subpaths. The predicted path probability is found by the product of edges from a given node to a leaf node.

TABLE VI
PATH MODELS

abilistic models are estimated from the data, where each cluster
partition is used to learn an individual path model [36], [55].
Gaussian observation emission HMMs are commonly used be-
cause sample ordering is enforced with the transition matrix and
effective comparison techniques between trajectories and paths.
The standard HMM has been extended to model the duration of
time spent in a state [79] to help account for variation in activity
time-scales and speed.

In contrast to the full path techniques, subpath methods di-
vide up the trajectory space into atomic elements. Each of the
atomic elements represent similar regions of a path such as por-
tions of paths before splits [67] or parts of a path with similar
curvature [57]. Subpaths are further defined by their connec-
tions with other subpaths. These connections indicate the pos-
sible transitions between subpaths and decompose a trajectory
into a subpath traversal list.

D. Path Feedback to Low-Level Systems

Though intended for higher level analysis, learned paths are
useful as feedback to the lower level functions as well [80].
Shadows suppression was improved on a highway by learning
the lane marker positions and removing those cast shadows that
fell over a lane line [41]. Tracking robustness was improved by
learning the static scene occlusion landscape giving a depth es-
timate to tracked objects [81]. The paths have also been used
as a form of state prediction to direct tracking association [34],
[53].

V. AUTOMATIC ACTIVITY ANALYSIS

Once the scene model has been constructed, object behaviors
and activities can be analyzed. One of the basic functions of
surveillance video is identification of interesting events. In
general, it is difficult to define interesting except in a specific
context. Parking garage monitoring might be concerned with

the availability of open stalls while interactions between people
occur in an intelligent conference room. Besides just recog-
nizing typical behavior, all atypical events should be examined
as well. By observing a scene over time, the system can learn
what is interesting to perform a range of activity analyses such
as virtual fencing, speed profiling, path (activity) classification,
abnormality detection, online activity analysis, and object in-
teraction characterization. Table VII reviews a list of exemplary
activity path modeling systems and their associated activity
analyses.

A. Virtual Fencing

A basic event trigger for any surveillance system is perimeter
sentry. Monitoring zones or virtual fences are erected in the
image plane to issue intelligent alerts when breached. These
alarms could be used to initiate control of other cameras in the
network such as a high resolution PTZ camera to obtain finer
event details for person recognition [82] or vehicle classifica-
tion [83]. By monitoring entry/exit zones, vehicle counts can be
accumulated for traffic flow analysis [83], [84] or detailed OD
mapping [6]. When stop zones are characterized by the amount
of time objects usually remain idle within them, it is possible to
detect loitering people [21], [21], [24] if they remain in an area
for an unusually long time.

B. Speed Profiling

Virtual fences only take advantage of spatial information.
Tracking also gives dynamics which can be used for speed based
alarms. Vehicle velocity measurements have been used to cate-
gorize speeding behavior [4] or highway congestion from stalled
vehicles or accidents [5]. The bounding boxes in Fig. 7 indicate
the speed state of each vehicle with respect to daily averages
[55]. Red denotes stopped, yellow slow moving, green the speed
of normal travel, and blue to mark a speeding vehicle. Junejo et
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TABLE VII
COMPARISON OF EXEMPLARY ACTIVITY PATH MODELING TECHNIQUES

al. [25] used a Gaussian distribution to model the average speed
along a path for anomaly detection.

C. Path Classification

The previously discussed behavior analysis tools only relied
on the current tracking data to issue alerts which neglects the
APs derived from historical motion patterns. The behavior of a
novel object is described by finding the maximum a posteriori
(MAP) path

(18)

This determines which activity path best explains the new
datum. The prior path distribution can be estimated from
the cluster density or frequency in the training set [36]. The

Fig. 7. Speed profiling: {Blue, Green, Yellow, Red} = {Speeding, Normal,
Slow, Stopped}. The north speed is �65 mph while south is �27 mph.

problem can be reduced to a maximum-likelihood (ML) esti-
mation by concentrating on the likelihood of path as
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Fig. 8. Trajectory analysis for abnormality detection. (a) Car crossing lane dividing line causing abnormal trajectory. (b) Abnormal trajectory from car doing 360
loop. (c) More subtle abnormality that might be missed by casual observer. The trajectory shows a person walking along the edge of the room.

Fig. 9. Trajectory analysis for left turn prediction at intersection showing the probability of the top three best paths.

done with HMMs [16], [22], [55]. When only path prototypes
are available, the cluster that best matches the novel trajectory
approximates the ML solution. The label of the prototype with
minimal distance indicates the best matching path [28], [49],
[67].

D. Abnormality Detection

Perhaps the most important task in a surveillance system is
the detection of unusual events. Abnormal behaviors can be
drastic, as shown in Fig. 8(a) and 8(b), and are easily noticed by
human monitoring or they can be subtle as in Fig. 8(c), making
manual perception difficult.

