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Abstract—As a basic building block of a switch scheduler, a fast and fair arbiter is critical to the efficiency of the scheduler, which is the

key to the performance of a high-speed switch or router. In this paper, we propose a parallel round-robin arbiter (PRRA) based on a

simple binary search algorithm, which is specially designed for hardware implementation. We prove that our PRRA achieves round-

robin fairness under all input patterns. We further propose an improved (IPRRA) design that reduces the timing of PRRA significantly.

Simulation results with TSMC .18�m standard cell library show that PRRA and IPRRA can meet the timing requirement of a terabit

256� 256 switch. Both PRRA and IPRRA are much faster and simpler than the programmable priority encoder (PPE), a well-known

round-robin arbiter design. We also introduce an additional design which combines PRRA and IPRRA and provides trade-offs in gate

delay, wire delay, and circuit area. With the binary tree structure and high performance, our designs are scalable for large N and useful

for implementing schedulers for high-speed switches and routers.

Index Terms—Arbitration, circuits and systems, matching, parallel processing, round-robin arbiter, switch scheduling.
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1 INTRODUCTION

THE growing demand for bandwidth fosters the need for
terabit packet switches and routers. There are three

major aspects in the design and implementation of a high-
speed packet switch and router: 1) a cost-effective switching
fabric that provides conflict-free paths between input ports
and output ports, 2) a switch scheduling algorithm that
chooses which packets to be sent from input ports to output
ports, and 3) a fast mechanism that generates control signals
for switching elements to set up confliction-free paths
between inputs and outputs of the switching fabric. For a
given switching fabric, a fast arbitration scheme can be used
to implement (2) and (3). Hence, the design of a fast
arbitration scheme is critical to the design of a high-speed
packet switch or router [4], [15].

In this paper, we focus on the arbitration of a cell-based
crossbar switch for unicast I/O connections. Consider an
N �N switch with N input ports I0; I1; � � � ; IN�1, and
N output ports O0; O1; � � �ON�1. Fig. 1a shows the block
diagram of an 8� 8 switch. Fig. 1b shows a crossbar
switching fabric. To avoid head-of-line blocking [13], each
input port maintains N virtual output queues (VOQs), each
dedicated to holding cells destined for its associated output
port. The task of the scheduling algorithm running in the
scheduler is to decide a set of conflict-free connections
between input ports and output ports. Noticeably, in high
performance switches, it is common that cell arriving,

scheduling and switching, and departing are operated in a

pipelined way [5]. All cells arriving in the current cell slot

will be considered for scheduling and switching in the next

cell slot. As the switching speed of the switching fabric

increases rapidly, the speed of the scheduler is critical to the

performance of a switch.
The cell scheduling problem for VOQ-based switches can

be abstracted as a bipartite matching problem [16] on the

bipartite graph composed of nodes of input ports and

output ports and edges of connection requests from input

ports to output ports. A maximum size matching is one

with the maximum number of edges. A maximal size

matching is one which cannot be included in any other

matching. It has been proved that the size of a maximal size

matching is at least half the size of a maximum size

matching [12]. The most efficient maximum size matching

algorithms [7], [21], running in OðN2:5Þ time, are infeasible

for high speed implementation and can cause unfairness

[17]. Most practical scheduling algorithms proposed, such

as PIM [1], iSLIP [16], DRRM [4], FIRM [18], SRR [10], and

PPA [3], are iterative algorithms that approximate a

maximum size matching by finding a maximal size

matching.
Most of these maximal size matching algorithms consist

of multiple iterations, each composed of either three steps,

Request-Grant-Accept (RGA), or two steps, Request-Grant

(RG). All these algorithms can be implemented by the

hardware scheduler architecture shown in Fig. 2 [16]. In

such a scheduler, each input/output port is associated with

an arbiter, and there are 2N such arbiters. Each arbiter is

responsible for selecting one out of N requests. Output port

arbiters operate in parallel to select their matched input

ports respectively and input port arbiters operate in parallel

to select their matched output ports, respectively. Newly

matched input/output pairs are added to previously

matched pairs. This process continues until no more
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matched pairs can be found or a predetermined number of
iterations is reached.

Clearly, as the basic building block of the scheduler
shown in Fig. 2, the design of a fast and fair arbiter is critical
to the performance of the scheduler. Let Ts and Ta be the
time for a cell slot and an arbitration cycle, respectively, and
let I be the number of iterations performed in a cell slot. In
order for the scheduler to work properly, it must be
2TaI � Ts. If I is fixed, smaller Ta corresponds to smaller Ts.
If Ts is fixed, smaller Ta means more iterations can be
performed in each cell slot, which implies that a larger
matching can be found. An important issue in designing an
arbiter is how to ensure fair service to all requesters. The
most commonly used scheme for ensuring fairness is
round-robin. In this scheme, all input ports are arranged
as a directed loop. The input port that follows the input port
being served in the current cell slot is assigned the highest
priority in the next cell slot. The input port being served in
the current slot is assigned the lowest priority in the next
cell slot. The priorities of other input ports are determined
by their positions in the loop starting from the input port
that is being served. It is worthy to point out that the

fairness in arbitration directly affects the fairness of the
scheduler. A fair scheduler may not always yield a larger
size matching, but it will improve the quality of service in
terms of lower average cell delay.

