- 1
 Phasor Relationships for Resistors

- Each circuit element has a relationship between its current and voltage.
- These can be mapped into phasor
 relationships very simply for resistors capacitors and inductor.
- For the resistor, the voltage and current are related via Ohm's law.
- As such, the voltage and current are in
 phase with each other.

Henry Selvaraj

Phasor Relationships for Resistors If the current through a resistor R is:

$$
i=I_{m} \cos (\omega t+\phi),
$$

the voltage across it is given by Ohm's law as:

$$
v=i R=R I_{m} \cos (\omega t+\phi)
$$

The phasor form of this voltage is:

$$
\mathbf{v}=R I_{m} \angle \phi
$$

But the phasor representation of the current is: $\mathbf{I}=I_{m}\langle\phi$.

Hence, V = RI.

Henry Selvaraj

3

Phasor Relationships for Inductors

- Inductors on the other hand have a phase shift between the voltage and current.
- In this case, the voltage leads the current by 90°.
- Or one says the current lags the voltage, which is the standard convention.
- This is represented on the phasor diagram by a positive phase angle between the voltage and current.

Henry Selvaraj

For the inductor L, assume the current through it is:
$i=\quad I_{m} \cos (\omega t+\phi)$.
The voltage across the inductor is:

$V=\quad v=L \frac{d i}{d t}=-\omega L I_{m} \sin (\omega t+\phi)$
(But, $-\sin \mathrm{A}=\cos \left(\mathrm{A}+90^{\circ}\right)$
$v=\omega L I_{m} \cos \left(\omega t+\phi+90^{\circ}\right)$
 which transforms to the phasor: $\mathbf{V}=\omega L I_{m} e^{j\left(\phi+90^{\circ}\right)}=\omega L I_{m} e^{j \phi} e^{j 90^{\circ}}=\omega L I_{m} \angle \phi e^{j 90^{\circ}}$

$$
\text { But } I_{m}\left\langle\phi=\mathbf{I}, \text { and } e^{j 90}=j \quad \text { Therefore, } \mathbf{V}=j \omega L \mathbf{I}\right.
$$

5

Phasor Relationships for Capacitors

- Capacitors have the opposite phase relationship as compared to inductors.
- In their case, the current leads the voltage.
- In a phasor diagram, this corresponds to a negative phase angle between the voltage and current.

Henry Selvaraj

Phasor Relationships for Capacitors

For the capacitor C, assume the voltage across it is $v=V_{m} \cos (\omega t+\phi)$.
The current through the capacitor is:

$$
\begin{aligned}
& i=C \frac{d v}{d t} \\
& \mathbf{I}=j \omega C \mathbf{V} \Longrightarrow \quad \mathbf{V}=\frac{\mathbf{I}}{j \omega C}
\end{aligned}
$$

The current leads the voltage by 90 -

Voltage current relationships

Element	Time domain	Frequency domain
R	$v=R i$	$\mathbf{V}=R \mathbf{I}$
L	$v=L \frac{d i}{d t}$	$\mathbf{V}=j \omega L \mathbf{I}$
C	$i=C \frac{d v}{d t}$	$\mathbf{V}=\frac{\mathbf{I}}{j \omega C}$

Henry Selvaraj

Impedance and Admittance

- It is possible to expand Ohm’s law to capacitors and inductors.
- In time domain, this would be tricky as the ratios of voltage and current and always changing.
- But in frequency domain it is straightforward
- The impedance of a circuit element is the ratio of the phasor voltage to the phasor current.

$$
\mathrm{Z}=\frac{V}{I} \quad \text { or } \quad V=Z I
$$

- Admittance is simply the inverse of impedance.

The impedance \mathbf{Z} of a circuit is the ratio of the phasor voltage \mathbf{V} to the phasor

 current 1 , measured in ohms (Ω).The impedance represents the opposition which the circuit exhibits to the flow of sinusoidal current. Although the impedance is the ratio of two phasors, it is not a phasor, because it does not correspond to a sinusoidally varying quantity.
As a complex quantity, the impedance may be expressed in rectangular form as $\mathbf{Z}=R+j X$

Henry Selvaraj

10

$$
\mathbf{z}=R+j X
$$

The reactance X may be positive or negative. We say that the impedance is inductive when X is positive or capacitive when X is negative. Thus, impedance $\mathbf{Z}=R+j X$ is said to be inductive or lagging since current lags voltage, while impedance $\mathbf{Z}=R-j X$ is capacitive or leading because current leads voltage. The impedance, resistance, and reactance are all measured in ohms. The impedance may also be expressed in polar form as $\mathbf{z}=|\mathbf{z}| / \theta$

$$
\mathbf{Z}=R+j X=|\mathbf{Z}| \angle \theta
$$

where

$$
|\mathbf{Z}|=\sqrt{R^{2}+X^{2}}, \quad \theta=\tan ^{-1} \frac{X}{R}
$$

and

$$
R=|\mathbf{Z}| \cos \theta, \quad X=|\mathbf{Z}| \sin \theta
$$

Impedance and Admittance

- It is important to realize that in frequency domain, the values obtained for impedance are only valid at that frequency.
- Changing to a new frequency will require recalculating the values.

