

 Abstract
 In networks-on-chip (NoC) designs, delay variations and
crosstalk noise have become a serious issue with the
continuously shrinking geometry of semiconductor devices
and the increasing switching speed. The crosstalk between
adjacent lines causes data dependent signal delay and noise,
thus finally makes the communication channel unreliable. The
crosstalk problem can be mitigated by wide spacing of serial
lines, however, the wider spacing of serial lines will reduce
the number of the lines, thus reduce the data throughput. In
this paper, we propose a multi-path routing scheme to
maximize the data throughput by utilizing multiple paths for
concurrent data transmission. For the proposed multi-path
routing scheme, we consider two transport models: the
multi-path full bitbank transport model and the multi-path half
bitbank transport model. Through theoretical analysis, we
show that the proposed multi-path scheme achieves significant
improvement in data throughput under both transport models.

1. Introduction
 Due to the high degree of integration and limited chip
geometry, future Network-on-Chips (NoCs) will become more
sensitive and prone to delay variations, noise, transient faults,
and other interferences [11]. One of the main noise sources is
crosstalk, which becomes a serious issue with technology
scaling and can cause errors across a range of adjacent bits [7]
[11]. The crosstalk problem can be mitigated by wide spacing
of adjacent wires [7]. However, for a fixed chip area, wider
spacing of adjacent wires will reduce the number of wires
between routers, thus reduce the data throughput.
 With their simple structure, mesh/torus-type networks are
widely used as on-chip interconnection networks [5][8]. On
mesh/torus-type networks, there exist multiple paths between
any pair of source and destination nodes, but the traditional
routing schemes only choose one of them for data
transmission. Based on this observation, we propose the
multi-path routing scheme, which features in separating the
data message to be sent into multiple data streams and sending
them on different paths concurrently. Employing such a
scheme, the data throughput can be retained while the
crosstalk is reduced when wider spacing between adjacent
wires is used. When the spacing between adjacent wires is
unchanged, a higher data throughput can be achieved using
this scheme.

 In this paper, we present our study of an adaptive multi-path
routing scheme on torus-type networks. We consider two
transport models: the multi-path full bitbank transport model
(FM) and the multi-path half bitbank transport model (HM).
The proposed routing scheme is the same under both transport
models. An important aspect of an adaptive routing scheme is
deadlock avoidance. We justify that the multi-path routing is
deadlock-free as it employs the same rule of using virtual
channels as in the deadlock-free routing algorithm proposed
by Dally and Seitz [4]. We further show that in the situation of
single source, the bit streams transported on multiple shortest
paths will not block each other. Using an analysis model, we
show that significant improvement in data throughput is
achieved using the proposed scheme under both the FM and
HM models.
 The rest of the paper is organized as follows. Section 2
describes the two transport models. Section 3 presents the
multi-path routing scheme. Section 4 is focused on the proof
of the blocking avoidance with single source node in the
network. Section 5 gives the analysis of the data throughput
achieved using the proposed routing scheme. Section 6
concludes the paper.

2. Preliminaries

2.1 Node and Channel Models
 Each node in a torus-based NoC network is composed of a
processor and a router which connects the processor node to
the interconnection network. For simplicity, we represent a
node as square in all figures. And we represent all nodes in a
torus-based NoC as a 2Nx2N matrix, where each node is
indexed with a pair of coordinates (x, y), 0≤x≤2N-1 and
0≤y≤2N-1, on the X and Y dimensions, respectively.
 Each node in the NoC has four physical channels, each
connecting to a neighbor node. Fig. 1 shows the directions of
the four channels.
 We also assume that the physical channel on each direction
of a node is split into two virtual channels, v0 and v1. The rule
of using the virtual channels is the same as in the
deadlock-free routing algorithm proposed by Dally and Seitz
[5]. Hence we can justify that the multi-path routing scheme is
also deadlock-free [5].

