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Abstract 
In wireless sensor networks, the data transmitted from the sensor 
nodes are vulnerable to corruption by errors induced by noisy 
channels and other factors. Hence it is necessary to provide a proper 
error control scheme to reduce the bit error rate (BER). Due to the 
stringent energy constraint in sensor networks, it is vital to use 
energy efficient error control scheme. In this paper, we focus our 
study on the performance analysis of various error control codes in 
terms of their BER performance and power consumption on different 
platforms. In detail, error control codes with different constraints are 
implemented and simulated using VHDL. Implementation on FPGA 
and ASIC design is carried out and the energy consumption is 
measured. The error control performance of these codes is evaluated 
in terms of Bit Error Rate (BER) by transmitting randomly generated 
data through a Gaussian channel. Based on the study and 
comparison of the three different error control codes, we identify that 
binary-BCH codes with ASIC implementation are best suitable for 
wireless sensor networks. 
Keywords - Wireless sensor network; Error Control Code; BER; 
power consumption. 

1. Introduction  
The low-cost, rapid deployment, ability of self-organization and 

cooperative data-processing, have made wireless sensor networks a 
practical solution for a wide range of application areas, including 
military and homeland security, health, environment, industry and 
commercial, and home [1]. The most significant challenge in sensor 
networks is to overcome the energy constraints since each sensor 
node has limited energy to consume. Since data transmitted over the 
wireless media is vulnerable to corruption by noise, error control 
schemes are necessary to keep the Bit Error Rate (BER) low. Due to 
the stringent energy constraint, it is impossible to increase the signal 
power of the transmitted signal in wireless sensor networks. Hence an 
alternative way is to use the error control codes to reduce the BER. 
The encoding and decoding circuitry for error control codes may 
consume a sizable amount of power. This motivates us to study 
energy-efficient error detection/correction codes.  

In the literature, there is limited work on energy-efficient error 
control schemes for sensor networks and some of them are reviewed 
as follows. In [1], it is shown that usage of ARQ is limited for sensor 
networks due to the additional retransmission energy cost and 
overhead. In [8], convolutional codes are analyzed for power in a 
frequency nonselective, slow Rayleigh fading channel. Results show 
that the energy required for encoding data is negligible. However, 
performing Viterbi decoding on a Strong-ARM processor using a C 
compiler is energy-intensive as the average energy consumption per 
useful bit grows exponentially with the constraint length of the code 
and independent of code rate. Using forward error correction (FEC) is 
inefficient if the decoding is performed using a microprocessor, for 
which a dedicated onboard Viterbi decoder is suggested [8]. To the 
best of our knowledge, study of other error control codes for sensor 
networks is not available in the literature.   

In [7], the Minimum Energy (ME) coding scheme for sources 
with unknown statistics and a new method of code-by-code detection 
that can detect and correct certain errors in the received codeword is 
proposed. This research combines the modulation with the error 
control scheme to minimize power consumption. The on/off key 
modulation performance is improved with a ME-Coding. However, 
the ME codes have no capability of error correction [7].    

To identify energy-efficient error control codes for sensor 
networks, in this paper, we study and analyze the performance of 
several error control codes. Power consumption in a circuit is directly 
proportional to its complexity. In general, the encoder consumes 
negligible power when compared to the decoder. Thus, the challenge 
is to choose an error control code with less complex decoding circuit.  

In our study, we consider two types of codes: linear block codes 
and convolutional codes. Linear block codes can be either cyclic or 
non-cyclic. Cyclic codes are of interest and importance due to their 
rich algebraic structure which has extremely concise specifications 
and can be efficiently implemented using simple shift registers [5]. 
The most widely used cyclic codes for wireless applications are BCH 
codes [4]. For the purpose of our study, binary-BCH codes and the 
most popular non-binary BCH codes, namely Reed Solomon (RS) 
codes, are studied and analyzed. For comparison purpose, we also 
studied and analyzed the convolutional code with Viterbi algorithm. 

The rest of the paper is organized as follows. Section 2 discusses 
the methodology used to conduct the performance analysis. Section 3 
presents and compares the BER performance and power consumption 
of several error correction codes and identifies the energy-efficient 
error control code with the results obtained.  

