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Determine the current through a 200 uF capacitor whose voltage is as in the figure.

Solution:

The voltage waveform can be described mathematically as

S0tV 0=t =l

o(t) = 100 — 508 WV 1l=1=3
2004350V 3=t =4

0 otherwise

Smce i = C dv/dt and C = 200 uF, we take the derivative of v to obtain

i(t) =200 x 10-% x

10 mA
—10mA
10 mA

(i) A
50 +

50 0<t<l
=50 1<t<3

50 3<t<4

0 otherwise
D<t<i
1=t=13
3<t<4
otherwise

i (mA) 4
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Parallel Capacitors

* We learned with resistors that applying
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the equivalent series and parallel
combinations can simply many circuits,, ¢y

I
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 Starting with N parallel capacitors, one
can note that the voltages on all the
caps are the same

« Applying KCL:

=0 0, +i,+ -+

(a)

(b)
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Taking into consideration the current voltage
relationship of each capacitor:

i=c Yy, Mo M,y e, W

Yt dt ot " dt
ZN: dv. . dv
hentyfseltvar e

Where
Co =C +C,+C5+---+Cy

From this we find that parallel capacitors combine as
the sum of all capacitance

Henry Selvaraj



Series Capacitors

Turning our attention to a series
i € G5 %)

arrangement of capacitors: —
Il Il |
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Here each capacitor shares the same . ® FU- - HU3— Oy -

current

Applying KVL to the loop: (@

| = +

V=V, +V, +V, +-+V, '@ G-
Now apply the voltage current
relationship (b)
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1 t

t t
v=g Ji(e)dz v Citj 2)dzv, ( Ciji(r)dr+v3(t0)+...+ciji(f)df+vN (t)

t 3¢, N t,

1 1 1 )¢,
= e —— d t t t Vg--- t
(CI+C2+C3+ +CN];‘;I(T) r+v1(0)+v2(0)+v3(0)+ +vN(O)

:Cl ji(r)dr+v(t0)

eq t

* Where

11 11 1

=t —t— et —
C, C C, C C,

From this we see that the series combination of
capacitors resembles the parallel combination of

resistors.
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Series and Parallel Caps

Another way to think about the combinations of capacitors is this:

« Combining capacitors in parallel 1s equivalent to increasing the
surface area of the capacitors:

* This would lead to an increased overall capacitance (as 1s
observed)

* A series combination can be seen as increasing the total plate
separation

e This would result in a decrease in capacitance (as is observed)
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 If a current 1s passed through an inductor, the voltage
across 1t 1s directly proportional to the time rate of
change 1n current
di
v=L—
dt

 Where, L, 1s the unit of inductance, measured 1n
Henries, H.

* One Henry 1s 1 volt-second per ampere.

* The voltage developed tends to oppose a changing
flow of current.
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Current 1n an Inductor

1
di = —uv dt
L

* The current voltage relationship for an inductor is:
1| :
I =It_[v(r)dr+l(to)

: di ).
* The power delivered to the inductor1s: P=Vi= (L—I)I

* The energy stored 1s: w= s Li?
2

Henry Selvaraj



Voltage-Current relationship:

=— Slope=1
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Properties of Inductors

If the current through an inductor is constant, the
voltage across it 1s zero

Thus an inductor acts like a short for DC

The current through an inductor cannot change
Instantaneously

If this did happen, the voltage across the inductor
would be infinity!

This 1s an important consideration 1f an inductor 1s to
be turned off abruptly; 1t will produce a high voltage
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Like the 1deal capacitor, the 1deal inductor does not dissipate
energy stored 1n it.

Energy stored will be returned to the circuit later

In reality, inductors do have internal resistance due to the
wiring used to make them.

A real inductor thus has a winding resistance in series with it.

There 1s also a small winding capacitance due to the closeness
of the windings

These two characteristics are typically small, though at high
frequencies, the capacitance may matter.
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The current through a 0.1-H inductor is i(¢) = 10te~>" A. Find the voltage
across the inductor and the energy stored 1n 1t.

Sincev = Ldi/dt and L = 0.1 H.
d i A
v = D.1E(10re‘5*} —e (=5 T =1 =51V
The energy stored is

1, ., |1 .
w = ~Li* = =(0.1)100t°¢™ "
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Under dc conditions, we replace the
capacitor with an open circuit and the
Inductor with a short circuit
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Series Inductors

 We now need to extend the
series parallel combinations to
inductors

e First, let’s consider a series
combination of inductors

* Applying KVL to the loop:

V=V, +V, +V, +--+V,

14
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The equivalent inductance of series-connected inductors is the sum of the individual inductances.
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Series Inductors 11

Factoring in the Voltage current relationship

di di di
V=l —+L,—+L,—++L,—
rra dt+L3 " dt

di di
LvarN? feniry Selvpray:-t
(kz; kjdt “ dt

Wherel,_eq =L +L +L +--+L,

Here we can see that the inductors have the same
behavior as resistors
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Parallel Inductors

