
 

 Abstract 
  In networks-on-chip (NoC) designs, delay variations and 
crosstalk noise have become a serious issue with the 
continuously shrinking geometry of semiconductor devices 
and the increasing switching speed. The crosstalk between 
adjacent lines causes data dependent signal delay and noise, 
thus finally makes the communication channel unreliable. The 
crosstalk problem can be mitigated by wide spacing of serial 
lines, however, the wider spacing of serial lines will reduce 
the number of the lines, thus reduce the data throughput. In 
this paper, we propose a multi-path routing scheme to 
maximize the data throughput by utilizing multiple paths for 
concurrent data transmission. For the proposed multi-path 
routing scheme, we consider two transport models: the 
multi-path full bitbank transport model and the multi-path half 
bitbank transport model. Through theoretical analysis, we 
show that the proposed multi-path scheme achieves significant 
improvement in data throughput under both transport models.  

1. Introduction 
  Due to the high degree of integration and limited chip 
geometry, future Network-on-Chips (NoCs) will become more 
sensitive and prone to delay variations, noise, transient faults, 
and other interferences [11]. One of the main noise sources is 
crosstalk, which becomes a serious issue with technology 
scaling and can cause errors across a range of adjacent bits [7] 
[11]. The crosstalk problem can be mitigated by wide spacing 
of adjacent wires [7]. However, for a fixed chip area, wider 
spacing of adjacent wires will reduce the number of wires 
between routers, thus reduce the data throughput. 
  With their simple structure, mesh/torus-type networks are 
widely used as on-chip interconnection networks [5][8]. On 
mesh/torus-type networks, there exist multiple paths between 
any pair of source and destination nodes, but the traditional 
routing schemes only choose one of them for data 
transmission. Based on this observation, we propose the 
multi-path routing scheme, which features in separating the 
data message to be sent into multiple data streams and sending 
them on different paths concurrently. Employing such a 
scheme, the data throughput can be retained while the 
crosstalk is reduced when wider spacing between adjacent 
wires is used. When the spacing between adjacent wires is 
unchanged, a higher data throughput can be achieved using 
this scheme.  

 
  

  In this paper, we present our study of an adaptive multi-path 
routing scheme on torus-type networks. We consider two 
transport models: the multi-path full bitbank transport model 
(FM) and the multi-path half bitbank transport model (HM). 
The proposed routing scheme is the same under both transport 
models. An important aspect of an adaptive routing scheme is 
deadlock avoidance. We justify that the multi-path routing is 
deadlock-free as it employs the same rule of using virtual 
channels as in the deadlock-free routing algorithm proposed 
by Dally and Seitz [4]. We further show that in the situation of 
single source, the bit streams transported on multiple shortest 
paths will not block each other. Using an analysis model, we 
show that significant improvement in data throughput is 
achieved using the proposed scheme under both the FM and 
HM models.  
  The rest of the paper is organized as follows. Section 2 
describes the two transport models. Section 3 presents the 
multi-path routing scheme. Section 4 is focused on the proof 
of the blocking avoidance with single source node in the 
network. Section 5 gives the analysis of the data throughput 
achieved using the proposed routing scheme. Section 6 
concludes the paper.  

2. Preliminaries 

2.1 Node and Channel Models 
  Each node in a torus-based NoC network is composed of a 
processor and a router which connects the processor node to 
the interconnection network. For simplicity, we represent a 
node as square in all figures. And we represent all nodes in a 
torus-based NoC as a 2Nx2N matrix, where each node is 
indexed with a pair of coordinates (x, y), 0≤x≤2N-1 and 
0≤y≤2N-1, on the X and Y dimensions, respectively.  
  Each node in the NoC has four physical channels, each 
connecting to a neighbor node. Fig. 1 shows the directions of 
the four channels.  
  We also assume that the physical channel on each direction 
of a node is split into two virtual channels, v0 and v1. The rule 
of using the virtual channels is the same as in the 
deadlock-free routing algorithm proposed by Dally and Seitz 
[5]. Hence we can justify that the multi-path routing scheme is 
also deadlock-free [5]. 
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2.2 Transport Models  
  We consider two transport models of the multi-path routing 
scheme: the full-wire-bank multi-path transport model, and the 
half-wire-bank multi-path transport model, which are same on 
the routing algorithm and transport control but different on 
their usage of the wire bank and the buffer size. 
  In the FM model, all wires on each communication link will 
be used for data transmission. When the source node needs to 
send data to a destination node, it will first compute the 
number of the shortest paths between the source and 
destination nodes, then partition the message into multiple 
data streams and send each on one of the shortest paths. Fig. 2 
illustrates an example of the FM model on a 4x4 torus. In this 
example, node 01 is the source node and node 22 is the 
destination node. Three shortest paths (indicated by dashed 
lines with arrowhead in the figure) will be used for 
transmitting three data streams.  

