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Abstract— As the basic building block of a scheduler based on
maximal weight matching algorithms, the design of a weighted
arbiter is vital to the performance of the scheduler. All existing
weighted arbiter designs are based on the binary comparator
tree structure and consumeO(bN) gates, whereb is the number
of bits needed to represent the weight. These designs are not
desirable for implementing scheduling algorithms that require
a large number of weighted arbiters. In light of the idea of
radix sort, we propose a new weighted arbiter (WA) design
and a programmable weighted arbiter (PWA) design, both with
O(N) gates. Through simulations, we show that the proposed
WA design achieves significant improvement on area cost than
existing WA designs. The proposed PWA design provides round-
robin fairness for requests with the same weight. Both designs
can be directly used to build schedulers based on maximal weight
matching algorithms. They are also useful for other applications,
such as the arbitration of a shared bus and control of real-time
systems.

I. I NTRODUCTION

The cell scheduling problem for virtual output queue (VOQ)
based switches can be modelled as a bipartite matching
problem [1]. Although maximum weight matching algorithms
are proved to achieve 100% throughput for all admissible
identically independently distributed (i.i.d.) arrivals [2], they
are infeasible for high speed implementation with their time
complexity ofO(N3 log N) [3]. The most efficient maximum
size matching algorithm has a time complexity ofO(N2.5)
[3], [4]. However, maximum size matching algorithms are too
complex for hardware implementation and can cause unfair-
ness [2]. Most practical scheduling algorithms proposed in the
literature are either maximal size matching algorithms, such as
parallel iterative matching (PIM) [5],iSLIP [1], dual round-
robin matching (DRRM) [6], or maximal weight matching
algorithms, such as iterative longest queue first (iLQF) and
iterative oldest cell first (iOCF) [1], the longest normalized
queue first (LNQF) [7], and the dynamic DiffServ scheduling
(DDS) [8]. Compared with maximal size matching algorithms,
maximal weight matching algorithms achieve better perfor-
mance under both uniform and nonuniform traffic [1].

All these maximal size or weight matching algorithms
can be implemented by the scheduler architecture shown in
Figure 1, in which each input/output port is associated with
an arbiter. The function of an arbiter is arbitrating among
multiple requests. As the basic building block of a scheduler,
the design of an arbiter is important to the performance of the
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Fig. 1. Block diagram of a scheduler based on a maximal size/weight
matching algorithm.

scheduler. In [9], Gupta and McKeown reviewed several well-
known round-robin arbiter (RRA) designs and proposed two
new RRA designs, named as programmable priority encoders
(PPEs). In [10], we proposed a parallel RRA (PRRA) design
based on a binary tree structure and showed that PRRA
is faster and simpler than PPEs in practice [10]. However,
all these three designs cannot arbitrate weighted requests.
Hence, they are not suitable for implementing maximal weight
matching scheduling algorithms.

We focus our study on the designs of weighted arbiters and
programmable weighted arbiters. A weighted arbiter selects
the first request with the maximum weight. A programmable
weighted arbiter is a generalized weighted arbiter with its
selection starting point programmable. It is very useful for
providing fairness for requests with the same weight (referred
as ties [2]). All existing designs of weighted arbiters are based
on a (binary) comparator tree structure [1], [11], [12], [13].
Each node in the binary tree is a comparator which compares
the weights of the requests coming from its children and sends
the request with the maximum weight to its parent node. These
designs haveO(log b log N)-gate delay and consumeO(bN)
gates, whereb is the number of bits needed to represent
the weight. For largeb, these designs are not desirable for
applications which require a large number of weighted arbiters,
such as implementing the DDS algorithm [8].

