1

Overview

- This chapter will cover alternating current.
- A discussion of complex numbers is included prior to introducing phasors.
- Applications of phasors and frequency domain analysis for circuits including resistors, capacitors, and inductors will be covered.
- The concept of impedance and admittance is also introduced.

Henry Selvaraj

2

Alternating Current

- Alternating Current, or AC, is the dominant form of electrical power that is delivered to homes and industry.
- In the late 1800 's there was a battle between proponents of DC and AC.
- AC won out due to its efficiency for long distance transmission.
- AC is a sinusoidal current, meaning the current reverses at regular times and has alternating positive and negative values.

Why did AC win?

$\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$
Applying Ohm's Law: P = VI

AC Vs DC

Has AC won? Is it the end of the story? Not so quick.

Henry Selvaraj

4

Sinusoids

- Sinusoids are interesting to us because there are a number of natural phenomenon that are sinusoidal in nature.
- It is also a very easy signal to generate and transmit.
- Also, through Fourier analysis, any practical periodic function can be made by adding sinusoids.
- Lastly, they are very easy to handle mathematically.

Here is the graph of $y=\sin x$.

The height of the curve at every point is the line value of the sine.
In the language of functions, $y=\sin x$ is an odd function. It is symmetrical with respect to the origin. $\sin (-x)=-\sin x$.

Henry Selvaraj

$\operatorname{Sin}(\mathrm{x}) ?$

Function grapher

Henry Selvaraj

8

Sinusoids

- A sinusoidal forcing function produces both a transient and a steady state response.
- When the transient has died out, we say the circuit is in sinusoidal steady state.
- A sinusoidal voltage may be represented as:

$$
v(t)=V_{m} \sin \omega t
$$

- From the waveforms seen earlier, one characteristic is clear: The function repeats itself every T seconds.
- This is called the period

$$
T=\frac{2 \pi}{\omega}
$$

Sinusoids

- The period is inversely related to another important characteristic, the frequency

$$
f=\frac{1}{T}
$$

- The units of this is cycles per second, or Hertz (Hz)
- It is often useful to refer to frequency in angular terms:

$$
\omega=2 \pi f
$$

- Here the angular frequency is in radians per second

Henry Selvaraj

- More generally, we need to account for relative timing of one wave versus another.
- This can be done by including a phase shift, ϕ :
- Consider the two sinusoids:

$$
v_{1}(t)=V_{m} \sin \omega t \quad \text { and } \quad v_{2}(t)=V_{m} \sin (\omega t+\phi)
$$

Sinusoids

- If two sinusoids are in phase, then this means that they reach their maximum and minimum at the same time.
- Sinusoids may be expressed as sine or cosine.
- The conversion between them is:

$$
\begin{aligned}
\sin \left(\omega t \pm 180^{\circ}\right) & =-\sin \omega t \\
\cos \left(\omega t \pm 180^{\circ}\right) & =-\cos \omega t \\
\sin \left(\omega t \pm 90^{\circ}\right) & = \pm \cos \omega t \\
\cos \left(\omega t \pm 90^{\circ}\right) & =\mp \sin \omega t
\end{aligned}
$$

trigonometric identities:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B
\end{aligned}
$$

Henry Selvaraj

Revise Trigonometric Formulas

Please use your mathematics book. Also, several web sites are available. Sample web site:

http://www.analyzemath.com/trigonometry/trigonometric formulas.html

Find the amplitude, phase, period, and frequency of the sinusoid

$$
v(t)=12 \cos \left(50 t+10^{\circ}\right)
$$

Solution:

The amplitude is $V_{m}=12 \mathrm{~V}$.
The phase is $\phi=10^{\circ}$.
The angular frequency is $\omega=50 \mathrm{rad} / \mathrm{s}$.
The period $T=\frac{2 \pi}{\omega}=\frac{2 \pi}{50}=0.1257 \mathrm{~s}$.
The frequency is $f=\frac{1}{T}=7.958 \mathrm{~Hz}$.

Henry Selvaraj

14

Calculate the phase angle between $v_{1}=-10 \cos \left(\omega t+50^{\circ}\right)$ and $v_{2}=$ $12 \sin \left(\omega t-10^{\circ}\right)$. State which sinusoid is leading.

$$
\begin{array}{lll}
v_{1}=-10 \cos \left(\omega t+50^{\circ}\right)=10 \cos \left(\omega t+50^{\circ}-180^{\circ}\right) & \text { Because, }-\cos (\mathrm{x})=\cos (\mathrm{x}-\mathrm{pi}) \\
v_{1}=10 \cos \left(\omega t-130^{\circ}\right) & \text { or } \quad v_{1}=10 \cos \left(\omega t+230^{\circ}\right) & \text { Because, } \cos (\mathrm{x})=\cos (\mathrm{x}+\mathrm{n}(2 \mathrm{pi}))
\end{array}
$$

and

$$
\begin{gathered}
v_{2}=12 \sin \left(\omega t-10^{\circ}\right)=12 \cos \left(\omega t-10^{\circ}-90^{\circ}\right) \quad \text { Because, } \cos (\mathrm{x}-90)=\sin (\mathrm{x}) \\
v_{2}=12 \cos \left(\omega t-100^{\circ}\right)
\end{gathered}
$$

Therefore, the phase difference is 30°

$$
v_{2}=12 \cos \left(\omega t-130^{\circ}+30^{\circ}\right) \quad \text { or } \quad v_{2}=12 \cos \left(\omega t+260^{\circ}\right)
$$

It is clear that v_{2} leads v_{1} by 30°

Phasors

- A phasor is a complex number that represents the amplitude and phase of a sinusoid.

