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Abstract— Scheduler and switching fabric are two major
hardware components of a cell switch. For a switch using a non-
blocking switching fabric, the performance of the switch depends
on the performance of its cell scheduler. We introduce the con-
cepts of relative and universal scheduler scalabilities. Informally,
a scheduler is relatively scalable with respect to a switching
fabric if its structure is not more complex than the structure
of its associated non-blocking switching fabric. A scheduler is
universally scalable if its structural complexity is not larger than
the structural complexity of any non-blocking switching fabric.
Based on algorithm-hardware co-design, we present a universally
scalable scheduler withO(N log N) interconnection complexity.
We show by simulation that the performance of the proposed
scheduler is almost the same as non-scalable schedulers.

I. I NTRODUCTION

Most high-speed packet switches employ cell switches as
their cores. In such a switch, variable-length packets are
segmented into fixed-size cells as they arrive, transferred
across the switching fabric, and reassembled back into original
packets before they depart. Different queuing schemes have
been proposed for such a switch. Due to their capabilities of
achieving 100% throughput and providing quality of service
(QoS) guarantee, output queueing (OQ) switches are com-
monly employed for many commercial switches and routers.
However, OQ is impractical for switches with line rates and/or
large numbers of ports since it requires that the switching
fabric and memory run as fast asN times the line rate for
an N × N switch. With the switching fabric and memory
running at the line rate, input queuing (IQ) switches are
scalable for high line rate and/or large number of ports.
However, due to the problem of head-of-line (HOL) blocking,
the maximum throughput of an IQ switch with first-in-first-
out (FIFO) queues is limited to 58.6% under uniform traffic
[1]. Virtual output queues (VOQs) have been proposed for
IQ switches to remove HOL blocking and to achieve the
scalability of IQ switches. Fig. 1 shows anN ×N IQ switch
with VOQs, in which each input port maintainsN virtual
output queues (VOQs) withQi,j buffering cells from input
port Ii destined for output portOj .

We assume that time is slotted and a cell slot equals to
the transmission time of a cell on an input/output line. For
an IQ switch with VOQs, its performance highly depends
on the scheduling algorithm, which decides whichN cells
out of N2 HOL cells to be sent across the switching fabric
in each cell slot. The cell scheduling problem for a VOQ-
based IQ switch can be modelled as a bipartite matching
problem on the bipartite graph composed of nodes of input
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Fig. 1. An IQ switch with VOQs.

ports and output ports and edges of connection requests from
input ports to output ports [2]. A matching is a subset of
edges such that no two edges are incident to one node in the
graph. A maximum size matching is one with the maximum
number of edges. A maximal size matching is one that is not
contained in any other matching. Although it has been shown
that maximum size matching algorithms can achieve 100%
throughput under uniform traffic, they are too complex for
hardware implementation and can cause unfairness [3].

Instead, most practical scheduling algorithms proposed in
the literature are iterative maximal size matching algorithms,
such as parallel iterative matching (PIM) [4],iSLIP [2],
dual round-robin matching (DRRM) [5], first-come-first-serve
in round-robin matching (FIRM) [6], and static round-robin
(SRR) [7]. These algorithms operate either in one or mul-
tiple iterations with each iteration composed of either three
steps, Request-Grant-Accept (RGA), or two steps, Request-
Grant (RG). All these algorithms can be implemented by the
hardware scheduler architecture shown in Fig. 2 [2], which
consists ofN request/grant arbiters, each associated with an
input port, andN grant/accept arbiters, each associated with
an output port.

A high-performance switch tends to have a large number of
input/output ports. It is well-known that wiring takes the most
chip area in a large digital circuit/system. Thus, the imple-
mentability, cost and performance of such a large size switch
depend on the interconnection complexities of its switching
fabric and scheduler. We define the interconnection complexity
(also called wiring density) of a circuit as the number of
wires used in the circuit. We useCsf and Csch to denote
the interconnection complexity of the non-blocking switching
fabric and the scheduler of a switch, respectively. We say that
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Fig. 2. Block diagram of a scheduler based on an RGA/RG maximal size
matching algorithm.

a scheduler architectureA is relatively scalablewith respect
to anN ×N switching fabricS if Csch(N, A) ≤ Csf (N,S)
and each iteration ofA takes poly-logarithmic time. We say
that a scheduler architectureA is universally scalableif it is
relatively scalable with respect to any switching fabricS of a
given size. As we can see, the schedulerA shown in Fig. 2
hasCsch(N, A) = O(N2), which is as complex as a crossbar
switching fabric S which has Csf (N, S) = O(N2). The
interconnection complexity of such a scheduler is even larger
than that of some existing non-blocking and rearrangeable
non-blocking switching fabrics. For instance, for anN × N
non-blocking Clos networkC [8], [9] and rearrangeable non-
blocking Benes networkB [8], Csf (N,C) = O(N1.5) and
Csf (N, B) = O(N log N) 1, respectively. For such a switch-
ing fabric, the scheduler shown in Fig. 2 is non-scalable, and
its use cannot be justified.