In this paper, we propose a weighted arbiter (WA) design
and a programmable weighted arbiter (PWA) design, both with
O(N) number of gates. The basic idea of our designs is similar
to the idea of radix sort [14] but different from radix sort
in finding the maximum weight by selecting the maximum



value (‘1’ for binary digits) on the most significant bit, on
the second significant bit, and so on. The arbitration of the
lowest significant bit is performed by using either the priority
encoder with a binary tree structure for the WA design, or
using the PRRA [10] for the PWA design. The PWA design
provides round-robin fairness for those requests with the same
weight. Both designs haveO(b log N)-gate delay. Noticeably,
the number of gates consumed by both designs is onlyO(N).
The product of the gate delay and the number of gates of
our designs isO(Nb log N), which is better than that of the
comparator tree design,O(Nb log N log b).

Simulation results on Synopsys’designanalyzer[15] con-
form to our analysis. The proposed programmable weighted
arbiter designs can be directly used to build schedulers based
on maximal weight matching algorithms. They are also useful
for other applications, such as the arbitration of a shared bus
and control of real-time systems.
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Fig. 2. Structure of a binary comparator tree with 8 weighted requests.

II. RELATED WORK

Although the problem of finding the request with the max-
imum weight is of practical importance, only a few weighted
arbiters have been proposed in the past. The variable round-
robin arbiter proposed in [12] is based on a binary comparator
tree structure. Each node in the binary tree is a comparator
which compares the weights of the requests coming from its
children and sends the request with the maximum weight to
its parent node. To ensure round-robin fairness among requests
with the same weight, each node is associated with a token bit
to indicate its priority. Extra logic is needed to propagate the
token information. In [1], theiLQF scheduler and theiOCF
scheduler are all built by weighted arbiters based on the binary
comparator tree structure. The arbiter designs proposed in [11]
and [13] are also based on the binary comparator tree structure.

Figure 2 shows a binary comparator tree with 8 weighted
requests. In general, a binary comparator tree withN weighted
requests consists ofO(log N) levels of nodes, each as a
2-input comparator. Assume thatb is the number of bits
used to represent the weight, the comparator tree design has
O(log b log N)-gate delay and consumesO(bN) gates since
each node consumesO(b) gates. Such a design is not scalable
for largeb. In next section, we introduce two scalable weighted
arbiter designs which only consumeO(N) gates.

III. PROGRAMMABLE WEIGHTED ARBITER DESIGNS

Our goal is to design a simple yet fast weighted arbiter with
a programmable selection starting point. The function of our
Programmable Weighted Arbiter(PWA) is defined as follows.
Given N binary requestsRi’s and theirb-bit weightsWi’s,
where0 ≤ i ≤ N − 1, and one integerx, 0 ≤ x ≤ N − 1,
selectR(x+m) mod N such thatm = min{l | W(x+l) mod N =
M,R(x+l) mod N = 1, 0 ≤ l ≤ N−1}, whereM = max{Wi |
Ri = 1, 0 ≤ i ≤ N−1}. If Ri is selected, then the output grant
signalGi = 1; if Ri = 0, or Ri = 1 but it is not selected (in
such a case,Wi ≤ M ), thenGi = 0. Note that ties are broken
by selecting the first such request starting from positionx in
a circular manner. In the following, we first describe the basic
idea of our designs and then discuss each design in detail.

A. Basic Idea

Inspired by the idea of radix sort, we find the maximum
weight by selecting the request with the maximum value (‘1’
for binary digits) on the most significant bit, then the second
significant bit, and so on, all starting fromRx. If there is
at least one request with the maximum value (‘1’ for binary
digits) on the current bit of its weight, we eliminate those
requests with less value (‘0’ for binary digits) on the current
bit of their weights. This process continues till either there
is only one valid request left or the arbitration of the lowest
significant bit is completed. Figure 3 illustrates an example
with 4 requests. We assume thatRi = 1 for all 0 ≤ i ≤ 3
andx = 3. We first check all digits on bit 3. Since there exist
requests with ‘1’ on bit 3 of their weights, the second request is
eliminated for it has ‘0’ on bit 3 of its weight. We then check
all the remaining digits on bit 2, as enclosed in the eclipse
in the figure. There exist requests with ‘1’ on bit 2 of their
weights, therefore the first request is eliminated since it has
‘0’ on bit 2 of its weight. We then check all the remaining
digits on bit 1. There is no request with ‘1’ on bit 1 of its
weight, hence all remaining requests are valid for the process
of bit 0, andR3 wins finally.