In [6], Gupta and McKeown surveyed previously well-
known round-robin arbiter designs and proposed two new
programmable priority encoder (PPE) designs, both having
OðlogNÞ-gate delay. Design 1 uses a ðlogN �NÞ decoder, an
N-bit ripple priority encoder, and a conventional N-bit
priority encoder, each of which has OðlogNÞ-gate delay.
Design 2 improves Design 1 by using a logN �N thermo-
meter decoder and two N-bit priority encoders operating in
parallel, as shown in Fig. 3. In this design, a subset of the
requests Req thm is first extracted from Req as Req thm ¼
fReqiji � pg, where p is the selection starting point, using the
thermometer vector generated from the thermometer en-
coder. Then, the two priority encoders generate the grants for
Req thm and Req, respectively. The final grant vector Gnt is
generated based on the two sets of grants Gnt thm and
Gnt pre as follows: If there is any grant in Gnt thm, then
Gnt ¼ Gnt thm; otherwise, Gnt ¼ Gnt pre. As one can see,
both designs are too complicated for the simple round-robin
scheme.

In [3], Chao et al. proposed the ping-pong arbiter (PPA),
which features an OðlogNÞ-level tree structure. Clearly, PPA
has OðlogNÞ-gate delay. Fig. 4 shows a 16-input ping-pong
arbiter, featuring a 4-layer complete binary tree structure.
Each node in the tree is a 2-input ping-pong arbiter (AR2).
The basic function of an AR2 is favoring its two subtrees
alternately if both subtrees have requests. By associating a
1-bit memory with each internal node of the tree, this arbiter
implements the round-robin selection rule under the
condition that all N requests are present in each cell slot.
However, when there are less than N requests present, PPA
can cause unfairness. For example, when N=2þ 1 input
ports repeatedly request service in the pattern that one
input port’s request is captured by one half of the tree and
the remaining input ports’ requests are captured by the
other half of the tree, this arbiter grants the one input port
N=2 times more than each of the remaining N=2 input
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Fig. 1. An 8� 8 switch: (a) block diagram and (b) crossbar switching fabric.

Fig. 2. Block diagram of a scheduler based on an RGA/RG maximal size

matching algorithm.



ports, resulting in unfairness. In situations as such, PPA
cannot provide round-robin fairness. One can see from
Fig. 2 in [3] that the performance of a scheduling algorithm
based on PPA is worse than iSLIP and DRRM, which are
based on PPE. Using the same idea of “ping-pong” [3],
another arbiter design, called switch arbiter (SA), was
proposed in [19]. An SA is constructed by a tree structure
composed of 4� 4 SA nodes. An SA node consists of a
D flip-flop, four priority encoders, a 4-bit ring counter, five
4-input OR gates, and four 2-input AND gates. SA is faster
than PPA, but it is more complex in structure. As a PPA, the
SA is not fair for nonuniformly distributed requests.

In this paper, we show how to apply algorithm-hardware
codesign to design simple and fast round-robin arbiters. We
present a parallel round-robin arbiter (PRRA) based on a
simple binary search algorithm that is suitable for hardware
implementation. PRRA is essentially a combinational circuit
implementation of a binary tree structure. The arbitration
process of PRRA consists of two traces, up-trace and down-
trace. The up-trace is a subprocess of collecting the request
and round-robin priority information, and the down-trace is a
subprocess of decision making based on the information
collected in the up-trace. The PRRA design hasOðlogNÞ-gate

delay and consumes OðNÞ gates. We further present an
improved (IPRRA) design that significantly reduces the
timing of PRRA by overlapping up-traces and down-traces
of all subtrees. Our simulation results with TSMC .18�m
standard cell library show that PRRA and IPRRA can meet the
timing requirement of a terabit 256�256 switch. Both PRRA
and IPRRA are much faster and simpler than PPE. We also
introduce an additional design which combines PRRA and
IPRRA and provides trade-offs in gate delay, wire delay, and
circuit area. With the binary tree structure and high
performance, our designs are scalable for large N and useful

for implementing schedulers for high-speed switches and
routers.

The rest of the paper is organized as follows: Section 2
presents the design of PRRA and gives the analysis of its
correctness and complexity. Section 3 generalizes PRRA
and describes the improved PRRA (IPRRA) design. A
general approach of finding trade-offs among gate delay,
wire delay, and circuit area is also presented. Section 4
presents simulation results of PRRA and IPRRA and
comparisons with PPE, PPA, and SA. Section 5 concludes
the paper.

2 DESIGN OF PARALLEL ROUND-ROBIN ARBITER

2.1 Problem Definition

The function of request arbitration is defined as follows:
Given binary inputs Ri and Hi, 0 � i � N � 1, compute
binary outputs Gi, 0 � i � N � 1. Depending on the values
of His, we have two variations:

HUA: Head Uniqueness Arbitration: At any arbitration time,
one and only one of His can be in the 1-state. Assuming
that Hj ¼ 1, Gis are set as follows:

Gi ¼
1 for i ¼ ðjþ aÞmodN; if there exists

a ¼ minfb j RðjþbÞ mod N ¼ 1; 0 � b � N � 1g;
0 otherwise:

8<
:

ð1Þ

NHA: No Head Arbitration (NHA): If Hi ¼ 0 for all
0 � i � N � 1, then

Gi ¼
1 for i ¼ a; if there exists a ¼ minfj j Rj ¼ 1;

0 � j � N � 1g;
0 otherwise:

8<
:

ð2Þ

HUA corresponds to round-robin priority, where His are
used as a circular pointer. NHA corresponds to linear-priority
arbitration, for which all Hi ¼ 0, implying that input 0
always has the highest priority. An arbiter is a hardware
device that implements a given arbitration priority scheme.
A round-robin arbiter implements HUA and the following
additional functionality of updating His after the operation
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Fig. 3. Block diagram of the PPE design.