Multi-path Routing for Mesh/Torus-Based NoCs

Yaoting Jiao1, Yulu Yang1, Ming He1, Mei Yang2, and Yingtao Jiang2

1College of Information Technology and Science, Nankai University, China
 2 Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, USA

Emails: 1yangyl@nankai.edu.cn, 2{meiyang, yingtao}@egr.unlv.edu

Y-

X+X-

Y+

2.2 Transport Models
 We consider two transport models of the multi-path routing
scheme: the full-wire-bank multi-path transport model, and the
half-wire-bank multi-path transport model, which are same on
the routing algorithm and transport control but different on
their usage of the wire bank and the buffer size.
 In the FM model, all wires on each communication link will
be used for data transmission. When the source node needs to
send data to a destination node, it will first compute the
number of the shortest paths between the source and
destination nodes, then partition the message into multiple
data streams and send each on one of the shortest paths. Fig. 2
illustrates an example of the FM model on a 4x4 torus. In this
example, node 01 is the source node and node 22 is the
destination node. Three shortest paths (indicated by dashed
lines with arrowhead in the figure) will be used for
transmitting three data streams.

 Similar to the FM model, in the HM model, the source node
will compute all the shortest paths to the destination node and
send data along all the paths. But different from the FM
model, each data stream will be transmitted on half of the
wires (either on odd numbered wires or even numbered wires)
on each link to avoid crosstalk. Compared to the FM model,
the crosstalk in the HM model is dramatically reduced
according to the study in [2]. Fig. 3 illustrates the HM model
on a 4x4 torus network with the same source and destination

nodes as in Fig. 3. Three shortest paths (indicated by dashed
lines with arrowhead in the figure) are also used in this model.

 In the following, we will not differentiate the two models
when we describe the routing scheme. We will analyze and
compare their performance in Section 5.

3. Multi-path Routing Scheme
 Before we describe the multi-path routing scheme, we first
introduce the concept of priority dimension.
3.1 Priority Dimension
 We have the following definitions.
Definition 1 (Boundary nodes). A node which has either 0 or
2N-1 in one of its index number (x or y) is called a boundary
node. And the channel that connects two boundary nodes is
called a boundary channel.
Definition 2 (Slop over). When a data stream is transmitted
from one boundary node with its x or y is 0 (or 2N-1) to
another boundary node with its x or y is 2N-1 (or 0), we say
that the data stream slops over.
Definition 3 (Reach boundary). When a data stream is
transmitted from a non-boundary node to a boundary node, we
say the data stream reaches boundary.
Definition 4 (Priority direction). The priority direction of a
data stream is the direction of the channel that connects the
current node (the source node or an intermediate node) to the
next node along the path. As shown in Fig. 1, there are four
possible priority directions.
Definition 5 (Priority dimension). The priority dimension is
the dimension that the priority direction belongs to. Note that
for torus-type networks, each priority dimension can have
maximally two priority directions.
 The priority dimension and priority direction for a data
stream at a particular node will be changed according to the
following rules.
 Rule I: When a data stream reaches a node, the node will
find out the output directions of the shortest paths according to
its index and the index of the destination node of the data
stream. If there are several directions to choose, the direction
on the priority dimension will be chosen. If two directions of

Fig. 2 FM model on 4x4 torus.

Fig. 3 HM model on 4x4 torus.

Fig. 1 Directions of the four channels.

the priority dimension can be chosen, the non-slop over
direction (i.e., the dimension that the direction belongs to
won’t slop over on the path from the current node to the
destination node) will be chosen.
 Rule II: When the bit stream reaches the boundary, the node
will decide whether the priority dimension should be changed
from dimension X (Y) to dimension Y (X) according to the
values of the control bits (which will be discussed in Section
3.2).
 Rule III: When there is blocking on the selected direction,
the priority dimension will be decided such that blocking can
be avoided.
 The purpose of Rule II is to make the data streams from the
same message will not block each other when there is only one
source node in network at a time (as will be proved in Section
4). It is important to point out that the priority dimension can
change only once for a data stream.
 In the following, we will describe the multi-path routing
scheme, which is composed of the operations at the source
node and at intermediate nodes.
3.2 Operations at the Source Node
 At the source node, the number of shortest paths
(corresponding to the number of data streams that can be sent
out) is determined based on the difference between the indexes
of the source node and the destination node, which is
explained as follows.
 Let (xS, yS) and (xD, yD) denote the indexes of the source and
destination nodes, respectively. Then we assign x′ = xD – xS, y′
= yD – yS, and name x′ as the low-order difference value, and y′
as the high-order difference value. The value of x′ or y′ falls in
four different cases, each corresponding to a different
operation, as shown in the following table

Table 1 The different cases and corresponding
operations of x′ or y′.

