

Creating projects with Nios II for

Altera De2i-150

By Trace Stewart

CPE 409

CONTENTS

Chapter 1 Hardware Design .. 1

 1.1 Required Features .. 1

 1.2 Creation of Hardware Design .. 1

Chapter 2 Programming the FPGA……………………….. 33

Chapter 3 NIOS II Software Build Tools for Eclipse .. 42

3.1 Creating a simple Hello World Project ..

42

3.2 DCT and Quantization……..

47

1.1 Required Features

The Nios II processor core is a soft-core central processing unit that you could program onto an

Altera field programmable gate array (FPGA). This tutorial illustrates you to the basic flow

covering hardware creation and software building. You are assumed to have the latest Quartus II

and NIOS II EDS software installed and quite familiar with the operation of Windows OS. If you

use a different Quartus II and NIOS II EDS version, there will have some small difference during

the operation. You are also assumed to possess a DE2i-150 development board (other kinds of

dev. Board based on Altera FPGA chip also supported).

The example NIOS II standard hardware system provides the following necessary components:

• Nios II processor core, that’s where the software will be executed
• On-chip memory to store and run the software
• Sdram to use other than On-chip memory to store and run software
• JTAG link for communication between the host computer and target
• Hardware (typically using a USB-Blaster cable)
• PIO registers will be used to send data between FPGA and Nios Processor

1.2 Creation of Hardware Design

This section describes how to create the hardware system used for this project including the
SOPC feature.

1.) First step is to open the Quartus program (We will be using Quartus 17.1 in this tutorial but

other Quartus versions will work will some minor tweaking). You will then select FileNew

Project Wizard. See Figures 1-1 and 1-2.

Chapter 1 Hardware Design

This tutorial provides comprehensive information that will help you understand how to create a FPGA

based SOPC system with the Nios II processor on your FPGA development board and run software

upon it.

Figure 1-1 Opening New project Wizard

Figure 1-2 Input the working directory, the project name, and top-level design entity.

2.) Click Next through the windows until you get to the Family, Device, & Board Settings window.

You will then choose your Device Family and the device name as in Figure 1-3. We are using the

De2i-150 board, so we choose Cyclone IV GX with name EP4CGX150DF31C7.

Figure 1-3 New projects wizard Family, Device, & Board Settings

3.) Hit Next  finish and it will create a new project as in Figure 1-4.

Figure 1-4 The new project has been created

4.) Now we will create our system with the Platform Designer tool (Formally known as

Qsys). To do this choose Tools  Platform Designer as shown in figure 1-5. Platform

Designer already creates a new system for you, but you can start a new system manually

if you want. Choose File  New System to do that.

Figure 1-5 Opening Platform Designer for creating system.

5.) After opening the new system, we want to save it under whatever name we choose as in Figure

1-6 and 1-7.

Figure 1-6 Saving new system under our preferred name.

Figure 1-7 Save new system under “Nios_System.qsys”

6.) Now we will start adding different components to our system to get everything connected. As

you can see, the system already adds a clock for us to start out with. The first thing we are going

to add is our Nios II processor. To do this we will go to Library Processors and

PeripheralsEmbedded ProcessorNios II Processor as shown in Figure 1-8. Alternatively, you

can search for different components.

Figure 1-8 Adding Nios Processor to System

Figure 1-9 We choose Nios II/F and finish to add processor to system.

7.) You can rename system components if you would like, but that won’t have any impact on the

system or its function. Now we will connect the Nios processor to the clk. We will connect clk

and reset as shown in figure 1-10. These are connected by clicking the hollow dots. When the

dots become solid, it means there is a connection.

Figure 1-10 Connecting clk and reset

8.) Next thing we will add to our system is the JTAG UART. To do this go to Library  Interface

Protocols  Serial  JTAG UART as shown in Figure 1-11 and 1-12.

Figure 1-11 Adding JTAG UART to system

Figure 1-12 Adding JTAG UART.

9.) We will now connect the clk, reset, and data master as shown in Figure 1-13.