Since APs denote typical activities, if a new trajectory does
not fit a path well it can be considered an abnormality. Anom-
alies should rarely occur, thus lack visual support. Abnormal
patterns can then be detected by intelligent thresholding

(19)

where the most likely AP given a new trajectory is less than
a threshold . The threshold can be tuned for each path indi-
vidually based on its unique characteristics chosen, for neural
network implementations, as half the maximum distance be-
tween training samples and a winning neuron (path prototype)
[9], [49]. This led to a large number normal tracks misclassi-
fied as abnormal. In Junejo’s multifeature path model, a path
was considered abnormal if it did not fall within the spatial path
envelope and fit both a Gaussian velocity and curvature profile
[25]. Hu used the minimum probability encountered in a path
training set as the threshold [36].

While the previous thresholds were effective, the abnormality
threshold should not be static but be adjustable to tune the sen-
sitivity for a given application and control the TP/FP rate [16].

In some places, it will be crucial not to miss any true abnormal-
ities at the cost of false positives while on other occasions false
positives may unnecessarily bog down the system.

E. Online Activity Analysis

While it is important to be able to take an entire trajectory
and describe motion, it is even more important to recognize and
evaluate behavior as it occurs in an online fashion. A real-time
system must be able to do behavior inferencing quickly with
incomplete data. With online trajectory analysis, the intent of
objects can be predicted and tracking anomalies detected.

1) Path Prediction: The tracking data up to time can be
leveraged to infer future behavior and as more information is
gathered the prediction is refined. The intent is conditioned on
the set of acceptable behaviors (APs) allowing for better long-
term prediction. The best three predicted paths are shown for a
left turn at an intersection in Fig. 9.

Activity prediction uses an incomplete trajectory

(20)

where is a windowing function and is the trajectory
up to the current time as well as predicted future tracking
states (obtained by extending the motion model steps into the
future). Different temporal windows will affect the tradeoff be-
tween the accuracy of prediction based on historical data states
and the delay in recognizing a new behavior.

When no window function is used, trajectory data up to the
current time is used to make predictions [36]. An object may
engage in a number of different behaviors during the course of
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tracking, and if all past data is used it is not possible to dis-
tinguish them, e.g., lane changes on the highway. A Gaussian
window

(21)

has been used to decrease the contribution of those older sam-
ples [27]. Similarly, a rectangular window [16], [55] has also
been used to consider only a short time frame during predic-
tion. This speeds up evaluation in the case of long trajectories
whose distant samples are unlikely to contribute to the predic-
tion accuracy.

When a subpath graph is present, path prediction is accom-
plished by finding the probability of ending in a leaf node
[Fig. (6b)]. The transitions between subpaths are learned by
approximating probabilities through counting of the training
set. Thus, by knowing the current subpath node, the predicted
trajectory of the object can be mapped out by following the
node transitions with highest probability.

2) Tracking Anomalies: Besides classifying a complete tra-
jectory as abnormal, any out-of-ordinary events should be de-
tected as they occur. This type of alert can be issued during
live tracking by substituting for in (19). The window
function does not have to be the same as used for predic-
tion and the threshold might need to be adjusted because of
less data for practical implementation [13], [42]. As soon as an
anomaly occurs, a flag can be raised.

F. Object Interaction Characterization

The last level of automatic analysis seeks to describe object
interactions. Like abnormal events, it is difficult to strictly define
object interactions because of the wide variety of possible types.
Different scenes may have very different types of interactions
because of the environment or even the types of objects present.
The interactions encountered on a highway are very different
than those in a classroom because one monitors vehicles while
the other people.

Vehicle collisions have been detected by the intersection of
overlapping bounding boxes or 3-D models [13], [42]. This
overlap concept can be generalized with the personal space
abstraction from psychology. This is the area a person con-
siders to be his territory and is used to define proximity. This
surrounding region corresponds to a minimal comfort distance.
In the past, this has been defined statically based on object size
[43], but really personal space is dependent on environmental
and socio-cultural contexts. This insight leads to an adaptable
extension to the spatio-temporal personal space that is not static
but changes shape due to motion [45]. The white area around a
colored object in Fig. 10 indicates the extent of personal space,
with it extending further in the direction of travel.

Personal space can be extended for collision and conflict
severity analysis where the safety of a site can be assessed
such as traffic intersection analysis [12], [15], [47]. In reality
collisions are very rare events, the true safety of the scene is
better estimated by examining conflicts and avoidance maneu-
vers [85]. These are instances when an involved target must
change its behavior to avoid an accident. These near misses
can be detected using the personal space formulation rather

Fig. 10. Collision assessment: using intended paths, a collision likelihood can
be assigned to trajectories with predicted intersection between personal space
areas.

than based on a true collision of vehicles. In addition, routes
can be extended to postulate when collisions might occur by
intersection along predicted paths as shown in Fig. 10. By
having accurate path predictions, the safety of an intersection
can be gauged by the number of potential collisions.

