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Overview

• This chapter will cover alternating current.

• A discussion of complex numbers is included prior to 
introducing phasors.

• Applications of phasors and frequency domain 
analysis for circuits including resistors, capacitors, 
and inductors will be covered.

• The concept of impedance and admittance is also 
introduced.
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Alternating Current

• Alternating Current, or AC, is the dominant form of electrical 
power that is delivered to homes and industry.

• In the late 1800’s there was a battle between proponents of DC 
and AC.

• AC won out due to its efficiency for long distance 
transmission.

• AC is a sinusoidal current, meaning the current reverses at 
regular times and has alternating positive and negative values.
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Why did AC win?

P = I2R

Applying Ohm’s Law: P = VI

AC Vs DC

Has AC won? Is it the end of the story? Not so quick.
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Sinusoids
• Sinusoids are interesting to us because there are a 

number of natural phenomenon that are sinusoidal in 
nature.

• It is also a very easy signal to generate and transmit.

• Also, through Fourier analysis, any practical periodic 
function can be made by adding sinusoids.

• Lastly, they are very easy to handle mathematically.
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Sin(x)?
Function grapher
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Sinusoids
• A sinusoidal forcing function produces both a transient and a 

steady state response.

• When the transient has died out, we say the circuit is in 
sinusoidal steady state.

• A sinusoidal voltage may be represented as:

• From the waveforms seen earlier, one characteristic is clear: 
The function repeats itself every T seconds.

• This is called the period

  sinmv t V t

2
T





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Sinusoids

• The period is inversely related to another important 
characteristic, the frequency

• The units of this is cycles per second, or Hertz (Hz)

• It is often useful to refer to frequency in angular 
terms:

• Here the angular frequency is in radians per second

1
f

T


2 f 
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Sinusoids
• More generally, we need to account for relative timing of one 

wave versus another.

• This can be done by including a phase shift, :

• Consider the two sinusoids:

     1 2sin and sinm mv t V t v t V t    
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Sinusoids
• If two sinusoids are in phase, then this means that they reach 

their maximum and minimum at the same time.

• Sinusoids may be expressed as sine or cosine.

• The conversion between them is:

 
 
 
 

sin 180 sin

cos 180 cos

sin 90 cos

cos 90 sin

t t

t t

t t

t t

 

 

 

 

  

  

  

 







 
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Revise Trigonometric Formulas

Please use your mathematics book.

Also, several web sites are available.

Sample web site: 
http://www.analyzemath.com/trigonometry/trigonometric_formulas.html
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Therefore, the phase difference is 30o

It is clear that v2 leads v1 by 30o

Because, - cos(x) = cos (x-pi)

Because, cos(x) = cos (x+n(2pi))

Because, cos(x-90) = sin (x)
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Phasors

• A phasor is a complex number that 
represents the amplitude and phase of a 
sinusoid.

Phasors provide a simple means of analyzing linear 
circuits excited by sinusoidal sources; solutions of such 
circuits would be intractable otherwise.
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Complex Numbers

• A powerful method for representing sinusoids is the phasor.

• But in order to understand how they work, we need to cover some complex 
numbers first.

• A complex number z can be represented in rectangular form as:

It can also be written in polar or exponential form as:

z x jy 

jz r re   
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Complex Numbers
• The different forms can be 

interconverted.

• Starting with rectangular form, one 
can go to polar:

• Likewise, from polar to rectangular 
form goes as follows:

2 2 1tan
y

r x y
x

   

cos sinx r y r  
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Complex Numbers
• The following mathematical operations are 

important

         

     

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 1
1 2

2 2

*

1 1
/ 2

j

z z x x j y y z z x x j y y z z r r

z r
z r

z r z r

z x jy r re 

 

   

 

            

       

    

Addition Subtraction Multiplication

Division Reciprocal Square Root

Complex Conjugate
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Phasors
• The idea of a phasor representation is based on Euler’s 

identity:

• From this we can represent a sinusoid as the real component of 
a vector in the complex plane.

• The length of the vector is the amplitude of the sinusoid.

• The vector,V, in polar form, is at an angle  with respect to the 
positive real axis.

cos sinje j    
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Phasors
• Phasors are typically represented at t=0.

• As such, the transformation between time domain to phasor
domain is:

• They can be graphically represented as shown here.

   
(Phasor-domain(Time-domain
representation)representation)

cosm mv t V t V V      
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Sinusoid-Phasor Transformation

• Here is a handy table for transforming various time domain 
sinusoids into phasor domain:

Henry Selvaraj

22

Sinusoid-Phasor Transformation

• Note that the frequency of the phasor is not explicitly shown in 
the phasor diagram

• For this reason phasor domain is also known as frequency 
domain.

• Applying a derivative to a phasor yields:

• Applying an integral to a phasor yeilds:
(Phasor domain)

(Time domain)

dv
j V

dt


(Time domain)
(Phasor domain)

V
vdt

j

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Example
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Homework:

9.2, 9.6, 9.8, 9.14, 9.18, 9.26.

Due: Sept. 08.