Figure 1-13 Connecting JTAG to system

10.) Next, we will add the system memory through the on chip memory. Later we will change this to

SDRAM. To add the on chip memory, choose Library  Basic Functions  On Chip Memory 

On-Chip Memory (RAM or ROM) as shown in Figure 1-14 and 1-15.

Figure 1-14 Adding On-Chip Memory

Figure 1-15 Change memory size to 204800 and select finish

11.) Now we will connect the memory to the rest of the system by selecting the clk, reset, data

master, and instruction master hollow dots as shown in Figure 1-16.

Figure 1-16 Connecting memory to system

12.) We will now connect the Nios CPU to the memory. To do this we will click on the Nios2_gen2

component to open its settings. Then we will go to Vectors and change the Reset Vector and

Exception Vector to the On-Chip memory as shown in Figure 1-17 and 1-18.

Figure 1-17 Changing processor to use on-chip memory.

Figure 1-18 Changed Reset and Exception Vector

13.) Next up is to add the System ID to the system. Choose Library  Basic Functions  Simulation;

Debug and Verification  Debug and Performance  System ID Peripheral as shown in Figure

1-19 and 1-20.

Figure 1-19 Adding system ID

Figure 1-20

14.) Connect the clk, reset, and data master dots as shown in figure 1-21.

Figure 1-21 Connecting System ID connections

15.) Now we will add the SDRAM to the system which will be used instead of the on-chip memory.

To do this choose Library  Memory Interfaces and Controlelrs  SDRAM  Controller as

shown in Figure 1-22 and 1-23.

Figure 1-22 Adding SDRAM to System

Figure 1-23

16.) Now we will connect the SDRAM to the system by connecting the clk, reset, and data master

wires as shown in Figure 1-24.

Figure 1-24 Connecting SDRAM

17.) To change the Nios system to use the SDRAM instead of the on-chip memory, we will connect

the SDRAM to the instruction master and disconnect the On-Chip memory from the instruction

master as shown in Figure 1-25. We will then go to the CPU setting by clicking on the Nios

component and changing the Reset and Exception Vectors to the SDRAM shown in Figure 1-26.

Figure 1-25 Connecting SDRAM to instruction master

Figure 1-26 Changing CPU to use SDRAM

18.) We will now start connecting our PIO’s to send data to and from the CPU to the FPGA. Choose

Library  Processors and Peripherals  PIO (Parallel I/O) as shown in figure 1-27 and 1-28. We

will be using 32 bit In Out PIO’s for what we will be doing. Choose accordingly depending on

your use of the PIO.

Figure 1-27 Adding PIO to system

Figure 1-28 Adding 32 bit inout PIO

19.) We will connect the PIO clk, reset, and data master as shown in Figure 1-29. Also we will export

the PIO shown in Figure 1-30.

Figure 1-29 Connecting PIO connections

Figure 1-30 We will export the PIO

20.) Now we need to assign base addresses to all these components. To do this choose System 

Assign Base Addresses as shown in Figure 1-31.

Figure 1-31 Assigning base addresses

21.) Now you see that we only have a couple of warning shown in Figure 1-32. To get rid of those

warnings, we will assign Interrupt Numbers shown in Figure 1-33 and 1-34.

Figure 1-32

Figure 1-33 Assigning interrupt numbers

Figure 1-34 Select the Hollow dot to connect the Interrupt Numbers

22.) Now we have no more warning and we can Generate our system. To do that select the

Generate tab at the top of the screen as shown in figures 1-35 and 1-36.

Figure 1-35 Generate HDL tab

Figure 1-36 Generate the system

Figure 1-37 Generation is successful

23.) We will be sending an 8x8 matrix of 8-bit numbers to and from the Nios processor so we will

need a lot more PIO’s. To do this we will do it exactly how it was shown previously. For our

purposes we used 16 PIO’s to make up the 8x8 matrix. The final product of this is shown in

Figure 1-38 and 1-39.