Clearly, Ω(N log N) is the lower bound for the intercon-
nection complexity of anyN ×N switching fabric. Thus, any
schedulerA with interconnection complexityCsch(N,A) =
O(N log N) is universally scalable. This motivates our study
on universal scalable schedulers. In this paper, we propose a
universal scalable scheduler architecture based on the proposed
round-robin priority matching (RRPM) algorithm and a mul-
tiprocessor system. RRPM is an iterative algorithm with each
iteration consisting of two steps, Request and Grant. Com-
bining the features of DRRM and PIM, in RRPM, each input
port selects one request according to the round-robin discipline
and each output port grants one request randomly. We show
that using a hypercube and a linear array, each iteration of
RRPM can be implemented withO(N log N) interconnection
complexity and inO(log2 N) time. By simulation, we show
that RRPM achieves better performance than DRRM under
uniform Bernoulli and bursty traffic. Noticeably, RRPM with
log N requests can achieve almost the same performance as
iSLIP.

The rest of the paper is organized as follows. Section II
presents the RRPM algorithm and the hardware scheduler used
to implement it. Section III presents the simulation results
of RRPM and comparison with other scheduling algorithms.
Section IV concludes the paper.

1In this paper, all logarithms are in base2.

II. T HE RRPM ALGORITHM AND ITS IMPLEMENTATION

In this section, we first present the RRPM algorithm and
then discuss its hardware implementation architecture.

A. The RRPM Algorithm

Designing a scalable scheduler is an algorithm-architecture
co-design problem. Algorithm-structured scheduler is designed
to fully explore the parallelism existing in the cell scheduling
problem. By combining the features of DRRM and PIM, we
propose the round-robin priority matching (RRPM) algorithm
which uses the round-robin discipline to select a request at
each input (port) and random selection to decide a grant at
each output (port). As we will discuss in Section II-B, the
random selection is implemented by selecting the smallest one
among a subset of random numbers (or priorities), generated
by inputs. Assuming that each input portIi is associated with
a request pointerri, which indicates the request starting point,
RRPM operates iteratively with each iteration consisting of the
following two steps.

Step 1: Request. If an unmatchedIi has at least one
request, it selects one request starting from the VOQ
that ri points to in a round-robin manner, and sends
the request to its corresponding output.ri is updated
to one beyond the requested output if and only if the
request is granted in Step 2 ofthe first iteration.

Step 2: Grant . If an unmatchedOj receives at least one
request, it grants a request randomly.
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Fig. 3. An example of RRPM for a4× 4 switch.

RRPM stops either after a predetermined number of itera-
tions or until no more matching can be found, which means
a maximal size matching is found. Fig. 3 shows an example
of RRPM with one iteration for a4× 4 switch assuming that
each input has no empty VOQ. Initially, we assume all the
request pointers are pointing at 1. In the first cell slot, all
inputs send requests to output 1, which randomly grants one
request (shown as dark edge in Fig. 3), say from input 2.
Then only the request pointer at input 2 will be updated to 2.
In the second (cell) slot, input 2 will request output 2 and get
granted, while other inputs will continue requesting output 1,
which randomly grants one request, say from input 4. Then the
request pointer at input 2 will be updated to 3 and the request
pointer at input 4 will be updated to 2. In the third cell slot,
inputs 2 and 4 will request to outputs 3 and 2 and get granted
respectively, while inputs 1 and 3 continue requesting output
1, which randomly grants one request, say from input 1. Then
the request pointers at inputs 1, 2, and 4 will be updated to 2,
4, and 3 respectively. In the fourth slot, request pointers are



fully desynchronized, each request is coming from a different
input and will be granted. A maximal size matching of size 4
is found in this slot.

We can run RRPM for multiple iterations to enlarge the
matching size found in each cell slot. For anN ×N switch,
it takes up toN iterations to find a maximal size matching.
However, in practice, due to the desynchronization effect of the
request pointers, it takes much less iterations for RRPM to find
a maximal size matching. By simulations, we show thatlog N
iterations are adequate to achieve satisfying performance.

An important objective of designing a scheduling algorithm
is the simplicity in implementation. In the following, we
discuss a unique hardware implementation architecture for
RRPM.
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Fig. 4. (a) A linear array. (b) A hypercube. (c) A modified hypercube.

