Scalable Schedulers for High-Performance Switches

Chuanjun Li and S. Q. Zheng Mei Yang
Department of Computer Science Department of Computer Science
University of Texas at Dallas Columbus State University
Richardson, TX 75083 Columbus, GA 31907
{chuanjun, sizheng@utdallas.edu yangei@colstate.edu
Abstract— Scheduler and switching fabric are two major 11T e
hardware components of a cell switch. For a switch using a non- | —> 5 > 1
blocking switching fabric, the performance of the switch depends 1111 onl]
on the performance of its cell scheduler. We introduce the con-
cepts of relative and universal scheduler scalabilities. Informally, : : N
a scheduler is relatively scalable with respect to a switching : : bric
fabric if its structure is not more complex than the structure
of its associated non-blocking switching fabric. A scheduler is ERERY
universally scalable if its structural complexity is not larger than N—> : g I
the structural complexity of any non-blocking switching fabric. T ew
Based on algorithm-hardware co-design, we present a universally [ |

scalable scheduler withO(N log ) interconnection complexity. ‘
We show by simulation that the performance of the proposed
scheduler is almost the same as non-scalable schedulers.

Scheduler ‘

Fig. 1. An IQ switch with VOQs.

I. INTRODUCTION

Most high-speed packet switches employ cell switches agrts and output ports and edges of conn'ectic.)n requests from
their cores. In such a switch, variable-length packets afut ports to output ports [2]. A maiching is a subset of
segmented into fixed-size cells as they arrive, transferr8d9€s such that no two edges are incident to one node in the
across the switching fabric, and reassembled back into origi@&#PP- A maximum size matching is one with the maximum
packets before they depart. Different queuing schemes h&nber of edges. A maximal size matching is one that is not
been proposed for such a switch. Due to their capabilities gntained in any other matching. Although it has been shown
achieving 100% throughput and providing quality of servick'at maximum size matching algorithms can achieve 100%
(QoS) guarantee, output queueing (OQ) switches are Com[oughpufc under unlfprm traffic, they are toq complex for
monly employed for many commercial switches and routefd@rdware implementation and can cause unfaimess [3].
However, OQ is impractical for switches with line rates and/or Instead, most practical scheduling algorithms proposed in
large numbers of ports since it requires that the switchirige literature are iterative maximal size matching algorithms,
fabric and memory run as fast @§ times the line rate for such as parallel iterative matching (PIM) [4SLIP [2],
an N x N switch. With the switching fabric and memorydual round-robin matching (DRRM) [5], first-come-first-serve
running at the line rate, input queuing (IQ) switches ar@ round-robin matching (FIRM) [6], and static round-robin
scalable for high line rate and/or large number of portéSRR) [7]. These algorithms operate either in one or mul-
However, due to the problem of head-of-line (HOL) blockingfjple iterations with each iteration composed of either three
the maximum throughput of an 1Q switch with first-in-first-Steps, Request-Grant-Accept (RGA), or two steps, Request-
out (FIFO) queues is limited to 58.6% under uniform traffi€rant (RG). All these algorithms can be implemented by the
[1]. Virtual output queues (VOQs) have been proposed foardware scheduler architecture shown in Fig. 2 [2], which
IQ switches to remove HOL blocking and to achieve thgonsists ofN request/grant arbiters, each associated with an
scalability of 1Q switches. Fig. 1 shows avi x N IQ switch input port, andN grant/accept arbiters, each associated with
with VOQs, in which each input port maintain§ virtual an output port.
output queues (VOQs) witld); ; buffering cells from input A high-performance switch tends to have a large number of
port I; destined for output por®);. input/output ports. It is well-known that wiring takes the most