Figure 1-37

Figure 1-38

Chapter 2 Programming the

 FPGA

Now we will create a Verilog file that will instantiate and run everything that we have created above. It

will be what connects all the components to the FPGA.

1.) First thing we want to do is create our Verilog File. To do this, choose File  New  Verilog

HDL File as shown in Figure 2-1 and 2-2. You will get a blank Verilog file as shown in Figure 2-3.

2.)

Figure 2-1 Creating New Verilog file

Figure 2-2 Creating new Verilog File

Figure 2-3 Blank Verilog File

3.) We will need to write code for input and outputs as well as instantiating all the modules inside

of the program. The code is shown in Figure 2-4 and 2-5. The input and output names can be

found inside the Nios Verilog file that was created with the system we created. This is shown in

Figure 2-6.

Figure 2-4 Verilog Code for Nios processor

Figure 2-5 SdramPLL is used for SDRAM Clock offset

Figure 2-6 Verilog module for Nios

4.) We will now need to compile the program. Choose Processing  Start Compilation as shown in

Figures 2-7 and 2-8.

Figure 2-7 Compiling Project

Figure 2-8 Compiling is complete

5.) You will need to assign pins to Clocks and any external input/output pins like LED’s or Switches.

You can do this through Assignments  Pin Planner as shown in Figures 2-9 and 2-10. We will

then re-compile the project as shown above.

Figure 2-9

Figure 2-10 Assigning pins to nodes

6.) Now we are ready to download the program to the board. To do this we will choose Tools 

Programmer as shown in Figure 2-11.

Figure 2-11 Quartus Programmer

7.) Now we will select our file and device we want to program and then program the board as

shown in Figure 2-12. Make sure your board is connected to your computer and it is turned on.

Figure 2-12 Quartus Programmer

8.) Once programmed, the progress meter should be at 100% shown in Figure 2-13. The FPGA is

now configured with the Nios System. Now we need to write our C program to execute.

Figure 2-13 FPGA is programmed with Nios System

Chapter 3 NIOS II Software

Build Tools for Eclipse

This Chapter covers build flow of Nios II C coded software program.

 The Nios II Software Build Tools (SBT) for Eclipse is an easy-to-use graphical user interface (GUI) that

automates build and makefile management. The Nios II SBT for Eclipse integrates a text editor,

debugger, the BSP editor, the Nios II flash programmer and the Quartus II Programmer. The included

example software application templates make it easy for new software programmers to get started

quickly. In this section you will use the Nios II SBT for Eclipse to compile a simple C language example

software program to run on the Nios II standard system configured onto the FPGA on your development

board. You will create a new software project, build it, and run it on the target hardware. You will also

edit the project, re-build it, and set up a debug session.

3.1 Creating a simple Hello World Example Project

In this section we will be creating a simple C project that will print Hello World! Onto the console.

1.) Choose Tools  NIOS II Software Build Tools for Eclipse shown in Figure 3-1.

Figure 3-1

2.) You will then select your workspace you want to work in as shown in Figure 3-2.

Figure 3-2

3.) Next will be creating the Hello World Example Project. Choose File  New  Nios II

Application and BSP from Template as shown in Figure 3-3.

Figure 3-3

4.) Now we will choose your SOPC File which will be located in the directory that you created your

Qsys in. We will then create our name and select the Hello World Template and select Finish.

Figure 3-4 Creating Hello World Template

5.) The system will create everything you will need. You can click on the hello_world.c file to see

the C code that was created.

Figure 3-5 C code for Hello World

6.) Now we will need to build and run this program. Right click on the Hello_Template  Build

Project as shown in Figure 3-6. Next we will run this program by right clicking again on

Hello_Template  Run As  Nios II Hardware as shown in Figure 3-7.

Figure 3-6 Building Project

Figure 3-7 Running Nios Project

7.) You should now see in the console a message displaying “Hello From Nios II!”.

Figure 3-8

3.2 DCT and Quantization with Nios Processor

1.) We are now going to edit the project we just created for hello world to do DCT on an 8x8 matrix.