Given Ri’s and their weightsWi’s, the general algorithm
of finding the firstRi = 1 with the maximum weight starting
from requestRx, FIND MAX, is shown below.

Algorithm FIND MAX( R, W, G )
c ← 0, k ← NIL
for i ← 0 to N − 1

do Gi ← 0, Ti ← Wi,b−1, Si ← Ri

if Si = 1
then c ← c + 1

j ← b− 1
while j ≥ 0 and c ≥ 1

do find K = max{Ti | Ri = 1, 0 ≤ i ≤ N − 1} and
k = min{l | T(x+l) mod N = K, R(x+l) mod N = 1,
0 ≤ i ≤ N − 1}
if j > 0

then c ← 0
for i ← 0 to N − 1

do if Wi,j ≥ K and Si = 1
then Ti ← Wi,j−1, c ← c + 1
elseSi ← 0

j ← j − 1
if k 6= NIL

then G(x+k) mod N ← 1
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Fig. 3. An example with 4 requests.

In FIND MAX, Wi,j represents thej-th bit of Wi, where
0 ≤ j ≤ b − 1, Ti represents the valid digit on the current
bit of Wi, Si indicates the validity of requestRi and initially
Si = Ri, K represents the maximum value on thej-th bit,
and k represents the index of the first non-zero request with
Wk,j = K starting from positionx. FIND MAX is composed
of at mostb rounds, each corresponding to the arbitration on
bit j, j = b−1, · · · , 0. SinceWi’s are in binary digits, finding
the largest valueK on each bit is equivalent to OR all digits
on the current bit of those weights of valid requests. In the
round for bit j, if the result of OR is ‘1’, which means that
there exists at least one valid request with ‘1’ on bitj of its
weight, those requests with ‘0’ on bitj of their weights will be
set as invalid (eliminated). The logic functions of generating
valid digits on bitj are derived as follows, whereA = 1 if
j > 0 andA = 0 otherwise.

K =
N−1∑

i=0

Ti (1)

Si = K · Ti · Si + K · Si (2)

Ti = A · Si ·Wi,j + A · (K · Ti + K · Si) (3)

This process continues till either there is only one valid
request left orTi’s are generated in the last round (i.e.,j = 0).
For the first case, we simply set the grant signal to the valid
request as ‘1’ and the grant signals to other requests as ‘0’.
For the second case, we need to findT(x+k) mod N such that
k = min{l | T(x+l) mod N = 1, 0 ≤ l ≤ N − 1} (i.e. find the
index of the first request withTi = 1 starting fromRx), and set
G(x+k) mod N = 1 andGi = 0 for i 6= (x+k) mod N . Notice
that Equation (3) ensures that there exists at least oneTi = 1 in
the last round. For rounds of bitsj > 0, we simply generate
K, S, and T according to Equations (1) to (3), which can
be implemented byO(N) number of gates and inO(log N)-
gate delay each round. The operation of the last round can be
performed by either a priority encoder forx = 0 or the parallel
round-robin arbiter forx ≥ 0. We name these two designs as
the weighted arbiter and the programmable weighted arbiter
respectively.

B. Weighted Arbiter

We first consider the design of a weighted arbiter, i.e., a
programmable weighted arbiter withx = 0. We propose a
priority encoder (PE) design which finds the index of the first
non-zero input takingTi’s as the inputs. Figure 4(a) shows a
4-input priority encoder based on a binary tree structure. Each

node of the tree, named as priority encoder node (PEN), is
a priority encoder with two inputs, as shown in Figure 4(b).
Each PEN has two inputsr0 and r1, two outputsg0 and g1

with gi = 1 indicating ri is selected, wherei = 0, 1, and
another outputro to indicate its upper layer PEN that there
exists at least one non-zero input in the subtree rooted at it.
The input and output relations of a PEN are specified by the
following equations.