We assume that time is slotted and a cell slot equals ¢hip area in a large digital circuit/system. Thus, the imple-
the transmission time of a cell on an input/output line. Fanentability, cost and performance of such a large size switch
an IQ switch with VOQs, its performance highly dependdepend on the interconnection complexities of its switching
on the scheduling algorithm, which decides whigh cells fabric and scheduler. We define the interconnection complexity
out of N2 HOL cells to be sent across the switching fabri¢also called wiring density) of a circuit as the number of
in each cell slot. The cell scheduling problem for a VOQwires used in the circuit. We us€,; and C,., to denote
based 1Q switch can be modelled as a bipartite matchitize interconnection complexity of the non-blocking switching
problem on the bipartite graph composed of nodes of inpfatbric and the scheduler of a switch, respectively. We say that



arbiters arbiters

L e Accepurant Il. THE RRPM ALGORITHM AND ITS IMPLEMENTATION

- In this section, we first present the RRPM algorithm and
—— then discuss its hardware implementation architecture.

]

1 1

A. The RRPM Algorithm

Designing a scalable scheduler is an algorithm-architecture
co-design problem. Algorithm-structured scheduler is designed
— to fully explore the parallelism existing in the cell scheduling
: : problem. By combining the features of DRRM and PIM, we
— — propose the round-robin priority matching (RRPM) algorithm

which uses the round-robin discipline to select a request at
Fig. 2. Block diagram of a scheduler based on an RGA/RG maximal sig@ch input (port) and random selection to decide a grant at
matching algorithm. each output (port). As we will discuss in Section II-B, the
random selection is implemented by selecting the smallest one
among a subset of random numbers (or priorities), generated
a scheduler architecturd is relatively scalablewith respect by inputs_ Assuming that each input pd{tis associated with
to an N x N switching fabricS if Csen(N, A) < Csp(N,S)  arequest pointer;, which indicates the request starting point,

and each iteration ofl takes poly-logarithmic time. We say RRPM operates iteratively with each iteration consisting of the
that a scheduler architecturé is universally scalabléf it is  following two steps.

relatively scalable with respect to any switching fabsiof a
given size. As we can see, the schedweshown in Fig. 2
hasCs., (N, A) = O(N?), which is as complex as a crossbar
switching fabric S which hasCsf(N,S) = O(N?). The
interconnection complexity of such a scheduler is even larger
than that of some existing non-blocking and rearrangeable
non-blocking switching fabrics. For instance, for ahx N
non-blocking Clos networlC [8], [9] and rearrangeable non-
blocking Benes networl [8], Cs¢(N,C) = O(N'5) and
Csy(N,B) = O(Nlog N) %, respectively. For such a switch- o owe ar o r]m oo b s

ing fabric, the scheduler shown in Fig. 2 is non-scalable, IO
its use cannot be justified. an an
Clearly, Q(N log N) is the lower bound for the mtercon * “’ ’ B
nection complexity of anyV x N switching fabric. Thus, any o> 4"
schedulerA with interconnection complexity’s., (V, A) nn 2 .. w .. w \

O(Nlog N) is universally scalable. This motivates our stu 3y
on universal scalable schedulers. In this paper, we propose a
universal scalable scheduler architecture based on the propaSed. An example of RRPM for & x 4 switch.
round-robin priority matching (RRPM) algorithm and a mul-
tiprocessor system. RRPM is an iterative algorithm with eachRRPM stops either after a predetermined number of itera-
iteration consisting of two steps, Request and Grant. Cotins or until no more matching can be found, which means
bining the features of DRRM and PIM, in RRPM, each inpua maximal size matching is found. Fig. 3 shows an example
port selects one request according to the round-robin disciplioERRPM with one iteration for @ x 4 switch assuming that
and each output port grants one request randomly. We sheach input has no empty VOQ. Initially, we assume all the
that using a hypercube and a linear array, each iterationrefjuest pointers are pointing at 1. In the first cell slot, all
RRPM can be implemented with (N log N) interconnection inputs send requests to output 1, which randomly grants one
complexity and inO(log* N) time. By simulation, we show request (shown as dark edge in Fig. 3), say from input 2.
that RRPM achieves better performance than DRRM und&hen only the request pointer at input 2 will be updated to 2.
uniform Bernoulli and bursty traffic. Noticeably, RRPM withIn the second (cell) slot, input 2 will request output 2 and get
log N requests can achieve almost the same performancegeanted, while other inputs will continue requesting output 1,
iSLIP. which randomly grants one request, say from input 4. Then the
The rest of the paper is organized as follows. Section fgquest pointer at input 2 will be updated to 3 and the request
presents the RRPM algorithm and the hardware scheduler upeinter at input 4 will be updated to 2. In the third cell slot,
to implement it. Section Il presents the simulation resuligputs 2 and 4 will request to outputs 3 and 2 and get granted
of RRPM and comparison with other scheduling algorithmgespectively, while inputs 1 and 3 continue requesting output
Section IV concludes the paper. 1, which randomly grants one request, say from input 1. Then
the request pointers at inputs 1, 2, and 4 will be updated to 2,
Lin this paper, all logarithms are in bage 4, and 3 respectively. In the fourth slot, request pointers are