First, we will need to change the code. The DCT code is shown below.

#include <stdio.h>

#include <math.h>

#include "system.h"

#include "io.h"

#include "altera_avalon_pio_regs.h"

#define pi 3.142857

const int m = 8, n = 8;

// Function to find discrete cosine transform and print it

int dctTransform(int matrix[][n], int Qmatrix[][n])

{

 int i, j, k, l;

 // dct will store the discrete cosine transform

 float dct[m][n];

 float Qdct[m][n];

 float ci, cj, dct1, sum;

 for (i = 0; i < m; i++) {

 for (j = 0; j < n; j++) {

 // ci and cj depends on frequency as well as

 // number of row and columns of specified matrix

 if (i == 0)

 ci = 1 / sqrt(m);

 else

 ci = sqrt(2) / sqrt(m);

 if (j == 0)

 cj = 1 / sqrt(n);

 else

 cj = sqrt(2) / sqrt(n);

 // sum will temporarily store the sum of

 // cosine signals

 sum = 0;

 for (k = 0; k < m; k++) {

 for (l = 0; l < n; l++) {

 matrix[k][l] = matrix[k][l] - 128;

 dct1 = matrix[k][l] *

 cos((2 * k + 1) * i * pi / (2 * m)) *

 cos((2 * l + 1) * j * pi / (2 * n));

 sum = sum + dct1;

 }

 }

 Qdct[i][j] = ci * cj * sum;

 dct[i][j] = Qdct[i][j] / Qmatrix[i][j];

 }

 }

 for (i = 0; i < m; i++) {

 for (j = 0; j < n; j++) {

 printf("%f\t", dct[i][j]);

 }

 printf("\n");

 }

 return 0;

}

// Driver code

int main()

{

 int matrix[8][8];/* = { { 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255 } };*/

 int Qmatrix[8][8] = { { 16, 11, 10, 16, 24, 40, 51, 61 },

 { 12, 12, 14, 19, 26, 58, 60, 55 },

 { 14, 13, 16, 24, 40, 57, 69, 56 },

 { 14, 17, 22, 29, 51, 87, 80, 62 },

 { 18, 22, 37, 56, 68, 109, 103, 77 },

 { 24, 35, 55, 64, 81, 104, 113, 92 },

 { 49, 64, 78, 87, 103, 121, 120, 101 },

 { 72, 92, 95, 98, 112, 100, 103, 99 } };

 int temp;

 int t, r;

 for(t = 0; t < 8; t++)

 {

 for(r = 0; r < 8; r++)

 {

 if(t == 0 && r < 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE1_1_BASE, r);

 }

 if(t == 0 && r >= 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE1_2_BASE, r-4);

 }

 if(t == 1 && r < 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE2_1_BASE, r);

 }

 if(t == 1 && r >= 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE2_2_BASE, r-4);

 }

 if(t == 2 && r < 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE3_1_BASE, r);

 }

 if(t == 2 && r >= 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE3_2_BASE, r-4);

 }

 if(t == 3 && r < 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE4_1_BASE, r);

 }

 if(t == 3 && r >= 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE4_2_BASE, r-4);

 }

 if(t == 4 && r < 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE5_1_BASE, r);

 }

 if(t == 4 && r >= 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE5_2_BASE, r-4);

 }

 if(t == 5 && r < 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE6_1_BASE, r);

 }

 if(t == 5 && r >= 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE6_2_BASE, r-4);

 }

 if(t == 6 && r < 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE7_1_BASE, r);

 }

 if(t == 6 && r >= 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE7_2_BASE, r-4);

 }

 if(t == 7 && r < 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE8_1_BASE, r);

 }

 if(t == 7 && r >= 4)

 {

 matrix[t][r] = IORD_8DIRECT(LINE8_2_BASE, r-4);

 }

 }

 }

 dctTransform(matrix, Qmatrix);

 return 0;