ro = r0 + r1

g0 = r0

g1 = r0 · r1

The final grants of the4-input priority encoder are generated
by using the root node’s grants to mask out the grants of the
subtree that is not granted by the root node, i.e.,

gi =
{

gi · tg0 for i = 0, 1,
gi · tg1 for i = 2, 3,

wheregi is the grant signal for inputri, 0 ≤ i ≤ 3, andtg0 and
tg1 are1-bit grant signals generated from the root node. This
design makes it possible to construct PEs recursively. An8-
input PE is built by one PEN, two4-input PEs, and four AND
gates. In general, as shown in Figure 4 (c), a2N -input PE is
built by one PEN, two2N−1-input PEs, andN AND gates. It
is easy to derive that the PE design hasO(log N)-gate delay,
and consumesO(N) gates sinceN − 1 PENs are used in the
binary tree. Hence the weighted arbiter hasO(b log N)-gate
delay andO(N) gates.
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Fig. 4. The priority encoder design. (a) A priority encoder with 4 inputs. (b)
A priority encoder node. (c) The recursive construction of a2N -input priority
encoder.

C. Programmable Weighted Arbiter

To implement the programmable weighted arbiter, we use
the parallel round-robin arbiter [10] to find the index of the
first non-zero input starting from positionx takingTi’s as the
inputs, where0 ≤ x ≤ N −1. As shown in Figure 5, a PRRA
with N inputs is based on a binary tree structure consisting of
one level of leaf nodes (l-nodes),log N − 1 levels of internal
nodes (i-nodes), and one root node (r-node). Each inputri,
0 ≤ i ≤ N − 1, is associated with a one-bit head information,
hi, which is used to indicate ifri is the selection starting point.
In [10], we proved that PRRA achieves round-robin fairness.
It can be verified that PRRA design hasO(log N)-gate delay
and consumesO(N) gates. Hence, PWA hasO(b log N)-gate
delay and consumesO(N) gates.
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IV. SIMULATION RESULTS AND COMPARISONS

To evaluate the performance of our designs and compare
them with existing weighted arbiter designs, we have con-
ducted simulations for designs of the weighted arbiter (WA),
the programmable weighted arbiter (PWA), and the comparator
tree arbiter (CTA) on Synopsys’ design tools. We have written
the Verilog HDL [16] code for each design and synthesized
them on Synopsys’designanalyzer[15]. All these designs are
optimized under the same operating conditions and the tool is
directed to optimize the area cost of each design.

Table I lists the area results (in terms of the number of
2-input NAND gates) of WA, PWA, and CTA with different
number of inputs assumingb = 4. The bottom line shows the
area improvement of WA to CTA. The area results of both WA
and PWA are proportional toN , conforming to our analysis.
The area improvement of WA over CTA is40% or more for
all N ’s.

Table II lists the timing results (in terms ofns) of WA, PWA
and CTA with different number of inputs assumingb = 4. The
timing results of WA and PWA are proportional tob log N and
the timing results of CTA are proportional tolog b log N . The
function complexity of PWA makes its timing results and area
results worse than that of WA and CTA.

Though the timing results of WA are not as good as CTA,
the area improvement of WA over CTA is very promising. For
example, to construct a DDS scheduler for a64× 64 switch,
without counting all the state memory and update logic, it
needs 128 arbitration components, each associated with an
input or output port. One arbitration component consists of
6 arbiters, each dedicated for the arbitration of a traffic class.
Totally it consumes919, 296 gates using CTA, but it only
consumes537, 072 gates using WA. The advantage of PWA is
its support of round-robin fairness for requests with the same
weight, which is very useful for implementing maximal weight
matching scheduling algorithms.

V. SUMMARY

In this paper, we proposed a weighted arbiter design and a
programmable weighted arbiter design for constructing switch

Design N=8 N=16 N=32 N=64
WA 80 170 346 698
PWA 147 311 639 1295
CTA 133 285 589 1197
Improvement 40% 40% 41.3% 41.7%

TABLE I

AREA RESULTS OF DESIGNS OFWA, PWA, AND CTA IN TERM OF THE

NUMBER OF 2-INPUT NAND GATES.