Cases Value of x′ or y′ Corresponding operation
1 [1, N-1] or

[-N, -(N+1)]
The data stream needs to travel along
the positive direction of the X/Y
dimension

2 [-(N-1), -1] or
[N+1, N]

The data stream needs to travel along
the negative direction of the X/Y
dimension

3 ± N The data stream can travel along the
positive direction or the negative
direction of the X/Y dimension.

4 0 The data stream doesn’t need to travel
on the X/Y dimension

 The number of shortest paths is then decided by the
combination of the cases of the values of x′ and y′, as shown in
Table 2.
 After determining the number of shortest paths, the source
node will check how many output ports that are available and
decide the actual number of data streams that can be sent out.
Then the node partitions the message into the actual number of
data streams and sends the data streams on the shortest paths
through the corresponding output ports.

Table 2 The number of shortest paths vs. the
combination of different cases and corresponding

operations of x′ or y′.
Combin
ation

Case of x′
value

Case of y′
value

of
shortest
paths

C’s value

Case 1 or
Case 2

Case 4 1

Case 4 Case 1 or
Case 2

One 1

2 Case 1 or
Case 2

Case 1 or
Case 2

Two 1

Case 1 or
Case 2

Case 3 3

Case 3 Case 1 or
Case 2

Three 1 if
(|x′|+|y′|)
mod N <
N
0
otherwise

4 Case 3 Case 3 Four 0

Each data stream contains the source node index,

destination node index, and two control bits (D and C), which
will be used for making the routing decision at the
intermediate nodes on the path.

D is used to record the priority dimension and D=0 or 1
represents the priority dimension is X or Y, respectively.

C is used to indicate if the priority dimension should be
changed when the data stream reaches boundary and C=0 or 1
represents the priority dimension should be changed or should
not be changed, respectively. The setting of C is shown in
Table 2, where (|x′|+|y′|) mod N calculates the distance
between the source and destination nodes.
3.3 Operations at Intermediate Nodes
 Once receiving the data stream, each intermediate node will
decide which output port it will forward the data stream, i.e.,
the corresponding priority direction to take. The decision is
based on the following calculation

Each node will first calculate the difference between its
index and the index of the destination node as x′′ = xD – xC, y′′
= yD – yC, where (xC, yC) represents the index of the current
intermediate node. And three sets of binary variables (Ax, Ay),
(Bx, By), and (Cx, Cy) are derived, where
 Ax = 0 or 1 represents that x′′ is positive or negative,
respectively,
 Ay = 0 or 1 represents that y′′ is positive or negative,
respectively,
 Bx = 0 or 1 represents if |x′′| ≠N/2 or not, respectively,
 By = 0 or 1 represents if |y′′| ≠N/2 or not, respectively,
 Cx = 0 or 1 represents whether x′′ = 0 or not, respectively,
 Cy = 0 or 1 represents whether x′′ = 0 or not, respectively.
 Then the priority direction on each dimension is determined
according to the combination of these variables as shown in
the following table.
 The final priority direction of the incoming data stream can
be determined based on Table 3 and the value of D. The
directions on X dimension is more preferred than those of Y
dimension for D=0, and vice versa for D=1.

Table 3 The priority direction on X and Y dimension.
Ax Bx Cx Priority

direction
Other
direction

Ay By
Cy

Priority
direction

Other
direction

X 0 0 none none X 0 0 none none

0 0 1 X+ none 0 0 1 Y+ none
1 0 1 X- none 1 0 1 Y- none
0 1 1 X+ X- 0 1 1 Y+ Y-
1 1 1 X- X+ 1 1 1 Y- Y+
X 1 0 impossible X 1 0 impossible