Fig. 4. Block diagram of the PPA design.



specified in (1): If Gi ¼ 1, then Hi  0 and Hðiþ1ÞmodN  1.
We aim at designing arbiters based on HUA, but we also
consider NHA for the following two reasons: 1) HUA and
NHA designs can be unified so that a single design is
capable of handling both HUA and NHA, and 2) in our
HUA designs, NHA can be used as an initiation step in the
first arbitration cycle.

2.2 Round-Robin Arbitration Search Algorithm

Our goal is to design an optimal-time round-robin arbitra-
tion algorithm suitable for hardware implementation.
Treating arbitration as a computation task, the problem of
finding the desired input request among N possibilities
requires �ðlogNÞ time, regardless of the number of
processing elements used as long as all basic processing
elements are of interconnection degrees (i.e., the number of
similar elements one element can be connected to) bounded
by a constant. This is because the arbitration problem can be
reduced to the problem of computing OR of N Boolean
variables, which requires �ðlogNÞ time [9].

The process of designing a special-purpose architecture
(circuit or system) for a specific computational task is called
algorithm-hardware codesign, which is a restricted form of
widely known hardware-software codesign. The product of
algorithm-hardware codesign is a high-performance hard-
ware algorithm frequently invoked in a more complex
computational environment. The methodology of algo-
rithm-hardware codesign, and its generalization hardware-
software codesign, is commonly adopted in designing
embedded systems. For the algorithm-hardware codesign
of round-robin arbiters, it is a natural choice to use a tree of
bounded degree to characterize the arbitration processing
structure and apply parallel processing techniques to achieve
the least possible processing time. In addition, the hardware
implementation should be as simple as possible.

Define a round-robin arbitration tree (RRA-tree) of sizeN as a
ðlogN þ 1Þ-level complete binary tree. Nodes are partitioned
into levels. The node at level 0 is called the root node (r-node).
Nodes at level 1 to level logN � 1 are called internal nodes (i-
nodes). Nodes at level logN are called leaf nodes (l-nodes). The
l-nodes of an RRA-tree are labeled from 0 toN � 1 from left to
right such that Ri and Hi are associated with l-node i. Fig. 5
shows the structure of an RRA-tree of size 4. Following the
binary tree structure, larger size RRA-trees can be constructed
from smaller size RRA-trees recursively.

The state of an RRA-tree is defined byRis andHis associated
with its l-nodes. Let u be a node in an RRA-tree. We use two
bits S1 and S0 to code the state of l-nodes in the subtree rooted
atu as in Table 1. Since the RRA-tree is recursively defined, its
state is also recursively defined. For an l-node i, S1 ¼ Hi and
S0 ¼ Ri. We associate the state of a (sub)tree T with its root
nodeu, and we use the state of nodeu to refer to the state ofT . In

Fig. 5, the state of each node is given within the circle
representing the node.

Now, we present a simple binary search algorithm,
named RRA-SEARCH, for finding the desired input request
in an RRA-tree, assuming that S1S0 is available for every
node in the tree. This algorithm is the basis of our round-
robin arbiter designs, which will be given shortly. Let v and
w be the left and right child of u, respectively. We use
S1S0ðuÞ, S1

LS
0
LðuÞ, and S1

RS
0
RðuÞ to denote the state of u, v,

and w, respectively. When node u is clear from the context,
we omit u and use S1S0, S1

LS
0
L, and S1

RS
0
R instead. Starting

from the r-node, algorithm RRA-SEARCH recursively makes
a decision of selecting the left subtree or right subtree,
depending on the values of S1

LS
0
LðuÞ and S1

RS
0
RðuÞ of the

current node u until an l-node is reached. Table 2 gives the
actions for all cases, where “left” or “right” indicates
selecting the left or right subtree of u, respectively, and
“—” indicates that the combination of S1

LS
0
LS

1
RS

0
R and the

type of node u is impossible by the definition of S1S0 coding
under HUA or NHA. Impossible cases are included in the
table for completeness even though they will not be
encountered. Our algorithm RRA-SEARCH, which can be
applied to HUA and NHA using corresponding columns in
Table 2, is as follows:
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Fig. 5. An RRA-tree for R0R1R2R3 ¼ 1011 and H0H1H2H3 ¼ 1000.

TABLE 1
S1 and S0 Used to Code the State of l-nodes of a (Sub)Tree

Rooted at an i-node or the r-node

TABLE 2
Search Action to be Taken at a Nonleaf Node u



Algorithm RRA-SEARCH

Input: An RRA-tree with state information available in

every node.