Design N=8 N=16 N=32 N=64
WA 18.61 19.67 24.36 29.05
PWA 19.16 21.91 27.26 32.61
CTA 6.62 7.72 9.01 10.30

TABLE II

TIMING RESULTS OF DESIGNS OFWA, PWA, AND CTA IN TERMS OFns.

schedulers. The basic idea of our designs is finding the maxi-
mum weight by selecting the request with the maximum value
(‘1’ for binary digits) on the most significant bit, on the second
significant bit, and so on, all starting from a given positionx.
The WA and PWA designs are based on the proposed priority
encoder design and the PRRA design [10] respectively. We
showed that WA achieves significant area improvement over
the comparator tree arbiter and PWA provides round-robin
fairness for requests with the same weight. Both designs can be
directly used to construct schedulers based on maximal weight
matching scheduling algorithms, such as DDS [8],iLQF, iOCF
[1], and LNQF [7].

REFERENCES

[1] N. McKeown, “Scheduling algorithms for input-buffered cell switches”,
Ph. D. Thesis, Univerity of California at Berkeley, 1995.

[2] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand.,
“Achieveing 100% throughput in an input-queued switch”,IEEE Trans.
Commun., vol. 47, no. 8, Aug. 1999.

[3] R. E. Tarjan,Data Structures and Network Algorithms, Bell labs, Murray
Hill NJ, 1983.

[4] J. E. Hopcroft and R. M. Karp, “Ann2.5 algorithm for maximum
matching in bipartite graphs”,Soc. Ind. Appl. Math. J., vol. 2, pp. 225-
231, 1973.

[5] T. Anderson, S. Owicki, J. Saxie, and C. Thacker, “High speed switch
scheduling for local area networks”,ACM Trans. Comput. Syst., vol. 11,
no. 4, pp. 319-352, Nov. 1993.

[6] H. J. Chao, “Saturn: a terabit packet switch using dual round-robin”,
IEEE Commun. Mag., pp. 78-84, Dec. 2000.

[7] S. Li and N. Ansari, “Provisioning QoS features for input-queued ATM
switches”, Electronics Letters, vol. 34, no. 19, pp. 1826-1827, Sept.
1998.

[8] M. Yang, E. Lu, and S. Q. Zheng, “Scheduling with dynamic bandwidth
allocation for DiffServ classes”, to be presented onICCCN 2003, Dallas,
TX, Oct. 2003.

[9] P. Gupta and N. Mckeown, “Designing and implementing a fast crossbar
scheduler”,IEEE Micro., vol. 19, no. 1, pp. 20-28, Jan.-Feb. 1999.

[10] S. Q. Zheng, M. Yang, J. Blanton, P. Golla, and D. Verchere, “A simple
and fast parallel round-robin arbiter for high-speed switch control and
scheduling”, inProc. 45th IEEE MWSCAS, 2002, pp. 671-674.

[11] A. Bystrov, D. J. Kinniment, and A. Yakovlev, “Priority arbiters”, in
Proc. ASYNC 2000, pp. 128-137.

[12] K. C. Lee, “A variable round-robin arbiter for high speed buses and
statistical multiplexers”, inProc. ICCCN 1991, pp. 23-29.

[13] F. Petrot and D. Hommais, “A generic programmable arbiter with default
master grant”, inProc. ISCAS 2000, vol. 5, pp. 749 -752.

[14] T. H. Cormmen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to Algorithms, 2nd Edition, McGraw-Hill, 2001.



[15] Synopsys, Design Analyzer Datasheet [Online], Available:
http://www.synopsys.com/products/logic/deanalyzerds.html, 1997.

[16] IEEE Standards Board,IEEE Standard Hardware Description Language
Based on the Verilog Hardware Description Language, IEEE, New York,
1995.