}

2.) Now we will go back to the Verilog file and change that to send data to the Nios Processor. Our

new code is shown below. We generate a 8x8 matrix with all values of 255 for testing and put

those values into our PIO’s to be sent into the Nios processor. We will need to recompile this

program as well.

module NiosII(

CLOCK_50,

LED,

SDRAM_CLK,

SDRAM_CKE,

SDRAM_ADDR,

SDRAM_BA,

SDRAM_CS_N,

SDRAM_CAS_N,

SDRAM_RAS_N,

SDRAM_WE_N,

SDRAM_DQ,

SDRAM_DQM

);

input CLOCK_50;

output [7:0] LED;

output [12:0] SDRAM_ADDR;

output [1:0] SDRAM_BA;

output SDRAM_CAS_N, SDRAM_RAS_N;

output SDRAM_CKE, SDRAM_CS_N, SDRAM_WE_N, SDRAM_CLK;

output [3:0] SDRAM_DQM;

inout wire [15:0] SDRAM_DQ;

reg [31:0] Line1_1_IN;

reg [31:0] Line1_2_IN;

reg [31:0] Line2_1_IN;

reg [31:0] Line2_2_IN;

reg [31:0] Line3_1_IN;

reg [31:0] Line3_2_IN;

reg [31:0] Line4_1_IN;

reg [31:0] Line4_2_IN;

reg [31:0] Line5_1_IN;

reg [31:0] Line5_2_IN;

reg [31:0] Line6_1_IN;

reg [31:0] Line6_2_IN;

reg [31:0] Line7_1_IN;

reg [31:0] Line7_2_IN;

reg [31:0] Line8_1_IN;

reg [31:0] Line8_2_IN;

reg [31:0] Line1_1_OUT;

reg [31:0] Line1_2_OUT;

reg [31:0] Line2_1_OUT;

reg [31:0] Line2_2_OUT;

reg [31:0] Line3_1_OUT;

reg [31:0] Line3_2_OUT;

reg [31:0] Line4_1_OUT;

reg [31:0] Line4_2_OUT;

reg [31:0] Line5_1_OUT;

reg [31:0] Line5_2_OUT;

reg [31:0] Line6_1_OUT;

reg [31:0] Line6_2_OUT;

reg [31:0] Line7_1_OUT;

reg [31:0] Line7_2_OUT;

reg [31:0] Line8_1_OUT;

reg [31:0] Line8_2_OUT;

wire [7:0] matrix_8 [64:1];