State memory and update logic

:
Z
Z

Requests from VOQs

Step 1: Request If an unmatched/; has at least one
request, it selects one request starting from the VOQ
thatr; points to in a round-robin manner, and sends
the request to its corresponding outpytis updated
to one beyond the requested output if and only if the
request is granted in Step 2 tife first iteration

Step 2: Grant. If an unmatched); receives at least one
request, it grants a request randomly.

Slot3 Slot 4



fully desynchronized, each request is coming from a different that theW (i)'s in each segment have the sarfie

input and will be granted. A maximal size matching of size 4 value and thef; values are in non-decreasing order.

is found in this slot. Step 2Select. Each PE; compares thef, values of its
We can run RRPM for multiple iterations to enlarge the neighboringP E's (using the linear array connections

matching size found in each cell slot. For Ahx N switch, according to linear order) to check if it is the first

it takes up toNN iterations to find a maximal size matching. request word in its segment. If it is the first request

However, in practice, due to the desynchronization effect of the word in its segment, and it value is notoo, set

request pointers, it takes much less iterations for RRPM to find its f4 = 1 (which was initialized to 0).

a maximal size matching. By simulations, we show tbhat/V Step 3Pack. Assuming that requests are selected in Step

iterations are adequate to achieve satisfying performance. 2, pack all request words witli, = 1 to the firstk
An important objective of designing a scheduling algorithm PEs, with one request word in eadAE and their

is the simplicity in implementation. In the following, we relative order maintained.

discuss a unique hardware implementation architecture forStep 4Spread. Send each request word wifh = 1 to the

RRPM. PFE whose index is equal to itg, value.

Step 5Grant. If PE; receives a request word in Step 4,
00— do the following. If SO(i) = 0 then setSO(i) = 1
@ else setf, = 0 in its received request word.
Step 6Sort. Sort the request words witfy = 1 using key
f1 in non-increasing order.

m Step 7Spread. Send each request word wifh = 1 to the
()—2) —(&) (s (1)—s) PE with index equal to itsf;.

Step 8Accept. If PE; receives a request word in step 7,

setSI(i) = 1.
’A"‘ Initial Words [ 112110] 2145310 3168510] 4171810 ] sl4izio eisi2io] 7i7ieio] sieiap]
@7®7777® Si|so [ oo oo [oo [ oo oo oo oo op]
@ Step 1(Sort) [ 112110] 2145310 141310 eisi210] sistaio] aiEisio] 7i7ieio] 4r7iso]
Fig. 4. (a) A linear array. (b) A hypercube. (c) A modified hypercube. Step 2(Select) [12002] 21311 spaizo] 65212 eiare | aissio] 7] a7is]
Step 3(Pack) [ 11212 214212 | sisizn | a6 | 71716z | | | |
B. Scalable Hardware Implementation
) ) . Step 4(Spread) | [ 121 | 241312 eisioi | it 717161z |
Our hardware implementation of RRPM is based on a
modified hyp.ercube (MH) Wit.hN simple prpcessing glements seps@ra) | Japnn] [ 24@] e ]seen] 7en] |
(PE’s). The inter-processor interconnection of MH is a com- SIS0 [ oo or Joo [ o] on] op] on] op]
bination of a linear array and a hypercube, as shown in Fig. 4.
We define ascheduling cycleas the process of finding a Step 6(Sort) [1pnn] 2apn]esen]7men]sean] | [ ]
matching, which is not necessarily a maximal size matching.
Each PE;, 1 < i < N, is associated with inpuf; and sepr(spread)  [12nf2epn] [ | [eisn[7men] s
output O;. PE; maintains two Boolean variables,/(i) and
SO(i), where SI(i) = 1 (resp.SO(i) = 1) iff I, (resp. sepsacpy  [1pmnawn| | [ [amen|7men | aen]
0;) has been included in the partial matching found in the Siso [ w0l [ao [on]onfan] [ o]