- The impedance of capacitors and inductors are shown here:
Henry Selvaraj

12

Impedance and Admittance

- As a complex quantity, the impedance may be expressed in rectangular form.
- The separation of the real and imaginary components is useful.
- The real part is the resistance.
- The imaginary component is called the reactance, X.
- When it is positive, we say the impedance is inductive, and capacitive when it is negative.

Element Impedance Admittance

$$
\begin{array}{lll}
R & \mathbf{Z}=R & \mathbf{Y}=\frac{1}{R} \\
L & \mathbf{Z}=j \omega L & \mathbf{Y}=\frac{1}{j \omega L} \\
C & \mathbf{Z}=\frac{1}{j \omega C} & \mathbf{Y}=j \omega C
\end{array}
$$

(a)

(b)

Henry Selvaraj

14

Impedance and Admittance

- Admittance, being the reciprocal of the impedance, is also a complex number.
- It is measured in units of Siemens
- The real part of the admittance is called the conductance, G
- The imaginary part is called the susceptance, B
- These are all expressed in Siemens or (mhos)
- The impedance and admittance components can be related to each other:

$$
G=\frac{R}{R^{2}+X^{2}} \quad B=-\frac{X}{R^{2}+X^{2}}
$$

Impedance and Admittance

Find $v(t)$ and $i(t)$ in the circuit shown in Fig.
From the voltage source $10 \cos 4 t, \omega=4$,

$$
\mathbf{V}_{s}=10 \angle 0^{\circ} \mathrm{V}
$$

The impedance is

$$
\mathbf{Z}=5+\frac{1}{j \omega C}=5+\frac{1}{j 4 \times 0.1}=5-j 2.5 \Omega
$$

Hence the current

$$
\begin{aligned}
\mathbf{I}=\frac{\mathbf{V}_{s}}{\mathbf{Z}} & =\frac{10 \angle 0^{\circ}}{5-j 2.5}=\frac{10(5+j 2.5)}{5^{2}+2.5^{2}} \\
& =1.6+j 0.8=1.789 / 26.57^{\circ} \mathrm{A}
\end{aligned}
$$

The voltage across the capacitor is

$$
\begin{aligned}
\mathbf{V}=\mathbf{I Z}_{C}=\frac{\mathbf{I}}{j \omega C} & =\frac{1.789 \angle 26.57^{\circ}}{j 4 \times 0.1} \\
& =\frac{1.789 \angle 26.57^{\circ}}{0.4 \angle 90^{\circ}}=4.47 \angle-63.43^{\circ} \mathrm{V}
\end{aligned}
$$

Converting I and \mathbf{V} to the time domain, we get:

$$
\begin{gathered}
i(t)=1.789 \cos \left(4 t+26.57^{\circ}\right) \mathrm{A} \\
v(t)=4.47 \cos \left(4 t-63.43^{\circ}\right) \mathrm{V}
\end{gathered}
$$

Notice that $i(t)$ leads $v(t)$ by 90° as expected.

Henry Selvaraj

16

Kirchoff's Laws in Frequency Domain

- A powerful aspect of phasors is that Kirchoff's laws apply to them as well.
- This means that a circuit transformed to frequency domain can be evaluated by the same methodology developed for KVL and KCL.
- One consequence is that there will likely be complex values.

Impedance Combinations

- Once in frequency domain, the impedance elements are generalized.
- Combinations will follow the rules for resistors:

Henry Selvaraj

Impedance Combinations

- Series combinations will result in a sum of the impedance elements:

$$
Z_{e q}=Z_{1}+Z_{2}+Z_{3}+\cdots+Z_{N}
$$

- Here then two elements in series can act like a voltage divider

$$
V_{1}=\frac{Z_{1}}{Z_{1}+Z_{2}} V \quad V_{2}=\frac{Z_{2}}{Z_{1}+Z_{2}} V
$$

Parallel Combination

- Likewise, elements combined in parallel will combine in the same fashion as resistors in parallel:

$$
\frac{1}{Z_{e q}}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{1}{Z_{3}}+\cdots+\frac{1}{Z_{N}}
$$

Henry Selvaraj

Admittance

- Expressed as admittance, though, they are again a sum:

$$
Y_{e q}=Y_{1}+Y_{2}+Y_{3}+\cdots+Y_{N}
$$

- Once again, these elements can act as a current divider:

$$
I_{1}=\frac{Z_{2}}{Z_{1}+Z_{2}} I \quad I_{2}=\frac{Z_{1}}{Z_{1}+Z_{2}} I
$$

Impedance Combinations

- The Delta-Wye transformation is:
$Z_{1}=\frac{Z_{b} Z_{c}}{Z_{a}+Z_{b}+Z_{c}} \quad Z_{a}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}{Z_{1}}$
$Z_{2}=\frac{Z_{c} Z_{a}}{Z_{a}+Z_{b}+Z_{c}} \quad Z_{b}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}{Z_{2}}$
$Z_{3}=\frac{Z_{a} Z_{b}}{Z_{a}+Z_{b}+Z_{c}} \quad Z_{c}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}{Z_{3}}$

Henry Selvaraj

Homework: Chapter 9
30, 34, 42, 52, 60, 64.
Due: Sept. 15.