Nios u0(

 .clk_clk(CLOCK_50),

 .reset_reset_n(1'b1),

 .led_export(LED),

 .sdram_addr(SDRAM_ADDR), //Address

 .sdram_ba(SDRAM_BA), //Bank Address

 .sdram_cas_n(SDRAM_CAS_N), //Column Address Strobe

 .sdram_cke(SDRAM_CKE), //Clock Enable

 .sdram_cs_n(SDRAM_CS_N), //Chip Select

 .sdram_dq(SDRAM_DQ), //Data

 .sdram_dqm(SDRAM_DQM), //Data Mask

 .sdram_ras_n(SDRAM_RAS_N), //Row Address Strobe

 .sdram_we_n(SDRAM_WE_N), //Write Enable

 .line1_1_in_port(Line1_1_IN), // line1_1.in_port

 .line1_1_out_port(Line1_1_OUT), // .out_port

 .line1_2_in_port(Line1_2_IN), // line1_2.in_port

 .line1_2_out_port(Line1_2_OUT), // .out_port

 .line2_1_in_port(Line2_1_IN), // line2_1.in_port

 .line2_1_out_port(Line2_1_OUT), // .out_port

 .line2_2_in_port(Line2_2_IN), // line2_2.in_port

 .line2_2_out_port(Line2_2_OUT), // .out_port

 .line3_1_in_port(Line3_1_IN), // line3_1.in_port

 .line3_1_out_port(Line3_1_OUT), // .out_port

 .line3_2_in_port(Line3_2_IN), // line3_2.in_port

 .line3_2_out_port(Line3_2_OUT), // .out_port

 .line4_1_in_port(Line4_1_IN), // line4_1.in_port

 .line4_1_out_port(Line4_1_OUT), // .out_port

 .line4_2_in_port(Line4_2_IN), // line4_2.in_port

 .line4_2_out_port(Line4_2_OUT), // .out_port

 .line5_1_in_port(Line5_1_IN), // line5_1.in_port

 .line5_1_out_port(Line5_1_OUT), // .out_port

 .line5_2_in_port(Line5_2_IN), // line5_2.in_port

 .line5_2_out_port(Line5_2_OUT), // .out_port

 .line6_1_in_port(Line6_1_IN), // line6_1.in_port

 .line6_1_out_port(Line6_1_OUT), // .out_port

 .line6_2_in_port(Line6_2_IN), // line6_2.in_port

 .line6_2_out_port(Line6_2_OUT), // .out_port

 .line7_1_in_port(Line7_1_IN), // line7_1.in_port

 .line7_1_out_port(Line7_1_OUT), // .out_port

 .line7_2_in_port(Line7_2_IN), // line7_2.in_port

 .line7_2_out_port(Line7_2_OUT), // .out_port

 .line8_1_in_port(Line8_1_IN), // line8_1.in_port

 .line8_1_out_port(Line8_1_OUT), // .out_port

 .line8_2_in_port(Line8_2_IN), // line8_2.in_port

 .line8_2_out_port(Line8_2_OUT), // .out_port

);

sdramPLL u1(

 .inclk0(CLOCK_50),

 .c0(SDRAM_CLK)

);

genvar f;

generate

for(f=1; f<65; f=f+1) begin: kForl

begin

assign matrix_8[f] = 255;

end

end

endgenerate

always @(posedge SDRAM_CLK) begin

Line1_1_IN <= {matrix_8[1], matrix_8[2], matrix_8[3], matrix_8[4]};

Line1_2_IN <= {matrix_8[5], matrix_8[6], matrix_8[7], matrix_8[8]};

Line2_1_IN <= {matrix_8[9], matrix_8[10], matrix_8[11], matrix_8[12]};

Line2_2_IN <= {matrix_8[13], matrix_8[14], matrix_8[15], matrix_8[16]};

Line3_1_IN <= {matrix_8[17], matrix_8[18], matrix_8[19], matrix_8[20]};

Line3_2_IN <= {matrix_8[21], matrix_8[22], matrix_8[23], matrix_8[24]};

Line4_1_IN <= {matrix_8[25], matrix_8[26], matrix_8[27], matrix_8[28]};

Line4_2_IN <= {matrix_8[29], matrix_8[30], matrix_8[31], matrix_8[32]};

Line5_1_IN <= {matrix_8[33], matrix_8[34], matrix_8[35], matrix_8[36]};

Line5_2_IN <= {matrix_8[37], matrix_8[38], matrix_8[39], matrix_8[40]};

Line6_1_IN <= {matrix_8[41], matrix_8[42], matrix_8[43], matrix_8[44]};

Line6_2_IN <= {matrix_8[45], matrix_8[46], matrix_8[47], matrix_8[48]};

Line7_1_IN <= {matrix_8[49], matrix_8[50], matrix_8[51], matrix_8[52]};

Line7_2_IN <= {matrix_8[53], matrix_8[54], matrix_8[55], matrix_8[56]};

Line8_1_IN <= {matrix_8[57], matrix_8[58], matrix_8[59], matrix_8[60]};

Line8_2_IN <= {matrix_8[61], matrix_8[62], matrix_8[63], matrix_8[64]};

end

endmodule

3.) Now that we have recompiled the program, we will reopen the Nios software builder where we

had just updated our program. We will now run that program and we should see a 8x8 matrix

with the values after the DCT and Quantization as shown in Figure 3-9.

Figure 3-9 The Values after DCT and Quantization

You can use this program and incorporate it into multiple different types of projects. The next step after

this will be doing full JPEG compression after sending the values that we had gotten in Figure 3-9 back to

the FPGA.