current scheduling cycle. An additional local varialiRéi i )
is needed to indicate the priority value. At the begiﬁl{ir)lg ong' > An example of how an MH implements RRPM.
each scheduling cycle, both variabléd(i) and SO(i) are  One can verify that this implementation of algorithm RRPM
initialized as0, and eachPE; generates a random numbejs correct. After sorting in Step 1, at most one request word is
as P(i) and constructs aequest wordW (i) with four fields selected for each output in Step 2. Steps 3 and 4 are used to
fi(@) | f2(i) | f3() | fa(i) = IN(2) | OUT(i) | P(i) | S(i), check if the selected outputs have been matched in previous
where IN (i) = i if SI(i) =0, andIN(i) = oo otherwise; jterations. Step 5 updates the status of matched outputs. Steps
OUT(i) = j if a requestQ; ; is selected for schedulingg and 7 inform the inputs whether or not their requests are
according to the round-robin scheme, aG/T'(i) = oo granted. Step 8 updates the status of matched inputs.
otherwise; andS(i) indicates whethed; is selected in an  Fig. 5 illustrates how the MH implements RRPM using an
iteration; ‘" stands for concatenation operation. Each iteratiaskample for ar8 x 8 switch. Each rectangle represents a PE
of RRPM is implemented on an MH by the following steps.and the four numbers inside each rectangle representing the
Step 1Sort. Sort W (i)’s using keysfs | fs = OUT(i) | four fields of the request word in each PE. Assume that at
P(i) in non-decreasing order. The sorfddi)’'s, one the beginning of a schedule cycle, we have the initial request
in eachPE, consists of a sequence of segments sugbords in each PE shown in the first row. AIiI’s and SO’s




10000 . . . . 100000 .
Bernoulli
Burst=16 -------
Burst=32 -------

Burst = 64

1000 10000

1000

.
1)
3

100

Average Cell Latency
=
S

Average Cell Latency

01

1 1 1 1 f 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Offered Load Offered Load

Fig. 6. Delay performance of RRPM, PINSLIP, and DRRM, all with one Fig. 8. Delay performance of RRPM with 4 iterations under Bernoulli and
iteration, under uniform i.i.d. Bernoulli arrivals. busty arrivals.

10000

T
RRPM with 1 iteration 100000 RRPM with Burst = 16
DRRM with 1 iteration ------- DRRM with Burst = 16 -
RRPM with 4 iterations ------- RRPM with Burst = 32 -------
DRRM with 4 iterations DRRM with Burst = 32
i 10000 - RRPM with Burst = 64 ——-—
DRRM with Burst = 64 -------

1000

=
1)
3

1000

Average Cell Latency
=
S

Average Cell Latency
=
S
38

0.1 |

. . . . L . . .
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Offered Load Offered Load

Fig. 7. Delay performance of RRPM and DRRM with 1 and 4 iterationgig. 9. Delay performance of RRPM and DRRM with four iterations under
under uniform i.i.d. Bernoulli arrivals. bursty arrivals.