Phasors provide a simple means of analyzing linear circuits excited by sinusoidal sources; solutions of such circuits would be intractable otherwise.

Henry Selvaraj

16

Complex Numbers

- A powerful method for representing sinusoids is the phasor.
- But in order to understand how they work, we need to cover some complex numbers first.
- A complex number \mathbf{z} can be represented in rectangular form as:

$$
z=x+j y \quad \text { where } j=\sqrt{-1}
$$

It can also be written in polar or exponential form as:

$$
z=r \angle \phi=r e^{j \phi}
$$

Complex Numbers

- The different forms can be interconverted.
- Starting with rectangular form, one can go to polar:

$$
r=\sqrt{x^{2}+y^{2}} \quad \phi=\tan ^{-1} \frac{y}{x}
$$

- Likewise, from polar to rectangular form goes as follows:

$$
\begin{aligned}
& x=r \cos \phi \quad y=r \sin \phi \\
& z=x+j y=r \angle \phi=r(\cos \phi+j \sin \phi)
\end{aligned}
$$

Henry Selvaraj

18

Complex Numbers

- The following mathematical operations are important

Addition	Subtraction	Multiplication
$z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right)$	$z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+j\left(y_{1}-y_{2}\right)$	$z_{1} z_{2}=r_{1} r_{2} \angle\left(\phi_{1}+\phi_{2}\right)$
Division	Reciprocal	Square Root
$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \angle\left(\phi_{1}-\phi_{2}\right)$	$\frac{1}{z}=\frac{1}{r} \angle(-\phi)$	$\sqrt{z}=\sqrt{r} \angle(\phi / 2)$

Complex Conjugate
$z^{*}=x-j y=r \angle-\phi=r e^{-j \phi}$

$$
\frac{1}{j}=-j
$$

Phasors

- The idea of a phasor representation is based on Euler's identity:

$$
e^{ \pm j \phi}=\cos \phi \pm j \sin \phi
$$

- From this we can represent a sinusoid as the real component of a vector in the complex plane.
- The length of the vector is the amplitude of the sinusoid.
- The vector, V, in polar form, is at an angle ϕ with respect to the positive real axis.

$$
\begin{aligned}
\cos \phi & =\operatorname{Re}\left(e^{j \phi}\right) \\
\sin \phi & =\operatorname{Im}\left(e^{j \phi}\right)
\end{aligned}
$$

Henry Selvaraj

Phasors

- Phasors are typically represented at $t=0$.
- As such, the transformation between time domain to phasor domain is:
- They can be graphically represented as shown here.

Sinusoid-Phasor Transformation

- Here is a handy table for transforming various time domain sinusoids into phasor domain:

Copyright O The McGraw-Hill Companies, Inc. Permission required for reproduction or display

TABLE 9.1

Sinusoid-phasor transformation.

Time domain representation	Phasor domain representation
$V_{m} \cos (\omega t+\phi)$	$V_{m} \angle \phi$
$V_{m} \sin (\omega t+\phi)$	$V_{m} \angle \phi-90^{\circ}$
$I_{m} \cos (\omega t+\theta)$	I_{m} / θ
$I_{m} \sin (\omega t+\theta)$	$I_{m} \angle \theta-90^{\circ}$

Henry Selvaraj

Sinusoid-Phasor Transformation

- Note that the frequency of the phasor is not explicitly shown in the phasor diagram
- For this reason phasor domain is also known as frequency domain.
- Applying a derivative to a phasor yields:
- Applying an integral to a phasor yeilds:

$$
\underset{\text { (Time domain) }}{\frac{d v}{d t}} \Leftrightarrow \quad \Leftrightarrow \quad j \omega V
$$

$$
\int_{\text {(Time domain) }} v d t \quad \Leftrightarrow \quad \frac{V}{j \omega}
$$

Example

Using the phasor approach, determine the current $i(t)$ in a circuit described by the integrodifferential equation

$$
4 i+8 \int i d t-3 \frac{d i}{d t}=50 \cos \left(2 t+75^{\circ}\right)
$$

$$
\underset{\substack{d t \\ \text { (Time domain) }}}{\frac{d v}{j \omega \mathbf{V}} \quad \Longleftrightarrow \quad \int_{\text {(Phasor domain) }} v d t} \quad \Longleftrightarrow \quad \frac{\mathbf{V}}{\text { (Time domain) }}<\cdots \omega
$$

$$
4 \mathbf{I}+\frac{8 \mathbf{I}}{j \omega}-3 j \omega \mathbf{I}=50 \angle 75^{\circ}
$$

But $\omega=2$, so

$$
\begin{gathered}
\mathbf{I}(4-j 4-j 6)=50 \angle 75^{\circ} \\
\mathbf{I}=\frac{50 \angle 75^{\circ}}{4-j 10}=\frac{50 \angle 75^{\circ}}{10.77 \angle-68.2^{\circ}}=4.642 \angle 143.2^{\circ} \mathrm{A}
\end{gathered}
$$

Converting this to the time domain,

$$
i(t)=4.642 \cos \left(2 t+143.2^{\circ}\right) \mathrm{A}
$$

Henry Selvaraj

Homework:

9.2, 9.6, 9.8, 9.14, 9.18, 9.26.

Due: Sept. 08.

