HW \#4 Orthogonality, Eigenvalue and Eigenvector of Matrix

1. Express $y=\left[\begin{array}{l}6 \\ 2 \\ 7\end{array}\right]$ as a linear combination of the orthogonal basis $\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.
2. Express $y=\left[\begin{array}{c}3 \\ 5 \\ -4\end{array}\right]$ as a linear combination of the orthogonal basis $\left\{\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.
3. Let $V=R^{3}, \mathrm{U}$ is the orthogonal complement to $[1,2,1]^{T}$
a) Find a basis of U
b) Find an orthogonal basis of U
c) Find the distance between $v=[1,2,3]$ and U
4. Let $A=\left[\begin{array}{cc}1 & -2 \\ 4 & 7\end{array}\right]$. Find its eigenvalue λ and eigenvector \vec{x}
5. Find the least squares solution to the system of linear equations:

$$
\left[\begin{array}{cc}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

6. Suppose W is a flat plane spanned by $\left\{x_{1}, x_{2}\right\}$, where $x_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $x_{2}=\left(\begin{array}{l}2 \\ 2 \\ 3\end{array}\right)$. Find an orthogonal basis $\left\{v_{1}, v_{2}\right\}$ for W .
7. Find an orthogonal basis for the space $W=\operatorname{span}([1,3,0],[2,1,4])$ of \mathbb{R}^{3}
8. Find the eigenvalue λ and eigenvector \vec{x} for matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
6 & -1 & 0 \\
-1 & -2 & -1
\end{array}\right)
$$

9. Use Matlab to draw vectors: $V_{1}=(\sqrt{2}, \sqrt{2}), V_{2}=-2 V_{1}, V_{3}=V_{1} \angle 75^{\circ}$ (rotate V_{1} clockwise by 60°), $V_{4}=-\frac{3}{2} V_{1} \angle-$ 90° (rotate V_{1} counter clockwise by 90°).
10. Find the value for coefficient "a", such that following equations have no real solutions for x and y .

$$
\begin{aligned}
a x+4 y & =12 \\
3 x-y & =1
\end{aligned}
$$