Output: The desired l-node if at least one l-node has

nonzero request.

begin

Search the action in the column “r-node” of Table 2 using

S1
LS

0
LS

1
RS

0
R of the r-node.

if the corresponding action is “left”

then u left child of r;

else u right child of r.

while u is not an l-node do

Use S1
LS

0
LS

1
RS

0
R of u as index to search the action in the

column “i-node” of Table 2.

if the corresponding action is “left”

then u left child of u;
else u right child of u.

end-while

if S1S0 ¼ �0 for u

then output “no desired request”;

else output u.

end

2.3 Correctness of RRA-SEARCH

In this section, we prove the correctness of the RRA-SEARCH
algorithm when it is applied to HUA and NHA.

Theorem 1. The RRA-SEARCH algorithm is correct when it is

applied to NHA.

Proof. Since none of theHis is 1, S1 ¼ 0 for every node of the
RRA-tree. Thus, S1

LS
0
LS

1
RS

0
R 6¼1��� and S1

LS
0
LS

1
RS

0
R 6¼

��1� .1 The entries in the columns of r-node and i-node of
Table 2 under NHA marked “�� ” correspond to these
impossible cases. The only legal values of S1S0 are 00 and
01. According to the definition of S1S0, S1S0 ¼ 00 and
S1S0 ¼ 01 are recursively defined as shown in Fig. 6. By
Table 2, the actions taken from the r-node to an l-node by
RRA-SEARCH can be modeled by a finite-state automata,
with its states directly corresponding to the states of nodes
in RRA-trees and its transition diagram shown in Fig. 7.

In Fig. 7, the value of S1S0 is used to label the state of a

node, and S1
LS

0
LS

1
RS

0
R=left (respectively, S1

LS
0
LS

1
RS

0
R=right)

indicates RRA-SEARCH continues the search by selecting

the left (respectively, right) subtree based on the values

of S1
LS

0
LS

1
RS

0
R of the current node. For a particular state

S1S0 of the r-node, the only state is the starting and

ending state, and the state transitions follow the

transition arcs. Suppose the state of the r-node is
S1S0 ¼ 01; if S1

LS
0
LS

1
RS

0
R ¼ 010� for the r-node, RRA-

SEARCH selects the left branch of the RRA-tree, and the

tate of its left child is also 01; if S1
LS

0
LS

1
RS

0
R ¼ 0001 for the

r-node, RRA-SEARCH selects the right branch of the RRA-
tree and the state of its right child is also 01. As shown in
Fig. 7, the state repeats until it reaches an l-node with
state S1S0 ¼ 01. From Table 2, this l-node must hold the
first nonzero request, which is the desired request. If the
state of the r-node is 00, the selection action can be
arbitrary since there is no desired request and any grant
signal is meaningless. For simplicity, RRA-SEARCH

selects the right branch. An input which currently has
no request can simply ignore the received grant signal.
Therefore, we conclude that the RRA-SEARCH algorithm
is correct for NHA. tu

Theorem 2. The RRA-SEARCH algorithm is correct when it is

applied to HUA.

Proof. For HUA, since one and exactly one of the His is 1,

S1
LS

0
LS

1
RS

0
R ¼ 1� 1� is not possible. Also, for the r-node,

S1S0 ¼ 00 and S1
LS

0
LS

1
RS

0
R ¼ 0� 0� are not possible. The

entries in the columns of r-node and i-node of Table 2

under HUA marked “�� ” correspond to these impos-

sible cases. The only legal states for the r-node are 10 and

11. According to the definition of S1S0, S1S0 ¼ 10 and

S1S0 ¼ 11 are recursively defined as shown in Fig. 8,

which utilize the definitions of state 00 and 01 shown in

Fig. 8 to complete the definition. By Table 2, the actions

taken from the r-node to an l-node by RRA-SEARCH can

be modeled by a finite-state automata, with its states

directly corresponding to the states of the nodes in RRA-

trees and its transition diagram shown in Fig. 9. In this

figure, a double-circle represents the starting state. All

states can be ending states.
If the state of the r-node is 10, RRA-SEARCH uses the

transition diagram shown in Fig. 9a to find the desired
request, if any. We need to consider two subcases. In the
first subcase, all the nodes on the search path originating
from the r-node and terminating at an l-node k are in the
10 state. This means there is no Ri ¼ 1, and RRA-SEARCH

selects the l-node k such thatHk ¼ 1. In the second subcase,
the search path is partitioned into two subpaths, with all
nodes on the first subpath in 10 state and all nodes on the
second subpath in 01 state. In this subcase, Hk ¼ 1,Ri ¼ 0
for i � k, there exists jsuch that j < kandRj ¼ 1, andRRA-
SEARCH selects the leftmost Ri ¼ 1 to the left of k as in
NHA.

If the state of the r-node is 11, RRA-SEARCH uses
transition diagram shown in Fig. 9b to find the desired
request. We need to consider two subcases. In the first
subcase, all the nodes on the search path originating from
the r-node and terminating at an l-node k are in the 11 state.
This means that Rk ¼ Hk ¼ 1, and the desired request is
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Fig. 6. Recursive definition of S1S0 ¼ 00 and S1S0 ¼ 01.