 Then the node will check if the availability of the output
ports at the preferred directions following the order of the
priority direction on the preferred dimension, other direction
on the preferred dimension, the priority direction on
non-preferred dimension, other direction on non-preferred
dimension. The data stream is sent out from the first output
port that is available. If there is no free output port, the data
stream is blocked at the current node.
 In the case that there is no direction to choose, the data
stream reaches its destination node.
 According to the above description, we can see that each
data stream can choose its path based on the availability of the
output ports of the current node, so the proposed routing
scheme is an adaptive one.
 The detailed steps carried at each intermediate node after
receiving a data stream are listed below.
Step 1. Check that whether the bit stream reaches its
destination. If it does, store the data stream to memory;
otherwise, continue the following steps.
Step 2. When the data stream reaches boundary, if C=0, then
flips the priority dimension (namely changes D’s value from 0
to 1 or 1 to 0) and sets C=1; otherwise, continue the following
steps.
Step 3. Decide the output directions of the bit stream
according to (Ax, Ay), (Bx, By), (Cx, Cy) and two control bits
(C and D) as described above. Then the data stream is sent out
to one of the output ports or blocked at the current node.

4. No Blocking under Single Source
One of the advantages of the proposed multi-path routing

scheme is that a message is partitioned into several data
streams and transmitted on multiple paths, which helps
reducing the transmission time. A question one may have is
that if the data streams will conflict at some intermediate
nodes. We have the following theorem.

Theorem 1 There is no blocking when there is one pair of
source and destinations nodes transmitting data.
Proof. Here we sum up all the possible pairs of
communicating nodes into four cases. And the proof will be
made for each case.
Case 1. One shortest path exists.
 Since there is only one path, there is only one data stream
on the network. Obviously, there is no blocking.
Case 2. Two shortest paths exist.
 There are two subcases under this case.
 1) Two output directions are on the same dimension.
Since the distance only exists on one dimension between the
source and destination nodes, the two data streams travel on
the same loop line but on the opposite directions. Hence, they
can only meet at the destination node. No blocking exists for
this subcase.

 2) Two output directions are on different dimensions.
As shown in Table 2, C is set to 1, i.e., they won’t change the
priority dimension. Hence, the two paths are set up based on
X-Y routing and Y-X routing, respectively. Therefore, the two
data streams can only meet at the destination node. No
blocking is possible.
Case 3. Three shortest paths exist.
 For this case, according to Tables 1 and 2, we can derive
that the distance on one dimension must be N. Assume that on
the 2N*2N torus network, the source node (x, y) is on the
up-left direction of the destination node (x*, y*). And x*=x+n,
n∈[0, N). Then the distance on dimension Y between source
and destination must be N, namely (x*, y*) = (x+n, y+N),
x∈[0, N], y∈[0, N-1].
 According to the proposed routing scheme, the paths of
three data streams from the source node to the destination
node can be represented as follows:

Data stream A: (x, y) -> (x+n, y)
 (x+n, y) -> (x+n, y+N)
 Data stream B: (x, y) -> (x, y+N)
 (x, y+N) -> (x+n, y+N)
 Data stream C: (x, y) -> (x, 0) (y≠0)
 (x, 0) -> (x+n, 0)
 (x+n, 0) -> (x+n, y+N)
 When y=0, the route of data stream C is:
 Data stream C: (x, 0) -> (x, 2N-1)
 (x, 2N-1) -> (x+n, 2N-1)
 (x+n, 2N-1) -> (x+n, y+N)

 Then we can sum up all the segments occupied by three
paths into dimension X and dimension Y. So the following
results can be obtained.
 Dimension X: (x, y) -> (x+n, y)
 (x, y+N) -> (x+n, y+N)
 (x, 0) -> (x+n, 0) (y≠0)
 (x, 2N-1) -> (x+n, 2N-1) (y=0)
 Dimension Y: (x+n, y) -> (x+n, y+N)
 (x, y) -> (x, y+N)
 (x, y) -> (x, 0) (y≠0)
 (x+n, 0) -> (x+n, y+N) (y≠0)
 (x, 0) -> (x, 2N-1) (y=0)
 (x+n, 2N-1) -> (x+n, y+N) (y=0)
 For the segments on dimension X:
 When y≠0, since y∈(0, N-1], we have y+N∈(N, 2N-1].
The three values y, y+N, and 0 do not equal to each other.
Hence, the three segments occupied on dimension X will not
overlap with each other.
 When y=0, y+N=N, then three values y, y+N, and 2N-1 do
not equal to each other. The 3 lines occupied on dimension X
will not overlap with each other.
 Hence, there is no block on dimension X.
 For the segments on dimension Y:
 They can be separated into two groups according to their
values of dimension X which are Group x and Group x+n.
 For Group x:
 (x, y) -> (x, y+N)

 (x, y) -> (x, 0) (y≠0)
 (x, 0) -> (x, 2N-1) (y=0)
 When y≠0, the first two segments have the same source but
to the opposite directions on dimension Y. Since y=<N-1, it is
not possible for these two segments to overlap with each other.
 When y=0, the first and third segments cannot overlap with
each other.
 Similarly, we can show that the segments in Group x+n are
not possible to overlap with each other.