 
  Similar to the FM model, in the HM model, the source node 
will compute all the shortest paths to the destination node and 
send data along all the paths. But different from the FM 
model, each data stream will be transmitted on half of the 
wires (either on odd numbered wires or even numbered wires) 
on each link to avoid crosstalk. Compared to the FM model, 
the crosstalk in the HM model is dramatically reduced 
according to the study in [2]. Fig. 3 illustrates the HM model 
on a 4x4 torus network with the same source and destination 

nodes as in Fig. 3. Three shortest paths (indicated by dashed 
lines with arrowhead in the figure) are also used in this model.  

 
 

  In the following, we will not differentiate the two models 
when we describe the routing scheme. We will analyze and 
compare their performance in Section 5. 

3. Multi-path Routing Scheme 
  Before we describe the multi-path routing scheme, we first 
introduce the concept of priority dimension.  
3.1 Priority Dimension 
  We have the following definitions.  
Definition 1 (Boundary nodes). A node which has either 0 or 
2N-1 in one of its index number (x or y) is called a boundary 
node. And the channel that connects two boundary nodes is 
called a boundary channel.  
Definition 2 (Slop over). When a data stream is transmitted 
from one boundary node with its x or y is 0 (or 2N-1) to 
another boundary node with its x or y is 2N-1 (or 0), we say 
that the data stream slops over. 
Definition 3 (Reach boundary). When a data stream is 
transmitted from a non-boundary node to a boundary node, we 
say the data stream reaches boundary. 
Definition 4 (Priority direction). The priority direction of a 
data stream is the direction of the channel that connects the 
current node (the source node or an intermediate node) to the 
next node along the path. As shown in Fig. 1, there are four 
possible priority directions.  
Definition 5 (Priority dimension). The priority dimension is 
the dimension that the priority direction belongs to. Note that 
for torus-type networks, each priority dimension can have 
maximally two priority directions.  
  The priority dimension and priority direction for a data 
stream at a particular node will be changed according to the 
following rules.  
  Rule I: When a data stream reaches a node, the node will 
find out the output directions of the shortest paths according to 
its index and the index of the destination node of the data 
stream. If there are several directions to choose, the direction 
on the priority dimension will be chosen. If two directions of 

Fig. 2 FM model on 4x4 torus.  

Fig. 3 HM model on 4x4 torus.  

Fig. 1 Directions of the four channels. 



 

the priority dimension can be chosen, the non-slop over 
direction (i.e., the dimension that the direction belongs to 
won’t slop over on the path from the current node to the 
destination node) will be chosen. 
  Rule II: When the bit stream reaches the boundary, the node 
will decide whether the priority dimension should be changed 
from dimension X (Y) to dimension Y (X) according to the 
values of the control bits (which will be discussed in Section 
3.2).  
  Rule III: When there is blocking on the selected direction, 
the priority dimension will be decided such that blocking can 
be avoided.  
  The purpose of Rule II is to make the data streams from the 
same message will not block each other when there is only one 
source node in network at a time (as will be proved in Section 
4). It is important to point out that the priority dimension can 
change only once for a data stream. 
  In the following, we will describe the multi-path routing 
scheme, which is composed of the operations at the source 
node and at intermediate nodes.  
3.2 Operations at the Source Node 
  At the source node, the number of shortest paths 
(corresponding to the number of data streams that can be sent 
out) is determined based on the difference between the indexes 
of the source node and the destination node, which is 
explained as follows.  
  Let (xS, yS) and (xD, yD) denote the indexes of the source and 
destination nodes, respectively. Then we assign x′ = xD – xS, y′ 
= yD – yS, and name x′ as the low-order difference value, and y′ 
as the high-order difference value. The value of x′ or y′ falls in 
four different cases, each corresponding to a different 
operation, as shown in the following table  

Table 1 The different cases and corresponding 
operations of x′ or y′. 

