

Henry Selvaraj

Source Transformation

• Source transformation in frequency domain involves transforming a voltage source in series with an impedance to a current source in parallel with an impedance.

$$V_s = Z_s I_s \quad \Leftrightarrow \quad I_s = \frac{V_s}{Z_s}$$

2

1

 $\circ b$

0 b

- As long as the op amp is working in the linear range, frequency domain analysis can proceed just as it does for other circuits.
- It is important to keep in mind the two qualities of an ideal op amp:
 - No current enters either input terminals.
 - The voltage across its input terminals is zero with negative feedback.

Example

For the differentiator shown in Fig. obtain V_o/V_s . Find $v_o(t)$ when $v_s(t) = V_m \sin \omega t$ and $\omega = 1/RC$.

9

This is an inverting op amp so that $\frac{\mathbf{V}_{\circ}}{\mathbf{V}_{\circ}} = \frac{-\mathbf{Z}_{f}}{\mathbf{Z}_{\circ}} = \frac{-\mathbf{R}}{1/\mathrm{j}\omega\mathrm{C}} = -\mathbf{j}\omega\mathbf{R}\mathbf{C}$

When $\mathbf{V}_s = V_m$ and $\omega = 1/RC$, $\mathbf{V}_o = -j \cdot \frac{1}{RC} \cdot RC \cdot V_m = -j V_m = V_m \angle -90^\circ$

Therefore,

 $v_o(t) = V_m \sin(\omega t - 90^\circ) = -V_m \cos(\omega t)$

Henry Selvaraj

11 Application The op amp circuit shown here is known as a capacitance multiplier. • It is used in integrated circuit technology to create large capacitances out of smaller ones. $R_1 \quad 0 \text{ V}$ \mathbf{V}_o \mathbf{Z}_i Henry Selvaraj 12 **Capacitor Multiplier** • The first op amp is acting as a voltage follower, while the second one is an inverting amplifier. t node 1: $I_{i} = \frac{V_{i} - V_{o}}{1 / j\omega C} = j\omega C (V_{i} - V_{o})$ $z_{i} = \frac{V_{i}}{\varphi}$ • At node 1: V_o • Applying KCL at node 2 gives $V_o = -\frac{R_2}{R_1}V_i$

Capacitor Multiplier IV

15

- It is important to understand a limitation of this circuit.
- The larger the multiplication factor, the easier it is for the inverting stage to go out of the linear range.
- Thus the larger the multiplier, the smaller the allowable input voltage.
- A similar op amp circuit can simulate inductance, eliminating the need to have physical inductors in an IC.

 Henry Selvaraj

 16

 Oscillators

 It is straightforward to imagine a DC voltage source.

 One typically thinks of a battery.

 9 But how to make an AC source?

 9 Mains power comes to mind, but that is a single frequency.

 9 This is where an oscillator comes into play.

 9 They are designed to generate an oscillating voltage at a frequency that is often easily changed.

Barkhausen Criteria

17

- In order for a sine wave oscillator to sustain oscillations, it must meet the Barkhausen criteria:
- 1. The overall gain of the oscillator must be unity or greater. Thus losses must be compensated for by an amplifying device.
- 2. The overall phase shift (from the output and back to the input) must be zero
- Three common types of sine wave oscillators are phase-shift, twin T, and Wein-bridge oscillators.

Wein-bridge II

• The circuit is an amplifier in a non-inverting configuration.

19

20

- There are two feedback paths:
 - The positive feedback path to the non-inverting input creates oscillations
 - The negative feedback path to the inverting input controls the gain.
- We can define the RC series and parallel combinations as Z_s and $Z_{p.}$

Henry Selvaraj

• The resulting feedback ratio is:

$$\frac{V_2}{V_o} = \frac{Z_p}{Z_s + Z_p}$$

• Expanded out:

$$\frac{V_2}{V_o} = \frac{\omega R_2 C_1}{\omega (R_2 C_1 + R_1 C_1 + R_2 C_2) + j (\omega^2 R_1 C_1 R_2 C_2 - 1)}$$

- To satisfy the second Barkhausen criterion, V_2 must be in phase with V_o .
- This means the ratio of V_2/V_o must be real

```
Henry Selvaraj
```

Wein-bridge IV

21

• This requires that the imaginary part be set to zero: $\omega_a^2 R_1 C_1 R_2 C_2 - 1 = 0$

• Or

$$\omega_o = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}}$$

• In most practical cases, the resistors and capacitors are set to the same values.

Wein-bridge VI

23

- Thus in order to satisfy the first Barkhausen criteria, the amplifier must provide a gain of 3 or greater.
- Thus the feedback resistors must be:

$$R_f = 2R_g$$