Now consider a parallel
combination of inductors: T

Applying KCL to the circuit:

(ol + O
s
Uk
o
-
: t~
o -
-
'
=
-
r—.
<

=1+ + 4+ +1
When the current voltage
relationship 1s considered, we have:

i =[il_ikjj;vdt+gik (t,)=

k=1

| :
L tOvdt+|(t0)

€q
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Parallel Inductors II

* The equivalent inductance is thus:
1 1 1 1 1

t—t— et
I—eq L1 Lz L3 LN

* Once again, the parallel combination
resembles that of resistors

* On arelated note, the Delta-Wye
transformation can also be applied to inductors
and capacitors 1n a similar manner, as long as
all elements are the same type.
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Summary of Capacitors and Inductors

Relation Resistor (R) Capacitor (C) Inductor (L)
1 di
v-i v=iR V= — idf +vityg)| v=L—
C fm o d
dv 1 /!
i-v: i =v/R i =C— i =— i dt+i(ty)
/ a1 i3 L (fo)
- v 1 - 1_ .,
7 Or W =i"R=— w=—-Cv- w=—Li"
J ” R P 2
. C,C,
Series: R.,=R,+R; — — L,=L,+1L;
q 1 2 eq Cl + Cg q 1 2
RiR, LiL,
Parallel: — — Co,=0C1+0Cs _— -
TR R | 2 T L+ L,
At de: Same Open circuit Short circunt
Circuit variable
that cannot
change abruptly:| Not applicable v ]
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First Order Circuits

A first order circuit 1s characterized by a first
order differential equation.

* There are two types of first order circuits:

» Resistive capacitive, called RC

e Resistive inductive, called RL

* There are also two ways to excite the circuits:
 Initial conditions

* Independent sources
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Source Free RC Circuit

* A source free RC circuit occurs
when 1ts dc source 1s suddenly

disconnected. ic ¢

* The energy stored in the capacitor ¢ =
1s released to the resistors.

e Consider a series combination of
a resistor and a nitially charged
capacitor as shown:
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Source Free RC Circuit

e Since the capacitor was initially charged, we can
assume at t=0 the initial voltages 1s: v(0)=V,

* Applying KCL at the top node:
I +1, =0
Or

dv v

dt RC

e This 1s a first order differential equation.
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Source Free RC Circuit

Rearranging the equation and solving both sides yields:

an=—L+lnA
RC

Where A i1s the integration constant
Taking powers of e produces

v(t) = Ae "
With the 1nitial conditions:
v(t)=V,e "™
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Natural Response

* The result shows that the
voltage response of the RC

Copyright © The McGraw-Hill anies, Inc. Permission required for reproduction or displa:

circuit is an exponential b

decay of the 1nitial voltage.

0.368V,

 Since this 1s the response of

23

the circuit without any
external applied voltage or
current, the response 1s
called the natural response.
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Time Constant

* The speed at which the voltage decays can be
characterized by how long 1t takes the voltage
to drop to 1/e of the initial voltage.

e This 1s called the time constant and 1s
represented by T.

* By selecting 1/e as the reference voltage:
r=RC

» The voltage can thus be expressed as:V(t)=V,e™"
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Time Constant 11

« After five time constants the
voltage on the capacitor 1s less
than one percent.

rrrrrrrrrr

« After five time constants a
capacitor 1s considered to be

either fully discharged or
charged

e A circuit with a small time
constant has a fast response and
VICE Versa.
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RC Discharge

* With the voltage known, we can find the

current; v
i (t)= E"e‘“f

* The power dissipated 1n the resistor is:

2

p (t) N %e2t/r

» The energy absorbed by the resistor is:

W (£) = OV, (1-e)
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Source Free RC Circuit Summary
The key to working with this type of situation is:

Start with the initial voltage across the capacitor and
the time constant.

With these two 1tems, the voltage as a function of
time can be known.

From the voltage, the current can be known by using
the resistance and Ohm’s law.

The resistance of the circuit 1s often the Thevenin
equivalent resistance.
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Source Free RL Circuit

Now lets consider the series connection of a resistor
and inductor.

In this case, the value of interest 1s the current
through the inductor.

Since the current cannot change instantaneously, we
can determine its value as a function of time.

Once again, we will start with an 1nitial current
passing through the inductor.
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Source Free RL Circuit
« We will take the initial current to

be:
1(0)=1, ik R Sl e Selvatal, m
» Applying KVL around the loop: :
VL+VR:O Lé_:% R Ve
Or L
L ﬂ +Ri=0
dt
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Source Free RL Circuit

After integration:
i(t)=1,e""

Once again, the natural response 1s an exponentially
decaying current.

The time constant 1n this case is:

T=—

R

The same principles as the RC circuit apply here.
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