Fig. 7. State diagram describing RRA-SEARCH for NHA: (a) S1S0 ¼ 00

for the r-node. (b) S1S0 ¼ 01 for the r-node.

1. In the rest of this paper, the symbol � is used to indicate a “don’t care”
condition.



selected. In the second subcase, the search path is
partitioned into two subpaths, with all nodes on the first
subpath in 11 state and all nodes on the second subpath in
01 state. There are two possibilities for this subcase. If
Hk ¼ 1, andRi ¼ 0 for i � k, then the leftmost requestRi ¼
1 is selected as in NHA. IfHk ¼ 1 and there existsRi ¼ 1 for
i � k, then the leftmost requestRi ¼ 1 to the right of l-node
k is selected. Since we have considered all possible cases,
the theorem holds. tu

2.4 Hardware Implementation

In this section, we describe the PRRA design, an algorithm-
structured hardware implementation of the RRA-SEARCH

algorithm. The following guidelines are used in our PRRA
design: 1) use a tree to carry out the processing steps, such
that the state information is collected in the up-trace (i.e.,
from leaves to the root), and the search is performed in the
down-trace, 2) use combinational circuits as much as
possible to fasten the design and the circuits must be
simplified as much as possible, and 3) use flip-flops to keep
the current circular pointer information, and use the tree
and grant signals to update flip-flops.

The basic idea of our PRRA design is to directly
implement the RRA-tree using hardware. Though the
RRA-SEARCH algorithm was modeled by finite-state auto-
matas as described in the proofs of Theorems 1 and 2, our
implementation is memoryless—there is no memory at the
r-node and i-node to store the state information. Memories
are only needed for storing the circular pointer at the l-node
level. The entire processing is partitioned into two phases,
up-trace for generating S1S0 and down-trace for searching
the desired l-node and generating grant signals. The state
information S1S0 for all nodes is computed on-the-fly
recursively from l-nodes toward the r-node by purely
combinational circuits. Then, the RRA-SEARCH is carried
out from the r-node toward l-nodes in parallel by the same
circuits. The circular pointer is updated according to the
search result after an arbitration cycle.

Fig. 10 shows the structure of a PRRA with eight requests
and its inputs and outputs. l-nodes are connected as a ring.
Fig. 11 shows how l-nodes are connected. Each dashed
rectangle represents an l-node, which mainly consists of an
RS flip-flopHead. The outputHj ofHeadj being 1 indicatesRj

has the highest priority. For HUA, if Gk ¼ 1 for some k, then
Headk  0 and Headðkþ1Þ mod N  1; otherwise, all Headis
remain unchanged. For NHA, requests are assigned linear
priorities, with R0 having the highest priority. If there is any
desired request (i.e.,Ri ¼ 1 for some i), let k ¼ minfijRi ¼ 1g.
After the first arbitration cycle, Headðkþ1Þ mod N  1 and all
other Heads remain 0. If there is no desired request,
HeadN�1  1 and all otherHeads remain 0. Then, this PRRA
performs HUA for subsequent arbitration cycles. Thus,
setting all Heads to be 0 provides a simple initial state for
HUA. It is worthy to point out that this design which
automatically updates its circular pointer is suitable for many
applications, such as bus arbitration.

Additional circuitry can be added to allow dynamically
loading Head flip-flops with a particular setting and make
the circular pointer programmable. For arbiters used in
RGA and RG switch schedulers, a grant signal Gi ¼ 1 may
or may not be accepted, depending on other conditions. If
Gi is accepted, a new circular pointer is generated by the
flip-flops shown in Fig. 10; otherwise, if Gi is not accepted,
then the previous circular pointer should be reloaded. To
handle such a situation, another flip-flop can be added in
each l-node to maintain the previous Head state.

An i-node is implemented as a combinational circuit, as
shown in the dashed rectangle in Fig. 12. It has four inputs
from its two child nodes (which are either l-nodes or i-nodes):
S1
L and S0

L from its left child, and S1
R and S0

R from its right
child. It provides two outputs S1 and S0 to its parent node. If
an i-node is the left (respectively, right) child of its parent
node, then its S1 and S0 are identified as S1

L and S0
L

(respectively, S1
R and S0

R) of its parent, respectively. An
i-node has one inputG from its parent node. If this i-node is the
left (respectively, right) child node of its parent node, this
input is theGL (respectively,GR) output of its parent node. It
has two outputs GL and GR to its child nodes, which in turn
are G inputs of its left and right child node, respectively. An
i-node u at level logN � 1 is the parent node of two l-nodes v
andw. The inputsS1

L andS0
L (respectively,S1

R andS0
R) of u are

the outputs HL and RL (respectively, HR and RR) of its left
(respectively, right) child l-node, respectively. The input and
output relations of an i-node are specified by the following
Boolean functions:

S0 ¼ S0
R þ S0

L � S1
R; ð3Þ

S1 ¼ S1
L þ S1

R; ð4Þ
GL ¼ G �G0L ¼ G � ðS0

L � S0
R þ S0

L � S1
R þ S1

L � S0
RÞ; ð5Þ

GR ¼ G �G0R ¼ G � ðS1
L � S0

L þ S0
L � S0

R þ S1
R � S0

RÞ: ð6Þ

As shown in the dashed rectangle in Fig. 13, an r-node is
implemented as a subcircuit of the circuit given in Fig. 12. It
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Fig. 8. Recursive definition of S1S0 ¼ 10 and S1S0 ¼ 11.