are initialized as 0. After Step 1, we have the list sorted bytiple requests per input is expected to be better than that

fields f> and f; (i.e., OUT(i) and P(i)). We have in the of RRPM with one request per input as shown in the next
sorted list five segments, which haye= 1, fo =4, fo =5, gection.

fo = 6, and fy = 8, respectively. The first request word
of each segment will be selected, as indicated by the change
in field f, after Step 2. In Step 3, these request words are
packed to the first five PEs such that they can be spread tdn this section, we evaluate the performance of RRPM in
PEs associated with thefg fields after Step 4. In Step 5, thoseerms of the average cell latency under both Bernoulli and
PEs that receive request words in Step 4 will change thi@ir bursty arrivals. The cell latency is the time that a cell spends
variables to 1. These request words are sorted again according switch measured in number of cell slots. We consider a
to their f; fields in Step 6 and spread to PEs associated withi x 16 switch assuming first that the arrival at each input is
their f, fields in Step 7. In Step 8, those PEs receiving requéstlependent and identically distributed (i.i.d.).
words will change theilST variables to 1. Finally we grant We first show the performance of RRPM under Bernoulli
the requests — 2 (i.e., input 1 to output 2)2—4, 6—5, 7—7, arrivals. Fig. 6 compares the performance of RRPM, DRRM,
and8 — 6. 1SLIP, and PIM, all with one iteration, under uniform Beroulli
Steps 1 and 6 can be done @(log? N) time [10]. Steps arrivals. As shown in the figure, the average cell latency of
3, 4 and 7 can be done {fi(log N) time [10]. The remaining PIM increases rapidly when the offered load exceeds 0.64.
steps can be done i@(1) time. Therefore, each iteration of The average cell latency of RRPM is identical to thaiSEIP
RRPM takeg(log® N) time. The interconnection complexityand DRRM when the offered load is lower than 0.5, slightly
of the proposed structure @(N log N). higher than that ofiSLIP and DRRM when offered load is
The proposed scheduler can be generalized to allow edmtween 0.5 and 0.85, and slightly lower than that SfIP
input port to issue up td requests, say: = log N. This and DRRM when the offered load is larger than 0.85. This
extension makes it possible for RRPM to approximate Plidicates that when rates become greatly high and there is no
and iSLIP. The implementation can be based on a modifiehough time for multiple iterations, RRPM is a better choice
hypercube ofk N PE’s. The performance of RRPM with than DRRM andiSLIP for a large load range.

Ill. PERFORMANCEEVALUATION



10000

10000

TiSLIP with Switch Size = 16 p RRPM with Switch Size = 128 ——
RRPM with Switch Size = 16 ------- i iSLIP with Switch Size = 128 ——-----

iSLIP with Switch Size =32 ------- i RRPM with Switch Size = 256 -------
RRPM with Switch Size = 32 ! iSLIP with Switch Size = 256
1000 F iSLIP with Switch Size = 64 -~ /

RRPM with Switch Size = 64 -~ { 1000

.
1)
3

=

1)

3

Average Cell Latency

Average Cell Latency
=
S

=
1)

0.1

0.2 0.4 0.6 0.8 1 0.4 0.6 08 1
Offered Load Offered Load

Fig. 10. Delay performance of RRPM witlog N requests per input and Fig. 11. Delay performance of RRPM witlog NV requests per input and
iSLIP with switch sizes ofl6 x 16 to 64 x 64. iSLIP with switch sizes 0fl28 x 128 and 256 x 256.

Fig. 7 illustrates the impact of multiple iterations on theilers. Based on this complexity, we introduced the concepts of
average cell latency. We extend DRRM to run for multipleelative and universal scalability of schedulers. These concepts
iterations and update request pointers in the same way a@8 important in guiding the design and implementation of cell
RRPM. When four iterations are used, the average latencysfitches. Using algorithm-architecture co-design, we proposed
RRPM decreases significantly compared with that of RRPM universally scalable scheduler, which is based on a new
with one iteration. RRPM with four iterations outperformscheduling algorithm RRPM and a multiprocessor system. We
DRRM with four iterations, especially when the offered loaghowed that it has scheduling performance comparable to that
is between 0.4 and 0.9. of non-scalable schedulers. It remains a great challenge to

Next, we study the performance of RRPM under burs@esign faster universally scalable schedulers that have good
arrivals using 2-state modulated Markov-chain sources [ZJerformance.