B. Scalable Hardware Implementation

Our hardware implementation of RRPM is based on a
modified hypercube (MH) withN simple processing elements
(PE’s). The inter-processor interconnection of MH is a com-
bination of a linear array and a hypercube, as shown in Fig. 4.
We define ascheduling cycleas the process of finding a
matching, which is not necessarily a maximal size matching.
Each PEi, 1 ≤ i ≤ N , is associated with inputIi and
output Oi. PEi maintains two Boolean variables,SI(i) and
SO(i), where SI(i) = 1 (resp. SO(i) = 1) iff Ii (resp.
Oi) has been included in the partial matching found in the
current scheduling cycle. An additional local variableP (i)
is needed to indicate the priority value. At the beginning of
each scheduling cycle, both variablesSI(i) and SO(i) are
initialized as0, and eachPEi generates a random number
as P (i) and constructs arequest wordW (i) with four fields
f1(i) | f2(i) | f3(i) | f4(i) = IN(i) | OUT (i) | P (i) | S(i),
whereIN(i) = i if SI(i) = 0, and IN(i) = ∞ otherwise;
OUT (i) = j if a requestQi,j is selected for scheduling
according to the round-robin scheme, andOUT (i) = ∞
otherwise; andS(i) indicates whetherIi is selected in an
iteration; “|” stands for concatenation operation. Each iteration
of RRPM is implemented on an MH by the following steps.

Step 1:Sort. Sort W (i)’s using keysf2 | f3 = OUT (i) |
P (i) in non-decreasing order. The sortedW (i)’s, one
in eachPE, consists of a sequence of segments such

that theW (i)’s in each segment have the samef2

value and thef3 values are in non-decreasing order.
Step 2:Select. Each PEi compares thef2 values of its

neighboringPEs (using the linear array connections
according to linear order) to check if it is the first
request word in its segment. If it is the first request
word in its segment, and itsf2 value is not∞, set
its f4 = 1 (which was initialized to 0).

Step 3:Pack. Assuming thatk requests are selected in Step
2, pack all request words withf4 = 1 to the firstk
PEs, with one request word in eachPE and their
relative order maintained.

Step 4:Spread.Send each request word withf4 = 1 to the
PE whose index is equal to itsf2 value.

Step 5:Grant. If PEi receives a request word in Step 4,
do the following. If SO(i) = 0 then setSO(i) = 1
else setf4 = 0 in its received request word.

Step 6:Sort. Sort the request words withf4 = 1 using key
f1 in non-increasing order.

Step 7:Spread.Send each request word withf4 = 1 to the
PE with index equal to itsf1.

Step 8:Accept. If PEi receives a request word in step 7,
setSI(i) = 1.

8|6|4|17|7|6|16|5|2|1

0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0

2|4|3|1

Step 6(Sort) 1|2|1|1 2|4|3|1 6|5|2|1 7|7|6|1 8|6|4|1

Step 8(Accept) 1|2|1|1

1|0 1|1 0|0 0|1 0|1 1|1 1|1 1|0

0|0 0|1 0|0 0|1 0|1 0|1 0|1 0|0

SI|SO

SI|SO

SI|SO

8|6|4|07|7|6|06|5|2|05|4|3|04|7|8|02|4|3|01|2|1|0 3|6|5|0Initial Words

Step 7(Spread) 1|2|1|1 2|4|3|1 8|6|4|17|7|6|16|5|2|1

Step 1(Sort) 4|7|8|03|6|5|08|6|4|06|5|2|02|4|3|01|2|1|0 5|4|3|0 7|7|6|0

7|7|6|18|6|4|16|5|2|12|4|3|11|2|1|1Step 5(Grant)

7|7|6|12|4|3|11|2|1|1Step 3(Pack)

7|7|6|18|6|4|16|5|2|12|4|3|11|2|1|1Step 4(Spread)

4|7|8|03|6|5|08|6|4|16|5|2|12|4|3|11|2|1|1 5|4|3|0 7|7|6|1Step 2(Select)

8|6|4|16|5|2|1

Fig. 5. An example of how an MH implements RRPM.

One can verify that this implementation of algorithm RRPM
is correct. After sorting in Step 1, at most one request word is
selected for each output in Step 2. Steps 3 and 4 are used to
check if the selected outputs have been matched in previous
iterations. Step 5 updates the status of matched outputs. Steps
6 and 7 inform the inputs whether or not their requests are
granted. Step 8 updates the status of matched inputs.