Hence, there is no blocking on dimension Y.
Therefore, no blocking is possible for the three data streams

in case 3..
Case 4. Four shortest paths exist.
 Similar to the proof of Case 3, we can show that there is no
blocking among the four data streams in Case 4.
 Summarizing the proof of the four cases, we conclude that
there is no blocking when there is a single source node on the
network. ■

5. Analysis of the Throughput Improvement
 The proposed routing scheme works under both FM and
HM models but may result in different performance. As
described in Section 2, the FM retains the data throughput but
suffers from crosstalk, while HM model reduces the crosstalk
but also has less data throughput using half of the wires. To
compare the performance of the two models, we use the
traditional single-path full wirebank transport model (TM) as
the baseline. In the TM model, the source node only chooses
one path to transfer data and all wires are used on each
channel. We compare the FM and HM models to the TM
model separately to analyze how much performance
improvement each model can achieve.
5.1 Analysis of FM and HM Models with Single

Source
 Here we define the rate of the valid data as the amount of
valid (correct) data that is transferred between two nodes
connected by a channel composed of a group of wires in a unit
time.
 The average number of shortest paths is defined as the
average of the number of the shortest paths for all the possible
cases.

We use the following notations in our analysis.
P1: the rate of the valid data when full wirebank is used.
P2: the rate of the valid data when half wirebank is used.
V: the data rate of the TM model.
E: the average distance of the network.
H: the average number of the shortest paths.
Fb: the length of a message.
Fh: the length of the head of the bit stream.
T: the average transfer time of a message in the TM model.
T1: the average transfer time of a message in the FM model.
T2: the average transfer time of a message in the HM

model.
For the torus network, the number of shortest paths from

any node X to other nodes in the network can be derived as
below,

 H = 1*(n1 / N) + 2* (n2 / N) + 3* (n3 / N) + 4*(n4 / N), (1)

where, N represents the amount of the node that can
communication with node X, namely all the nodes except node
X in torus. In the following, we use 4x4 torus as an example to
illustrate the analysis. For 4x4 torus, N = 15. Let ni (i = 1, 2, 3,
4) represent the number of nodes that there are i different
shortest paths for node X. For example, we can find that n1 =
4, n2 = 6, n3 = 4, n4 = 1 for 4x4 torus. Then we can get P = 32 /
15 for 4x4 torus.
 For both FM and HM models, each message is divided into
H data streams on average. For the TM model, there is only
one data stream. Assuming wormhole switching is used, the
average transfer time of a message under the TM model can be
derived as

 T = ((Fh * E + Fb)) / (P1 * V). (2)

 In the FM model, the message is transferred by H data
streams at the same time with rate P1. The length of its body
on each data stream is Fb / H. Hence the average transfer time
T1 could be derived as

 T1 = ((Fh * E + Fb / H)) / (P1 * V) (3)

In the HM model, the message is transferred by H data
streams at the same time with rate P2. The length of its body
is also given by Fb / H. Thus, the average transfer time T2 can
be derived as below,

 T2 = ((Fh * E + Fb / H)) / (P2 * V / 2). (4)

The ratio of the average transfer time of the FM model to
that of the TM model is given by

 T1 / T = ((Fh * E + Fb / H)) / ((Fh * E + Fb)). (5)

Since Fh and E are very small compared with Fb, we can
derive Eqn. (5) as

 T1 / T = 1 / H. (6)

That is to say, the speedup of the FM model to the TM
model is 32 /15.