Cases Value of x′ or y′ Corresponding operation  
1 [1, N-1] or  

[-N, -(N+1)] 
The data stream needs to travel along 
the positive direction of the X/Y 
dimension 

2 [-(N-1), -1] or  
[N+1, N] 

The data stream needs to travel along 
the negative direction of the X/Y 
dimension 

3 ± N The data stream can travel along the 
positive direction or the negative 
direction of the X/Y dimension. 

4 0 The data stream doesn’t need to travel 
on the X/Y dimension 

 
  The number of shortest paths is then decided by the 
combination of the cases of the values of x′ and y′, as shown in 
Table 2.  
  After determining the number of shortest paths, the source 
node will check how many output ports that are available and 
decide the actual number of data streams that can be sent out. 
Then the node partitions the message into the actual number of 
data streams and sends the data streams on the shortest paths 
through the corresponding output ports. 
 

Table 2 The number of shortest paths vs. the 
combination of different cases and corresponding 

operations of x′ or y′. 
Combin
ation 

Case of x′ 
value 

Case of y′ 
value 

# of 
shortest 
paths 

C’s value 

Case 1 or 
Case 2 

Case 4 1 

Case 4 Case 1 or 
Case 2 

One 1 

2 Case 1 or 
Case 2 

Case 1 or 
Case 2 

Two  1 

Case 1 or 
Case 2 

Case 3 3 

Case 3 Case 1 or 
Case 2 

Three 1 if 
(|x′|+|y′|) 
mod N < 
N 
0 
otherwise 

4 Case 3 Case 3 Four 0 
 
Each data stream contains the source node index, 

destination node index, and two control bits (D and C), which 
will be used for making the routing decision at the 
intermediate nodes on the path. 

D is used to record the priority dimension and D=0 or 1 
represents the priority dimension is X or Y, respectively.  

C is used to indicate if the priority dimension should be 
changed when the data stream reaches boundary and C=0 or 1 
represents the priority dimension should be changed or should 
not be changed, respectively. The setting of C is shown in 
Table 2, where (|x′|+|y′|) mod N calculates the distance 
between the source and destination nodes.  
3.3 Operations at Intermediate Nodes 
  Once receiving the data stream, each intermediate node will 
decide which output port it will forward the data stream, i.e., 
the corresponding priority direction to take. The decision is 
based on the following calculation  

Each node will first calculate the difference between its 
index and the index of the destination node as x′′ = xD – xC, y′′ 
= yD – yC, where (xC, yC) represents the index of the current 
intermediate node. And three sets of binary variables (Ax, Ay), 
(Bx, By), and (Cx, Cy) are derived, where  
  Ax = 0 or 1 represents that x′′ is positive or negative, 
respectively, 
  Ay = 0 or 1 represents that y′′ is positive or negative, 
respectively, 
  Bx = 0 or 1 represents if |x′′| ≠N/2 or not, respectively, 
  By = 0 or 1 represents if |y′′| ≠N/2 or not, respectively, 
  Cx = 0 or 1 represents whether x′′ = 0 or not, respectively, 
  Cy = 0 or 1 represents whether x′′ = 0 or not, respectively. 
  Then the priority direction on each dimension is determined 
according to the combination of these variables as shown in 
the following table.  
  The final priority direction of the incoming data stream can 
be determined based on Table 3 and the value of D. The 
directions on X dimension is more preferred than those of Y 
dimension for D=0, and vice versa for D=1. 
 