Fig. 9. State diagram describing RRA-SEARCH for HUA: (a) S1S0 ¼ 10

for the r-node. (b) S1S0 ¼ 11 for the r-node.



has four inputs from its two child nodes: S1
L and S0

L from its

left child, and S1
R and S0

R from its right child. It provides two

outputsGL andGR, which, in turn, areG inputs of its left and

right child node, respectively. The input and output relations

of an r-node are specified by the following Boolean functions:

GL ¼ G0L ¼ S0
L � S0

R þ S0
L � S1

R þ S1
L � S0

R; ð7Þ
GR ¼ G0R ¼ S1

L � S0
L þ S0

L � S0
R þ S1

R � S0
R: ð8Þ

Theorem 3. PRRA operates correctly for both HUA and NHA.

Proof. Based on the recursive definition of S1S0 (refer to
Table 1 and Figs. 6 and 8), it is easy to verify that S1S0 is
correctly computed by (3) and (4).

According to Theorems 1 and 2, we only need to show
that signalsG0L andG0R are generated by following Table 2.
We directly translate Table 2 into a truth table for G0LðrÞ,
G0RðrÞ, G0LðiÞ, and G0RðiÞ as shown in Fig. 14. Then, we
assign truth values for “don’t care” conditions to obtain a
truth table forG0L andG0R. Fig. 14 shows the combined truth
table forG0L,G0R,G0LðrÞ; G0RðrÞ,G0LðiÞ, andG0RðiÞ. Equations
(5), (6), (7), and (8) are obtained from this table. It is easy to
verify that all Head flip-flops are correctly set for HUA
after every arbitration cycle. tu
The PRRA design is scalable. An i-node can be used as

the r-node with its input G permanently set to be 1 and its

outputs S1 and S0 unused. Therefore, as shown in Fig. 15,

an N-input PRRA can be constructed by two N=2-input
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Fig. 10. Structure of a PRRA with eight requests: (a) inputs and outputs and (b) the tree structure.

Fig. 11. l-nodes used in the PRRA.



PRRAs and one r-node (implemented by an i-node). Note
that such a PRRA is valid for any number of inputs. If the
number of inputs, M, to an N-input PRRA is less than N , we
simply set Rj ¼ 0 for all M � j � N � 1. It is easy to verify
that, with a binary tree structure, PRRA has OðlogNÞ-gate
delay and consumes OðNÞ gates.

2.5 A Working Example

Fig. 16 shows an example of how a 4-input PRRA of Fig. 10
works for HUA. Let the requests in the first arbitration cycle
be R0 ¼ 1, R1 ¼ 0, R2 ¼ 1, and R3 ¼ 1, and let H0 ¼ 1. This
case corresponds to the RRA-tree shown in Fig. 5.
According to (3) and (4), the left i-node generates its S1S0

as 11, and the right i-node generates its S1S0 as 01. Hence,
the r-node selects the left i-node based on (7) and (8). Then,
R0 is granted according to (5) and (6) and H1 is updated to
1. Fig. 16a shows the signals at each level in the first cycle.
In the second arbitration cycle, we assume that the same
request pattern repeats. The left i-node generates its S1S0 as
10 and the right i-node generates its S1S0 as 01. Thus, the
right i-node is selected, and R2 is granted and H3 is set to 1.
Fig. 16b shows the signals at each level in the second cycle.

One can derive that R3 will be granted and H0 will be

updated to 1 in the next cycle if the same request pattern

repeats.

3 IMPROVED PRRA

In a PRRA, the arbitration process is decomposed into two

separated subprocesses, up-trace and down-trace. In the

up-trace, input signals encoding the requests and the

circular pointer information from l-nodes are transmitted

and processed level by level toward the r-node. In the

down-trace, the grant signal generated at the r-node is

propagated level by level back to all the l-nodes. In this

section, we show how to improve the PRRA design by

overlapping the up-trace and down-trace and shortening

the critical path.
An improved PRRA (IPRRA) maintains the binary tree

structure of PRRA. A 2-input IPRRA-tree is an r-node. A 4-

input IPRRA-tree is composed of two 2-input IPRRAs, one

r-node, and four AND gates. In general, an N-input IPRRA-

tree is composed of two N=2-input IPRRAs, one r-node, and

N AND gates. An N-input IPRRA is composed of an

N-input IPRRA-tree, the l-nodes, and the ring connection

among them. Fig. 17 shows the structure of a 4-input IPRRA

and an N-input IPRRA, with l-nodes omitted. The l-nodes

and their interconnection are the same as in PRRA. The

connections between nodes for generating S1S0 signals also

remain the same as PRRA.
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Fig. 12. Structure of an i-node.

Fig. 13. Structure of an r-node.

Fig. 14. The truth table used to generate G0L and G0R of the r-node and

i-nodes. G0LðrÞ and G0RðrÞ represent the outputs of the r-node according

to Table 2. G0LðiÞ and G0RðiÞ represent the outputs of i-nodes according to

Table 2. G0L and G0R are used to generate (5), (6), (7), and (8).

Fig. 15. Recursive construction of an N-input PRRA.