VI. FUTURE DEVELOPMENTS

While the POI/AP framework has been quite successful for a
variety of tasks in many surveillance applications, there are still
open issues. These range from low-level vision problems such
as robust object detection to high-level semantic interpretation
as well as developing a concrete definition of what truly is an
abnormality.

A. Improved Tracking

Most of the trajectory based analysis systems rely on perfect
tracking. Further analysis is meaningless if objects can not be
accurately localized and tracked. Algorithms to handle tracking
noise, because of broken tracks due to occlusion or crowds,
must be developed for a completely unsupervised system in the
real-world. Instead of tracking in the image, using normalized
ground plane or 3-D coordinates could produce trajectories in
world coordinates for better separation and clustering since per-
spective distortion is minimized.

B. Dynamics and Behaviors

Often, the dynamics are disregarded because trajectories are
resampled and, in this process, length, which is a simple in-
dicator of speed, is lost. Many works describe good perfor-
mance on their datasets, but it is unclear what exactly is being
tested. Deeper analysis is needed to define the types of activities
spanned using just position versus adding velocity. In addition,
more complex activities can be recognized through inclusion of
other measurements such as curvature profile used by Junejo et
al. [25] to detect erratic walking.

C. Clustering Performance

As we have shown, there are many variations to path learning
with little agreement on what are the best methods. Zhang et al.
[86] compared different distance measures using spectral clus-
tering and found that the more complex DTW and LCSS dis-
tances did not perform significantly better than Euclidean vari-
ants because the shape of their paths were simple. The clus-
tering comparison by Jain et al. [87] suggest there may only be
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five major classes of clustering techniques to try as others pro-
duce similar partitions. A complete comparison of distance/sim-
ilarity measures, clustering methods, and validation schemes is
paramount to furthering trajectory based analysis rather than fo-
cusing on the learning methodology.

D. Activity Model Management

A critical feature for a usable surveillance system is the ability
to adapt to changing environments for long-term analysis. We
presented a few online adaptive techniques [23], [67] but all
path learning methods should be able to introduce new models
and remove old ones. Things that initially might be considered
abnormal could become normal, and old activities that are no
longer supported should not add complexity to the analysis eval-
uation.

E. Path Decomposition

A few works have used subpaths to describe activities because
it naturally fits how one might reason about a fork in the road.
Using subpaths allows data from differing end activities to share
data for more efficient learning and provides a simple means for
prediction. However, it is not known whether this truly helps
with the activity analysis. Subtle cues may be lost by sharing
data. For example, a vehicle making a right turn at an intersec-
tion may tend to nudge slightly right and slow down more than
a vehicle going straight through. Ways to share data yet retain
discriminability need to be explored as well as the tradeoffs be-
tween learning complexity, the amount of training data, and pre-
diction capabilities.

F. Activity Analysis Extensions

The techniques described could be extended to a number
of different situations. An appealing arena is multicamera
networks that can monitor larger areas for better coverage and
provide a more complete view of behavior (longer term activity
analysis). The cameras would need to establish correspon-
dences between each other and their relative position within the
network [51], [88].

Trajectory data need not be produced just from static cam-
eras. Generalized trajectory data could be obtained from moving
platforms such as cars through vehicle surround analysis [90]
or from aerial video [90]. The ego-motion of the platform it-
self presents another trajectory in addition to the tracks of sur-
rounding objects. This type of analysis would be quite popular
in the intelligent transportation field, specifically for pedestrian
safety [91].

The trajectories could also come from articulated objects such
as human motion capture. Here activities would need to be de-
fined with respect to groups of trajectories [92], [93].

G. Analysis Evaluation

The most critical step for POI/AP analysis is a clear definition
of how to evaluate the differing systems. Currently there is little
agreement for evaluation metrics, some report classification ac-
curacy, cluster correctness, or abnormality detection rates. The
PETS and CAVIAR databases provide widely used surveillance
video but without labels of typical activities or abnormalities.
New databases need to be constructed to provide an even field
for accurate comparison.

It is noteworthy to consider the problem of masking behav-
iors or when an abnormal subject masquerades in typical form.
This extremely important surveillance situation may require
data more diverse than just trajectories to detect necessitating a
parallel processing thread in the analysis framework (Fig. 2).

VII. CONCLUDING REMARKS

The pervasive use of cameras for a wide variety of general
surveillance tasks necessitates systems as easy to setup as the
cameras themselves. This paper presents a survey of trajectory-
based activity analysis predicated on motion coherence. By ob-
serving and tracking objects over time, to generate trajectories,
a probabilistic model of typical behavior can be established. A
topographical map specifies points of interest connected by ac-
tivity paths which describe the way objects move. The graph
accurately describes observations because it is generated from
data and not through hand definition, thus allowing activities
to be analyzed in a principled manner. The model is used to
focus the surveillance system attention to events of interest: ac-
tivity classification, detection of abnormalities, activity predic-
tion, and object interaction.
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