Table 3 The priority direction on X and Y dimension. 
Ax Bx Cx Priority 

direction 
Other 
direction 

Ay  By 
Cy 

Priority 
direction 

Other 
direction 

X 0 0 none  none  X 0 0 none  none  



 

0 0 1 X+ none 0 0 1 Y+ none 
1 0 1 X- none 1 0 1 Y- none 
0 1 1 X+ X- 0 1 1 Y+ Y- 
1 1 1 X- X+ 1 1 1 Y- Y+ 
X 1 0 impossible X 1 0 impossible 
 

  Then the node will check if the availability of the output 
ports at the preferred directions following the order of the 
priority direction on the preferred dimension, other direction 
on the preferred dimension, the priority direction on 
non-preferred dimension, other direction on non-preferred 
dimension. The data stream is sent out from the first output 
port that is available. If there is no free output port, the data 
stream is blocked at the current node. 
  In the case that there is no direction to choose, the data 
stream reaches its destination node. 
  According to the above description, we can see that each 
data stream can choose its path based on the availability of the 
output ports of the current node, so the proposed routing 
scheme is an adaptive one. 
  The detailed steps carried at each intermediate node after 
receiving a data stream are listed below.   
Step 1. Check that whether the bit stream reaches its 
destination. If it does, store the data stream to memory; 
otherwise, continue the following steps. 
Step 2. When the data stream reaches boundary, if C=0, then 
flips the priority dimension (namely changes D’s value from 0 
to 1 or 1 to 0) and sets C=1; otherwise, continue the following 
steps. 
Step 3. Decide the output directions of the bit stream 
according to (Ax, Ay), (Bx, By), (Cx, Cy) and two control bits 
(C and D) as described above. Then the data stream is sent out 
to one of the output ports or blocked at the current node. 

4. No Blocking under Single Source  
One of the advantages of the proposed multi-path routing 

scheme is that a message is partitioned into several data 
streams and transmitted on multiple paths, which helps 
reducing the transmission time. A question one may have is 
that if the data streams will conflict at some intermediate 
nodes. We have the following theorem. 

Theorem 1 There is no blocking when there is one pair of 
source and destinations nodes transmitting data. 
Proof. Here we sum up all the possible pairs of 
communicating nodes into four cases. And the proof will be 
made for each case. 
Case 1. One shortest path exists.  
  Since there is only one path, there is only one data stream 
on the network. Obviously, there is no blocking.  
Case 2. Two shortest paths exist.  
  There are two subcases under this case. 
  1) Two output directions are on the same dimension.     
Since the distance only exists on one dimension between the 
source and destination nodes, the two data streams travel on 
the same loop line but on the opposite directions. Hence, they 
can only meet at the destination node. No blocking exists for 
this subcase. 

  2) Two output directions are on different dimensions.     
As shown in Table 2, C is set to 1, i.e., they won’t change the 
priority dimension. Hence, the two paths are set up based on 
X-Y routing and Y-X routing, respectively. Therefore, the two 
data streams can only meet at the destination node. No 
blocking is possible.  
Case 3.  Three shortest paths exist.  
  For this case, according to Tables 1 and 2, we can derive 
that the distance on one dimension must be N. Assume that on 
the 2N*2N torus network, the source node (x, y) is on the 
up-left direction of the destination node (x*, y*). And x*=x+n, 
n∈[0, N). Then the distance on dimension Y between source 
and destination must be N, namely (x*, y*) = (x+n, y+N), 
x∈[0, N], y∈[0, N-1]. 
  According to the proposed routing scheme, the paths of 
three data streams from the source node to the destination 
node can be represented as follows: 

Data stream A: (x, y) -> (x+n, y) 
       (x+n, y) -> (x+n, y+N) 
  Data stream B: (x, y) -> (x, y+N) 
            (x, y+N) -> (x+n, y+N) 
  Data stream C: (x, y) -> (x, 0)          (y≠0) 
            (x, 0) -> (x+n, 0) 
            (x+n, 0) -> (x+n, y+N) 
  When y=0, the route of data stream C is: 
  Data stream C: (x, 0) -> (x, 2N-1) 
            (x, 2N-1) -> (x+n, 2N-1) 
            (x+n, 2N-1) -> (x+n, y+N) 
 