In an IPRRA, we use i0-nodes instead of i-nodes. An
i0-node differs from an i-node by removing G in the logic of
GL and GR. Thus, i0-nodes and the r-node are identical in
structure. Unlike an i-node, which generates its GL and GR

signals after receiving a G signal from its parent node, an
i0-node generates its GL and GR as soon as it receives S1

L, S0
L,

S1
R, and S0

R signals from its child nodes. Locally generated
GL and GR signals at higher levels (those closer to the
leaves) of the tree are used as filters to refine the grant
signals generated at lower levels by multiple levels of
added AND gates.

In the following, we give a simple analysis of the timing
improvement of IPRRA over PRRA only considering the total
gate delay. Refer to (3), (4), (5), (6), (7), and (8) and assume that
NOT, AND, and OR gates have the same gate delay Tg. For
both PRRA and IPRRA, it takes 3ðlogN � 1ÞTg time for the
r-node to receive its S1

L, S0
L, S1

R, and S0
R, and 3Tg time for the

r-node to generate its GL and GR. Then, it takes ðlogN � 1ÞTg
time for all l-nodes to receive theirG signals in the down-trace
for PRRA. But, for IPRRA, it takes Tg time for all l-nodes to
receive theirG signals after the grant signals are generated at
the root. The total gate delay for PRRA is 3ðlogN � 1ÞTg þ
ðlogN � 1ÞTg þ 3Tg ¼ ð4 logN � 1ÞTg and the total gate delay

for IPRRA is ð3 logN þ 1ÞTg. Thus, the timing improvement
of IPRRA over PRRA in terms of gate delay is significant. The
disadvantage of IPRRA compared with PRRA is that, for
large N , its wire delay may dominate the total circuit delay.
For any reasonable circuit layout of IPRRA, the two wires
from the r-node to l-nodes are the longest. Each of these two
wires is used to drive N=2 AND gates.

To reduce wire delay, we have an alternative design
called grouped IPRRA (GIPRRA). Assume that logN is a
multiple of k, 1 � k � logN . Conceptually, we divide the
levels of a ðlogNÞ-level IPRRA-tree T into logN=k groups,
each consisting of nodes in k consecutive levels. Based on
this division, we can construct a ðlogN=kÞ-level tree T 0 such
that each node in T 0 corresponds to a k-level subtree of T .
Each node of T 0 is replaced by an IPRRA-tree of 2k inputs.

More specifically, a 2k-input GIPRRA-tree is a 2k-input
IPRRA-tree. A 22k-input GIPRRA-tree is composed of 2k þ
1 2k-input IPRRA-trees such that one of them is denoted by
Tr and the others are denoted by Ti. The ith grant output of
Tr is ANDed with each of the 2k grant outputs of the ith Ti
to generate new grants. Fig. 18a shows this construction. In
general, a 2km-input GIPRRA-tree is composed of a
2kðm�1Þ-input GIPRRA-tree and 2kðm�1Þ2k-input IPRRA-trees.
The ith grant output of the 2kðm�1Þ-input GIPRRA-tree is
ANDed with each of the 2k grant outputs of the ith IPRRA-
tree to generate new grants. Fig. 18 shows the recursive
construction of a GIPRRA-tree, with l-nodes omitted. The
l-nodes and their interconnection of a GIPRRA are the same
as in PRRA. The connections between nodes for generating
S1S0 signals also remain the same as in PRRA. Clearly, for
k ¼ 1, a GIPRRA is a PRRA, and for k ¼ logN , a GIPRRA
can be considered as an IPRRA. For 1 < k < logN , the gate
delay of a GIPRRA is longer than an IPRRA but shorter than
a PRRA, the number of gates used in a GIPRRA is between
that of a PRRA and an IPRRA, and the wire delay of a
GIPRRA is bounded by the wire delay of a 2k-input IPRRA.
GIPRRAs provide trade-offs among several performance
measures.

To complete our discussion of IPRRA and GIPRRA, we
state their correctness by the following theorem:

Theorem 4. IPRRA and GIPRRA operate correctly for both
HUA and NHA.

Proof. The proof is by induction. We only prove the

correctness of IPRRA since the proof for GIPRRA is

similar. The theorem obviously holds for a 2-input IPRRA-

tree because it is equivalent to a 2-input PRRA-tree.
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Fig. 16. A working example.

Fig. 17. Recursive construction of IPRRA: (a) A 4-input IPRRA. (b) An

N-input IPRRA.



Suppose the theorem holds for a 2j-input IPRRA-tree, and

consider a 2jþ1-input IPRRA-tree. The r-node of this tree

correctly selects its subtree to continue the search for the

desired request, and each of the two 2j-input IPRRA

subtrees correctly selects its desired request, respectively.

When each of the two grant signals of the r-node is ANDed

with the grant signals of the corresponding subtrees, the

new grant signals of the entire IPRRA-tree are also correct.

Hence, the theorem follows. tu

4 SIMULATION RESULTS AND COMPARISONS

In this section, we present the simulation results of PRRA,

IPRRA, PPE, PPA, and SA [6] on Synopsys’ design tools. We

modeled the PPE and PPA as shown in Fig. 11 of [6] and Figs. 1

and 4 of [3], respectively. For SA, we modeled it according to

Figs. 3, 4, and 5 of [19]. We generated Verilog HDL [8] codes

for each design, and compiled and synthesized them on

Synopsys’ design analyzerusing a .18�mTSMC standard cell

library from LEDA Systems [14], [22]. All these designs were

optimized under the same operating conditions and the tool

was directed to optimize area cost of each design.