2. Methodology  
In this work, we evaluate the power consumption of three 

different FEC codes, BCH, RS, and convolution codes on different 
platforms. The implementation on general processors may be 
inefficient due to the limitation of the compiler and other factors [8]. 
Hence, we implement the three codes with different constraints using 
hardware description language and estimate their power consumption 
on FPGA and ASIC. The code with the least power consumption is 
identified. All the comparison is based on the assumption of the same 
error control performance which is evaluated by the BER test. In the 
following, we explain the methods used in our study.  
2.1. Implementation of Codes 

The three types of error correction codes are implemented using 
VHDL. Fig. 1 illustrates the procedure of encoding and decoding in a 
communication system, where u is the information word, v is the 
codeword, v’ is the received word and u’ is the decoded word. The 
encoder circuits of linear block codes and convolutional codes have 
simple hardware and are easy to implement. Some of the issues 
considered while implementing the decoder circuits are as follows.  
• In binary-BCH and RS codes, the Euclid's Algorithm (EA) [9] the 

Berlekamp-Massey Algorithm (BMA) [1][5] can be used to 
compute the coefficients of error polynomial σ(x) = σ0 + σ1x + 
... + σtxt. In EA, all the steps used for computation are identical 



 

and easy to implement in hardware. Hence for efficient hardware 
implementation EA is preferred than BMA [6].  

• The information received by the receiver shown in Fig. 1 is 
quantized before decoding. Depending on the level of 
quantization, the decoding can be classified into Hard Decision 
Decoding (HDD) or Soft Decision Decoding (SDD) [6]. The 
HDD is used when the quantization level is two while SDD is 
used for quantization level greater than two. The SDD performs 
better than HDD but requires highly complex circuitry [6]. Hence 
HDD is implemented to minimize the power in the decoder [6]. 

 
Figure 1. Procedure of encoding and decoding in a 

communication system. 

2.2. Performance Measure 
The next step is to measure the error correcting capability of the 

implemented codes which is given by BER, which is obtained by the 
number of erroneous bits divided by the total number of transmitted 
bits. BER is affected by several factors including noise in the 
channel, quantization technique used, code rate R, energy per symbol 
to noise ratio Es/No and transmitter power level Pout. The code rate is 
given by R = k/n, where k is the number of bits at the input of the 
encoder and n is the number of bits at the output of the encoder. The 
BER is shown to be directly proportional to the code rate and 
inversely proportional to energy per symbol noise ratio and 
transmitter power level [2].  

The encoder encodes the data with code rate R and transmits it 
over the noisy channel. If the transmitter power level Pout is 
unchanged, then the received energy per symbol E decreases to R*E. 
Hence, the BER measured at the input of the decoder is larger than 
the BER of the data transmitted without coding [2]. This increase in 
BER is overcome by using a decoder that can correct errors. Proper 
choice of error correction codes will reduce the BER to several orders 
of magnitude. The difference in BER achieved by using error 
correction codes to that of uncoded transmission is referred to as 
coding gain. The BER test is performed by simulations on Matlab 
following the procedure shown in Fig. 1.  

First the information bits are generated using a random number 
generator. The randomly generated data is then sent to the encoder 
circuit and encoded into code words, which are transmitted over the 
noisy channel. Before transmitting, the encoded data is modulated 
using Phase Shift Keying (BPSK), which is done by mapping 1/0 at 
the output of the encoder to -1/+1 of an antipodal baseband signal [3]. 

To evaluate the performance of the error control codes in the 
noisy channel, an Additive White Gaussian Noise (AWGN) channel 
is modeled. Adding Gaussian noise to the encoded data is done by 
generating Gaussian random numbers with desired energy per symbol 
to noise ratio. The variance σ2 of additive Gaussian noise which has 
the power spectrum of No/2 Watts/Hz is equal to No/2. If the energy 
per symbol Es is set to 1, then we have Es/No = 1/2 σ2 and the 
standard deviation σ is given by σ = sqrt(1/2(Es/No)). Hence, the 
standard deviation σ with desired Es/No is calculated and used to 
obtain a Rayleigh random variable R as shown in Eq. (1).  
  R = sqrt(2*σ2*ln(1/1-U)),          (1) 
where σ2 is the variance of the Rayleigh random variable and U is a 
uniformly distributed random number. 

The Gaussian random number G obtained by using Rayleigh 
random variable R is given by Eq. (2). 
                               G = µ+R*cos(2*π*T),          (2) 
where T is a uniformly distributed random number and µ is the mean 
of the Gaussian random variable. The generated Gaussian noise is 
then added to the encoded bits and transmitted.  

The received symbols are quantized and fed to the decoder to 
obtain the information bits. Quantization refers to the process of 
approximating the continuous set of values with a finite set of values. 
As explained in Section 2.1, the 2-level quantization is used to reduce 
the complexity of the decoder. In the 2-level quantization, the 
received signal is mapped to 0 if the signal level is greater than zero 
and mapped to one if the signal level is less than 0. The result 
obtained in this way is called hard decision. The hard decision 
decoder is used to decode the quantized data which are 1’s and 0’s.  

The decoded data is then compared with the corresponding input 
given to the encoder and the BER is calculated. The BER of the 
uncoded channel is theoretically calculated using Eq. (3).  