Fig. 5 illustrates how the MH implements RRPM using an
example for an8× 8 switch. Each rectangle represents a PE
and the four numbers inside each rectangle representing the
four fields of the request word in each PE. Assume that at
the beginning of a schedule cycle, we have the initial request
words in each PE shown in the first row. AllSI ’s andSO’s
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are initialized as 0. After Step 1, we have the list sorted by
fields f2 and f3 (i.e., OUT (i) and P (i)). We have in the
sorted list five segments, which havef2 = 1, f2 = 4, f2 = 5,
f2 = 6, and f2 = 8, respectively. The first request word
of each segment will be selected, as indicated by the change
in field f4 after Step 2. In Step 3, these request words are
packed to the first five PEs such that they can be spread to
PEs associated with theirf2 fields after Step 4. In Step 5, those
PEs that receive request words in Step 4 will change theirSO
variables to 1. These request words are sorted again according
to their f1 fields in Step 6 and spread to PEs associated with
their f1 fields in Step 7. In Step 8, those PEs receiving request
words will change theirSI variables to 1. Finally we grant
the requests1−2 (i.e., input 1 to output 2),2−4, 6−5, 7−7,
and8− 6.

Steps 1 and 6 can be done inO(log2 N) time [10]. Steps
3, 4 and 7 can be done inO(log N) time [10]. The remaining
steps can be done inO(1) time. Therefore, each iteration of
RRPM takesO(log2 N) time. The interconnection complexity
of the proposed structure isO(N log N).

The proposed scheduler can be generalized to allow each
input port to issue up tok requests, sayk = log N . This
extension makes it possible for RRPM to approximate PIM
and iSLIP. The implementation can be based on a modified
hypercube ofkN PE’s. The performance of RRPM with
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multiple requests per input is expected to be better than that
of RRPM with one request per input as shown in the next
section.

III. PERFORMANCEEVALUATION

In this section, we evaluate the performance of RRPM in
terms of the average cell latency under both Bernoulli and
bursty arrivals. The cell latency is the time that a cell spends
in a switch measured in number of cell slots. We consider a
16× 16 switch assuming first that the arrival at each input is
independent and identically distributed (i.i.d.).

We first show the performance of RRPM under Bernoulli
arrivals. Fig. 6 compares the performance of RRPM, DRRM,
iSLIP, and PIM, all with one iteration, under uniform Beroulli
arrivals. As shown in the figure, the average cell latency of
PIM increases rapidly when the offered load exceeds 0.64.
The average cell latency of RRPM is identical to that ofiSLIP
and DRRM when the offered load is lower than 0.5, slightly
higher than that ofiSLIP and DRRM when offered load is
between 0.5 and 0.85, and slightly lower than that ofiSLIP
and DRRM when the offered load is larger than 0.85. This
indicates that when rates become greatly high and there is no
enough time for multiple iterations, RRPM is a better choice
than DRRM andiSLIP for a large load range.
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Fig. 7 illustrates the impact of multiple iterations on the
average cell latency. We extend DRRM to run for multiple
iterations and update request pointers in the same way as
RRPM. When four iterations are used, the average latency of
RRPM decreases significantly compared with that of RRPM
with one iteration. RRPM with four iterations outperforms
DRRM with four iterations, especially when the offered load
is between 0.4 and 0.9.

Next, we study the performance of RRPM under bursty
arrivals using 2-state modulated Markov-chain sources [2].
Each source alternately generates a burst of full cells with
the same destination followed by an idle period of empty
cells. The number of cells in each burst or idle period is
geometrically distributed. LetE(B) andE(D) be the average
burst length and the average idle length in terms of the number
of cells respectively. Then, we haveE(D) = E(B)(1− ρ)/ρ,
whereρ is the offered load of each input source. We assume
that the destination of each burst is uniformly distributed.

Fig. 8 illustrates the performance of RRPM with four iter-
ations under Beroulli arrivals and bursty arrivals with average
burst lengths of 16, 32, and 64. As shown in the figure, with
the average burst length increasing, the average cell latency
increases correspondingly as expected. As shown in Fig. 9,
under bursty traffic, RRPM with four iterations achieves better
performance than DRRM with four iterations.

As discussed in Section II-B, we can extend RRPM by
allowing each input to issue more than one request per
iteration. We show below that by allowing each input to issue
only log N requests, RRPM achieves comparable performance
as that ofiSLIP. Fig. 10 and Fig. 11 compares the average cell
latencies of the extended RRPM withlog N requests per input
with those ofiSLIP for switch sizes of16×16 to 256×256. As
shown in the two figures, the extended RRPM achieves almost
the same performance asiSLIP when the offered load is below
0.9. We expect that for larger switch sizes, the extended RRPM
with log N requests per input has almost the same performance
as iSLIP.

IV. CONCLUSION

We introduced interconnection complexity to measure the
cost and implementability of switching fabrics and cell sched-
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ulers. Based on this complexity, we introduced the concepts of
relative and universal scalability of schedulers. These concepts
are important in guiding the design and implementation of cell
switches. Using algorithm-architecture co-design, we proposed
a universally scalable scheduler, which is based on a new
scheduling algorithm RRPM and a multiprocessor system. We
showed that it has scheduling performance comparable to that
of non-scalable schedulers. It remains a great challenge to
design faster universally scalable schedulers that have good
performance.
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