Table 3 shows the timing results of these designs in terms

of ns and Table 4 shows the area cost of these designs in

terms of the number of 2-input NAND (NAND2) gates for

N ¼ 4, 8, 16, 32, 64, 128, and 256. Although the results

depend on the standard cell library used, they represent the

relative performance of these designs.
As shown in Table 3, the timing results of SA grow with

log4 N , while the timing results of PPE, PPA, PRRA, and
IPRRA grow with log2 N , which are consistent with the
analysis of these designs. Among all the designs, SA runs
the fastest with its fewer levels of basic components.
However, as we pointed out in Section 1, SA is not fair
for nonuniformly distributed requests. IPRRA is the second
fastest design with timing improvement of up to 30.8 per-
cent over PPE and 25.7 percent over PRRA. The timing
improvement of IPRRA over PRRA is not as good as our
analysis given in Section 3 since the analysis does not
consider wire delay. As we expect, timing results of PRRA
and PPA are comparable due to the similarity of their
binary tree structures. But, PPA cannot provide round-
robin fairness as PRRA does. PPE has the longest delay
since it has an N-bit thermometer encoder and an N-bit
priority encoder on its critical path. For comparison
purposes, consider a switch of size N ¼ 256 and assume
that the cell size is 64-bytes, where the line rate is
determined by 64� 8/the arbiter speed. The line rates that
a scheduler using PPE, PRRA, and IPRRA can provide are
6.24Tbps, 6.68Tbps, and 8.77Tbps, respectively.

As shown in Table 4, the area results of all designs grow
linearly with N . Compared with other three designs, both
PRRA and IPRRA consume significantly fewer NAND2
gates with their binary tree structure and simple design of
each node. SA consumes the largest number of NAND2
gates. PPE is better than SA, but worse than PPA. PRRA
consumes the smaller number of NAND2 gates. The area
results of IPRRA is slightly worse than PRRA. Compared
with its timing improvement, the slightly larger area cost of
IPRRA than PRRA is neglectable. The area improvement of
PRRA over SA and PPE is 72.6 percent and 70.0 percent,
respectively, and the area improvement of IPRRA over SA
and PPE is 69.7 percent and 66.9 percent, respectively. The
improvement is remarkable though area cost becomes a less
important concern given the wealth of transistors with
current VLSI technologies. As the number of arbiters
needed for a scheduler is proportional to the switch size,
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Fig. 18. Recursive construction of a GIPRRA: (a) A GIPRRA with

k ¼ logN
2 . (b) A GIPRRA with k ¼ log2 N

m , where m � 2.

TABLE 3
Timing Results of PPE, PPA, SA, PRRA, and IPRRA

in Terms of ns

TABLE 4
Area Results PPE, PPA, SA, PRRA, and IPRRA

in Terms of the Number of NAND2 Gates



the area improvement of PRRA and IPRRA over SA and
PPE is more significant for larger switch size.

In summary, PRRA and IPRRA both achieve significant
improvements in timing and area cost compared with
existing round-robin arbiter designs. It is important to point
out that PRRA and IPRRA can be directly applied to
implement maximal size-matching-based scheduling algo-
rithms using round-robin arbitration, such as iSLIP [16],
DRRM [4], and FIRM [18].

5 CONCLUDING REMARKS

In this paper, we presented two round-robin arbiter designs
PRRA and IPRRA. For the purpose of balanced gate delay,
wire delay, and circuit complexity, we also proposed to
combine PRRA and IPRRA to obtain GIPRRA designs. We
proved that our designs achieve round-robin fairness for all
input patterns, which is not guaranteed by the designs of
PPA [3] and SA [19]. Both PRRA and IPRRA have
OðlogNÞ-gate delay and use OðNÞ gates, which are the
same as PPE [6]. In practice, PRRA and IPRRA are much
simpler and faster than PPE. Simulation results with the
TSMC .18�m standard cell library show that IPRRA
achieves up to 30.8 percent timing improvement and up
to 66.9 percent area improvement over PPE. Due to their
high performance, the proposed PRRA and IPRRA designs
are very useful for implementing schedulers for high-speed
switches and routers.

The distinctive feature of our parallel round-robin arbiter
designs is that they are obtained using the algorithm-
hardware codesign approach. These arbiter designs are
essentially optimized combinational circuit implementa-
tions of a parallel search algorithm. The algorithm is
devised by exploring maximum parallelism and taking
hardware implementation complexity into consideration.
The circuit design is optimized to further reduce the circuit
complexity and enhance performance. This approach is
important for designing frequently used components in
many high-performance systems, such as the round-robin
arbiters in the scheduler for an N �N high-speed switch.

It is possible to further improve the performance of our
designs using a k-array tree, instead of a binary tree, as the
underlying structure. The trade-offs of such types of
variations are more complex individual nodes and a smaller
number of levels. It is desirable to find the optimal value k
such that the fastest/simplest design can be achieved.
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