P(e) = ½ *erfc(sqrt(Eb/No) = Q(sqrt(2Eb/No)).    (3) 
The performance of the coded and uncoded channels is compared 

based on the calculated BER.  
2.3. Power Estimation in FPGA Design 

The FPGA used for this work is Xilinx Virtex-E XCV200E-
6CS144 [12]. The Xilinx Integrated Software Environment (ISE) 7 
along with Xilinx Power (XPower) [12] is used for estimating power. 
XPower calculates the power in the design by summing up the power 
consumed by each element. The power consumed by each switching 
element in the design is given by Eq. (4). 
  P = C*V2*E*F,          (4) 
where P represents the power in mW, C represents the capacitance in 
Farads, V represents the voltage in Volts,  E represents the switching 
activity (average number of transitions per clock cycle), and F 
represents the frequency in Hz. 
2.4. Power Estimation in ASIC Design 

Power estimation in ASIC is studied using Synopsys’s Design 
Compiler (DC) and Design Vision [10]. The power analysis in ASIC 
is performed in the following procedure. First the VHDL design is 
analyzed to check if it uses the synthesizable VHDL subset. Then the 
design is elaborated, where the design is built with generic and 
technology-independent components like Gates, Flip Flops, MUX, 
etc. It is followed by uniquify, where multiple copies of the sub-
design are made whenever it is referred in the upper level of the 
hierarchy, and each copy is optimized in a unique way according to 
the conditions and constraints. The last step of synthesis is compiling, 
where the network generic components is translated into a netlist of 
the target library. Compilation can be constrained in terms of power. 
The power report is then generated. 

3. Performance Analysis  
In this section, we present and compare the performance of the 

binary-BCH, RS codes, and Viterbi codes in terms of their error 
correction capability in bit error rate (BER) and complexity and 
power consumption on FPGA and ASIC. 
3.1. BER Test 

Fig. 2 compares the BER of uncoded channel, binary-BCH and 
RS codes. A (n, k, t) binary-BCH and RS code can correct up to t-
errors, where t is directly proportional to the number of parity bits (n-
k) [4]. Hence the performance of various binary-BCH and RS codes 
are analyzed by varying n and k and their corresponding energy 
consumption is measured. For this purpose, implementation is done 
by varying (n-k). 

For binary-BCH codes, n is chosen as 31 and k varies in {26, 21, 
16, 11}. It is clear from Fig. 2 that the BCH(31,11,5) code, which can 
correct up to 5 errors has the lowest BER curve with the highest 

Informati
on Source

Modulator 

Information 
destination 

Decoder Demodulator 

Encoder 

Noisy 
Medium

v 

v’ u’ 

Information 
Source 

u 



 

coding gain of 5 dB and the lowest code rate of 0.355. While the 
BCH(31,26,1) code, which can correct up to 1 error has very minimal 
coding gain with the highest code rate of 0.839. The BCH(31,16,3) 
and BCH(31,21,2) have coding gain of 4 dB and 2 dB with code rate 
of 0.516 and 0.677, respectively.  

 
Figure 2. BER of linear cyclic block codes. 

 
Figure 3. BER of convolutional codes. 

For RS codes, n is chosen as 31 and k varies in {25, 21, 15, 11}. 
Fig. 2 clearly shows that the coding gains of RS codes are not the 
same for all the BER. They perform worse than the uncoded channel 
for higher values of BER and provide asymptotically high gain at 
lower values of BER. From the figure, we can see that using RS 
codes for BER of 10-1 or higher results in channel loss while using 
them for BER lesser than 10-1 results in extremely high gain. Because 
the RS codes correct symbol errors, they are more suitable for 
applications with BER lesser than 10-1. For BER lower than 10-1, the 
RS(31,11,10) code, which can correct up to 10 symbol error, has the 
lowest BER curve with a coding gain of approximately 6 dB and a 
minimum code rate of 0.355. While the RS(31,25,3) code capable of 
correcting 3 symbol errors has the largest BER curve with a coding 
gain of 2 dB and a maximum code rate of 0.806. The RS (31,15,8) 
code and the RS (31,21,5) code have coding gain of 4 dB and 3 dB 
and code rate of 0.4838 and 0.677, respectively. 

Fig. 2 also compares the binary-BCH codes with the RS codes 
based on code rates. The binary-BCH codes show a better 
performance at higher BER than the RS codes. But for lower BER, 
the RS codes perform better than the binary-BCH codes. For 

example, considering BCH(31,16,3) and RS(31,15,8) with code rate 
0.5, for BER greater than 10-2, the BCH code performs better than the 
RS code, while for BER less than 10-2 the RS codes perform better. 

Unlike block codes, low BER and large coding gain in (n, k, m) 
convolutional codes are achieved not by increasing k and n but by 
increasing the memory order m. Hence to analyze the performance of 
these codes, various convolutional codes of different memory orders 
are implemented and their energy consumption is measured. In this 
thesis, simulation is done for convolutional encoders with fixed code 
rate R = ½ and by varying memory order m in {3, 4, 5, 6}.  