  Then we can sum up all the segments occupied by three 
paths into dimension X and dimension Y. So the following 
results can be obtained. 
  Dimension X: (x, y) -> (x+n, y) 
              (x, y+N) -> (x+n, y+N) 
           (x, 0) -> (x+n, 0)           (y≠0) 
           (x, 2N-1) -> (x+n, 2N-1)     (y=0) 
  Dimension Y: (x+n, y) -> (x+n, y+N) 
           (x, y) -> (x, y+N) 
           (x, y) -> (x, 0)             (y≠0) 
           (x+n, 0) -> (x+n, y+N)      (y≠0) 
           (x, 0) -> (x, 2N-1)          (y=0) 
           (x+n, 2N-1) -> (x+n, y+N)   (y=0) 
  For the segments on dimension X:  
  When y≠0, since y∈(0, N-1], we have y+N∈(N, 2N-1]. 
The three values y, y+N, and 0 do not equal to each other. 
Hence, the three segments occupied on dimension X will not 
overlap with each other.     
  When y=0, y+N=N, then three values y, y+N, and 2N-1 do 
not equal to each other. The 3 lines occupied on dimension X 
will not overlap with each other. 
  Hence, there is no block on dimension X. 
  For the segments on dimension Y: 
  They can be separated into two groups according to their 
values of dimension X which are Group x and Group x+n. 
  For Group x: 
    (x, y) -> (x, y+N) 



 

  (x, y) -> (x, 0)                  (y≠0) 
  (x, 0) -> (x, 2N-1)               (y=0) 
  When y≠0, the first two segments have the same source but 
to the opposite directions on dimension Y. Since y=<N-1, it is 
not possible for these two segments to overlap with each other.  
  When y=0, the first and third segments cannot overlap with 
each other.  
  Similarly, we can show that the segments in Group x+n are 
not possible to overlap with each other.  

Hence, there is no blocking on dimension Y. 
Therefore, no blocking is possible for the three data streams 

in case 3.. 
Case 4. Four shortest paths exist. 
  Similar to the proof of Case 3, we can show that there is no 
blocking among the four data streams in Case 4.  
  Summarizing the proof of the four cases, we conclude that 
there is no blocking when there is a single source node on the 
network.                                          ■ 

5. Analysis of the Throughput Improvement 
  The proposed routing scheme works under both FM and 
HM models but may result in different performance. As 
described in Section 2, the FM retains the data throughput but 
suffers from crosstalk, while HM model reduces the crosstalk 
but also has less data throughput using half of the wires. To 
compare the performance of the two models, we use the 
traditional single-path full wirebank transport model (TM) as 
the baseline. In the TM model, the source node only chooses 
one path to transfer data and all wires are used on each 
channel. We compare the FM and HM models to the TM 
model separately to analyze how much performance 
improvement each model can achieve. 
5.1 Analysis of FM and HM Models with Single 

Source 
  Here we define the rate of the valid data as the amount of 
valid (correct) data that is transferred between two nodes 
connected by a channel composed of a group of wires in a unit 
time. 
  The average number of shortest paths is defined as the 
average of the number of the shortest paths for all the possible 
cases.   

We use the following notations in our analysis.  
P1: the rate of the valid data when full wirebank is used. 
P2: the rate of the valid data when half wirebank is used. 
V: the data rate of the TM model. 
E: the average distance of the network. 
H: the average number of the shortest paths. 
Fb: the length of a message. 
Fh: the length of the head of the bit stream. 
T: the average transfer time of a message in the TM model. 
T1: the average transfer time of a message in the FM model. 
T2: the average transfer time of a message in the HM 

model.  
For the torus network, the number of shortest paths from 

any node X to other nodes in the network can be derived as 
below, 

 
    H = 1*(n1 / N) + 2* (n2 / N) + 3* (n3 / N) + 4*(n4 / N), (1) 

 
where, N represents the amount of the node that can 
communication with node X, namely all the nodes except node 
X in torus. In the following, we use 4x4 torus as an example to 
illustrate the analysis. For 4x4 torus, N = 15. Let ni (i = 1, 2, 3, 
4) represent the number of nodes that there are i different 
shortest paths for node X. For example, we can find that n1 = 
4, n2 = 6, n3 = 4, n4 = 1 for 4x4 torus. Then we can get P = 32 / 
15 for 4x4 torus.  
  For both FM and HM models, each message is divided into 
H data streams on average. For the TM model, there is only 
one data stream. Assuming wormhole switching is used, the 
average transfer time of a message under the TM model can be 
derived as 