Each source alternately generates a burst of full cells with
the same destination followed by an idle period of empty REFERENCES
cells. The num.be.r of cells in each burst or idle perIOd Iﬁl] M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing
geometrically distributed. LeE_(B) andE(.D) be the average on a space division switch|EEE Trans. Commupnvol. 35, no. 12, pp.
burst length and the average idle length in terms of the number 1347-1356, Dec. 1987.

; — _ [2] N. McKeown, “The islip scheduling algorithm for input-output
of cells r.eSpeCtlver' Then, we ha\lé(_D) E(B)(l p)/p' switches,”IEEE/ACM Trans. Networkingvol. 7, no. 2, pp. 188-201,
wherep is the offered load of each input source. We assume  apr 1999.
that the destination of each burst is uniformly distributed.  [3] N. Mckeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achiev-

Fig. 8 illustrates the performance of RRPM with four iter- "9 1700:/; ”;m“ghggé'rlggl'”g“t;qi’gggd SwitdEEE Trans. Commun.
ations under Beroulli arrivals and bursty arrivals with averagey 1 g. Andérs’oﬁf}'& S. Owicki, f B. Saxe, and C. P. Thacker, “High speed
burst lengths of 16, 32, and 64. As shown in the figure, with  switch scheduling for local area network$yCM Trans. on Computer

i i Systemsvol. 11, no. 4, pp. 319-352, Nov. 1993.
.the average burst Iength Increasing, the average C(—?‘ll Ia_ten@ J. Chao, “Saturn: A terabit packet switch using dual round robEEE
increases correspondingly as expected. As shown in Fig. 9 commun. Mag.vol. 38, no. 12, pp. 7884, Dec. 2000.
under bursty traffic, RRPM with four iterations achieves bettefs] D. N. Serpanos and P. I. Antoniadis, “Firm: a class of distributed
i i ; scheduling algorithms for high-speed atm switches with multiple input
perform_ance thar_l DRRM with four iterations. queues,” inProc. IEEE INFOCOM 5 2000, pp. 548 —555.

AS. d'scussed_ n SeCt'c_m II-B, we can extend RRPM b3f7] Y. Jiang and M. Hamdi, “A fully desynchronized round-robin matching
allowing each input to issue more than one request per scheduler for a voq packet switch architecture,’Firoc. IEEE HPSR
; ; i ; ; 12 2001, pp. 407 —412.
iteration. We show below that b.y allowmg each Input to ISSUjg] V. Benes, “Optimal rearrangeable multi-stage connecting netwdslies|,”
only log N reques_ts, RRPM a_ch|eves comparable performan System Technical Journatol. 43, pp. 1641-1656, 1964.
as that ofiSLIP. Fig. 10 and Fig. 11 compares the average celb] C. Clos, “A study of non-blocking switching networksBell System

i i Technical Journalvol. 32, pp. 406424, 1953.
Ia.tenCIeS of t,he eXtendeq RRP.M wiitg ' requests per input [10] F. T. Leighton,Introduction to Parallel Algorithms and Architectures:
with thqse szSLIP.fOI‘ switch sizes o0f6x 16 to 256X256- As Arrays. Trees. HypercubesSan Mateo, California: Morgan Kaufmann
shown in the two figures, the extended RRPM achieves almost Publishers, Inc., 1992.
the same performance &LIP when the offered load is below
0.9. We expect that for larger switch sizes, the extended RRPM
with log N requests per input has almost the same performance

asiSLIP.

IV. CONCLUSION

We introduced interconnection complexity to measure the
cost and implementability of switching fabrics and cell sched-