The ratio of the average transfer time of the HM model to
that of the TM model is given by

 T2 / T = (((Fh * E + Fb / H)) / ((Fh * E + Fb))) * ((P1
* V) / (P2 * V / 2)). (7)

The Fh and D are very small relative to Fb, so we can get

 T2 / T = (2 / H) * (P1 / P2). (8)

The valid date rate under full wirebank is low than that of
half wirebank due to the severer crosstalk existing in the full

wirebank. Then we have P2 > P1, i.e., P1 / P2 < 1.
Thus we get the speedup of the HM model to the TM model

as 16 /15.
This confirms that both the FM and HM models are

superior to the traditional model.
From Eqn. (3) and Eqn. (4), we can get

 T1 / T2 = (1 / 2) * (P2 / P1) (9)

From Eqn. (9), we have
 1) when 2 * P1 – P2 < 0, T1 / T2 >1, namely HM is better
than FM.
 2) When 2 * P1 – P2 > 0, T1 / T2 <1, namely FM is better
than HM.

Particularly, when P1 > 0.5, 2 * P1 > 1. And P2 <= 1, thus
it is true that 2 * P1 – P2 > 0. Namely when the FM is used, if
the rate of valid data is larger than 0.5, the FM model is better
than the HM model.
5.2 Analysis with Multiple Source Nodes

When there are more than one pair of communicating nodes
on the network, there may exist blockings. Correspondingly,
the performance of proposed routing scheme will degrade.
Since multiple data streams generated from each message are
transferred in the network, the probability of blockings in our
models is larger than that in the traditional model when there
exist multiple source nodes. On the other hand, because the
proposed routing scheme improves the transfer speed and
shortens the average transfer time, it may reduce the
probability of blockings. Due to the complexity of this
scenario, we will not detail the analysis in this paper.

6. Conclusion
In this paper, we addressed the problem of reducing

crosstalk and retaining high data throughput in NoCs. We
introduced the FM and HM transport models and proposed a
deadlock-free minimal adaptive multi-path routing scheme to
work under both models for torus-based NoCs. The proposed
routing scheme features in using multiple shortest paths to
transfer message concurrently with the help of simple control
schemes. Through analysis, we showed that the proposed
routing scheme achieves better valid data throughput under
both the FM and HM models compared with the traditional
single path routing scheme when there is single source node.
Future work includes the analysis of the throughput
improvement when multiple source nodes exist in the network.

References

[1] L. Benini and G. DeMicheli, “Networks on chips: a new SoC paradigm,”

Computer, vol. 35, no. 1, pp. 70-78, Jan. 2002.
[2] Crosstalk calculation and analysis, available at:

http://www.eetchina.com/ARTICLES/2004MAY/1/2004MAY10_BD_
NTFORUM01.HTM.

[3] W.J. Dally, “A VLSI architecture for concurrent data structures,” PH.D.
Dissertation, Dep. Comput. Sci., California Instit. Technol., Tech. Rep.
5209:TR:86, 1986.

[4] W.J. Dally and C.L. Seitz, “Deadlock-free message routing in
multiprocessor interconnection networks,” IEEE Trans. Computers, vol.
C-36, no. 5, pp. 547-553, May 1987.

[5] W.J. Dally, B. Towles, “Route packets, not wires: on-chip
interconnection networks,” Proc. Design Automation Conf (DAC), 2001,
pp. 684-689.

[6] N. Eisley and L-S. Peh, “High-level power analysis for on-chip
networks,” Proc. CASES, 2004, pp. 22-25.

[7] A. Jantsch and H. Tenhunen, Networks on Chip, Kluwar Academic
Publishers, 2003.

[8] N. Kavaldjiev and G. M. Smit, “An energy-efficient network-on-chip for
a heterogeneous tiled reconfigurable systems-on-chip,” Proc. Euromicro
Symp. Digital System Design (DSD), 2004, pp. 492-498.

[9] K. Lee, S-J. Lee and H-J. Yoo, “SILENT: serialized low energy
transmission coding for on-chip interconnection networks,” IEEE Int’l
Conf. Computer Aided Design (ICCAD), 2004, pp. 448-451.

[10] P. Magarshack and P. G. Paulin, “System-on-chip beyond the nanometer
wall,” Proc. Design Automation Conf. (DAC), 2003, pp. 419-424.

[11] D. Rossi, C. Metra, A. K. Nieuwland, and A. Katoch, “Exploiting ECC
redundancy to minimize crosstalk impact,” IEEE Design & Test of
Computers, vol. 22, no. 1, pp. 59-70 , Jan 2005.