 
    T = ((Fh * E + Fb )) / ( P1 * V ). (2) 
 
  In the FM model, the message is transferred by H data 
streams at the same time with rate P1. The length of its body 
on each data stream is Fb / H. Hence the average transfer time 
T1 could be derived as 

 
    T1 = ((Fh * E + Fb / H)) / (P1 * V) (3) 
 

In the HM model, the message is transferred by H data 
streams at the same time with rate P2. The length of its body 
is also given by Fb / H. Thus, the average transfer time T2 can 
be derived as below, 

 
    T2 = ((Fh * E + Fb / H)) / (P2 * V / 2). (4) 
 

The ratio of the average transfer time of the FM model to 
that of the TM model is given by 

 
    T1 / T = ((Fh * E + Fb / H )) / ((Fh * E + Fb)). (5) 
 

Since Fh and E are very small compared with Fb, we can 
derive Eqn. (5) as 
 
    T1 / T = 1 / H. (6) 
 

That is to say, the speedup of the FM model to the TM 
model is 32 /15. 

The ratio of the average transfer time of the HM model to 
that of the TM model is given by 

 
    T2 / T = (((Fh * E + Fb / H ) ) / ((Fh * E + Fb ))) * (( P1 
* V ) / ( P2 * V / 2 )). (7) 
 

The Fh and D are very small relative to Fb, so we can get  
 

    T2 / T = (2 / H) * (P1 / P2). (8) 
 

The valid date rate under full wirebank is low than that of 
half wirebank due to the severer crosstalk existing in the full 



 

wirebank. Then we have P2 > P1, i.e., P1 / P2 < 1. 
Thus we get the speedup of the HM model to the TM model 

as 16 /15. 
This confirms that both the FM and HM models are 

superior to the traditional model. 
From Eqn. (3) and Eqn. (4), we can get  
 

    T1 / T2 = ( 1 / 2 ) * ( P2 / P1) (9) 
 

From Eqn. (9), we have 
  1) when 2 * P1 – P2 < 0, T1 / T2 >1, namely HM is better 
than FM. 
  2) When 2 * P1 – P2 > 0, T1 / T2 <1, namely FM is better 
than HM. 

Particularly, when P1 > 0.5, 2 * P1 > 1. And P2 <= 1, thus 
it is true that 2 * P1 – P2 > 0. Namely when the FM is used, if 
the rate of valid data is larger than 0.5, the FM model is better 
than the HM model. 
5.2 Analysis with Multiple Source Nodes 

When there are more than one pair of communicating nodes 
on the network, there may exist blockings. Correspondingly, 
the performance of proposed routing scheme will degrade. 
Since multiple data streams generated from each message are 
transferred in the network, the probability of blockings in our 
models is larger than that in the traditional model when there 
exist multiple source nodes. On the other hand, because the 
proposed routing scheme improves the transfer speed and 
shortens the average transfer time, it may reduce the 
probability of blockings. Due to the complexity of this 
scenario, we will not detail the analysis in this paper.  

6. Conclusion 
In this paper, we addressed the problem of reducing 

crosstalk and retaining high data throughput in NoCs. We 
introduced the FM and HM transport models and proposed a 
deadlock-free minimal adaptive multi-path routing scheme to 
work under both models for torus-based NoCs. The proposed 
routing scheme features in using multiple shortest paths to 
transfer message concurrently with the help of simple control 
schemes. Through analysis, we showed that the proposed 
routing scheme achieves better valid data throughput under 
both the FM and HM models compared with the traditional 
single path routing scheme when there is single source node. 
Future work includes the analysis of the throughput 
improvement when multiple source nodes exist in the network.  
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