Fig. 3 shows that the coding gain increases with the increased 
memory order m. The Viterbi (VIT) (2,1,3), (2,1,4), (2,1,5), and 
(2,1,6) codes approximately have a coding gain of  1 dB, 2 dB, 3 dB 
and 4 dB, respectively. Convolutional codes implemented using soft 
decision decoder improves the coding gain by 3 dB than that 
implemented using hard decision decoder [3]. The tradeoff is that soft 
decision decoder requires highly complex hardware [6]. 
3.2. Complexity and Power Analysis in FPGA 
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Figure 4. Complexities of BCH, RS, and Viterbi Codes. 
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Figure 5. Power consumption in FPGA design. 

The complexity of the FPGA implementation is measured by the 
number of slices used on Xilinx XCV200E. The slice utilization of 
each of the codes obtained from the synthesis report is plotted in Fig. 
4. From the figure, it can be inferred that the complexity of the 
encoder and decoder circuitry of BCH codes and RS codes increases 
linearly with the number of parity bits (n-k) increasing. On the other 
hand, the complexity of the Viterbi decoder circuitry increases 
alarmingly with memory order m increasing.  

It can be observed that the encoder circuit of the convolutional 
codes and the binary-BCH codes are less complex than that of the RS 
codes. This is because the RS codes use non-binary encoders. For 
decoder, the binary-BCH codes have less complex circuit than those 
of the RS codes and the convolutional codes. Power estimation of all 



 

the codes using XPower is plotted in Fig. 5. Among all the codes, the 
binary-BCH codes consume the least power. 
3.3. Power Analysis in ASIC  

Power consumption in ASIC design is obtained as explained in 
Section 2. The target library used is lsi_10k.db [10]. Fig. 6 shows the 
power consumed by the encoder and decoder circuitry of all three 
type of codes in ASIC. It is clear that the power consumption in 
binary-BCH and RS codes are directly proportional to the number of 
parity bits and the power consumption of the convolutional code is 
proportional to the memory order m. Also the power consumed by the 
decoder circuit is significantly higher than that consumed by the 
encoder circuit of all the codes. The decoding of RS codes and 
convolutional codes consume significantly larger amount of power 
compared to that of the binary-BCH codes. And the binary-BCH 
codes consume the least power among all the codes. 
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Figure 6. Power consumption in ASIC design. 
3.4. Power Analysis for Sensor Nodes 

In the following, we analyze the power consumption of the 
encoding/decoding circuit in a sensor node. As the power 
consumption in ASIC implementation is much less than that in FPGA 
implementation, we use the power results in ASIC implementation 
for the analyze based on TSMC 0.18µm by taking 2.5 times the results 
obtained using lsi_10k.db (as we measured through experiments). 
The total power consumed in the sensor node for communication 
with coded channel is given by Eq. (5) [8].  
 E(k,d) = {ET(k,d)+Eencode}+{ER(k)+Edecode}, (5) 
where ET is the energy used by the transmitter circuitry, which is a 
function of the no. of message bits (k) and the distance between the 
sensor nodes (d); ER is the energy used by the receiver circuitry, 
which is given by Eelec*k; Eencode and Edecode is the energy used to 
encode and decode respectively, which can be obtained from the 
results in Section 2.2. 

For uncoded channel, the receiving power is same as that of the 
coded channel, while the transmission power is given by Eq. (6). 
 ET(k,d)=Eelec*k + Eamp*k*d2, (6) 
where Eelec is the energy consumed by transmitter/receiver circuit; 
Eamp is the energy consumed by the amplifier; k is the no. of message 
bits; d is the distance between the sensor nodes. For our analysis d2 is 
chosen as 500, k = 1201200, Eelec = 50nJ/bit and Eamp = 100pJ/bit/m2.  

Fig. 7 compares the power consumption of the coded channel and 
uncoded channel with encoders/decoders implemented in ASIC. It 
can be inferred that the power consumed by the binary-BCH codes 
and RS codes for coded channel is less than that of the uncoded 
channel. While coded channel using convolutional encoder with 
Viterbi decoder consumes more power than that of the uncoded 
channel. Hence it is clear that convolutional codes are not suitable for 
wireless sensor networks. 

Fig. 8 clearly shows that the significant amount of power 
consumed by the sensor node goes for error control if convolutional 
codes are used while power consumed by transceivers dominate the 
total power consumption if binary-BCH codes or RS codes  are used. 

Hence, linear cyclic block codes consume significantly less power 
than uncoded channel.  
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Figure 7. Power consumption in sensor node for coded 

and uncoded Channels.     
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Figure 8. Power consumption in transceivers and error 

control circuitry. 
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