
CODE OPTIMIZATION OF POLYNOMIAL

APPROXIMATION FUNCTIONS ON CLUSTERED

INSTRUCTION-LEVEL PARALLELISM PROCESSORS

Mei Yang†, Jinchu Wang‡, S. Q. Zheng∗, and Yingtao Jiang†

† Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, NV 89154, USA

‡ Hangzhou Fast Electronics Co. Ltd., Hangzhou, Zhejiang, 310011, China

∗ Department of Computer Science, The University of Texas at Dallas, Richardson, TX 75083, USA

Emails: †{meiyang, yingtao}@egr.unlv.edu, ‡jinchuwang@hotmail.com, ∗sizheng@utdallas.edu

Abstract

In this paper, we propose a general code optimization method for implementing

polynomial approximation functions on clustered instruction-level parallelism (ILP)

processors. In the proposed method, we first introduce the parallel algorithm with

minimized data dependency. We then schedule and map the data dependency graph

(DDG) constructed based on the parallel algorithm to appropriate clusters and func-

tional units of a specific clustered ILP processor using the proposed parallel scheduling

and mapping (PSAM) algorithm. The PSAM algorithm prioritizes those nodes on the

critical path to minimize the total schedule length and ensures that the resulted sched-

ule satisfies the resource constraints imposed by a specific cluster ILP processor. As a

result, our method produces the schedule lengths close to the lower bounds determined

by the critical path lengths of the DDGs. Experimental results of typical polynomial

mathematical functions on TI ’C67x DSP show that the proposed method achieves

significant performance improvement over the traditional computation method.

Key Words: Polynomial approximation functions, instructional-level parallelism proces-

sors, DSPs, parallel functional units, data dependency graph, critical path

1

1 Introduction

In recent years, clustered instruction-level parallelism (ILP) processors have gained much

interest from both academic and industrial communities due to the high performance brought

by parallel execution of programs on multiple pipelined functional units [11]. In a clustered

ILP processor, resources such as functional units, register files, and caches are partitioned

or replicated and then grouped together as on-chip clusters [11]. These clusters are usually

connected through a set of inter-cluster communication buses to allow cross data accesses.

Fig. 1 shows a typical clustered ILP processor model.

Reg file

0
Reg. file

1

...

...

FU

1

FU

2

FU

m
1

...

Reg. file

2

FU

1

FU

2

FU

m
2

...

Reg file

0
Reg. file

n

FU

1

FU

2

FU

m
n

...

Cluster 1 Cluster 2 Cluster n

FU: function unit

Figure 1: A typical clustered ILP processor model.

One typical ILP structure is the very long instruction word (VLIW) architecture [15],

where one VLIW instruction is composed of multiple instructions, each running on a func-

tional unit. Mainstream digital signal processing processors (DSPs) based on the VLIW

architecture include TI’s TMS320C6000 series [25], Motorola’s DSP56000 series [14], and

Analog Device’s ADSP TigerSHARC series [2], etc., with the peak performance reaching up

to several giga floating-point operations per second (GFLOPs). The advanced features of

these DSPs make them very suitable for real-time applications featuring multi-channel and

multi-function computation, such as voice and speech recognition, high-end graphics and

imaging, and wide-band digital receiving, which involve the computation of many kinds of

mathematical functions.

Efficient implementations of various mathematical functions are required by aforemen-

tioned real-time applications. Four kinds of commonly used mathematical functions are

the exponential function, the logarithmic function, trigonometric functions, and inverse

2

trigonometric functions [5]. They are generally implemented by the polynomial approxima-

tion method. The implementations of these mathematical functions in the library provided

by DSP vendors, however, cannot meet stringent timing constraint imposed by some real-

time applications, as the algorithms used by these library functions are not suitable for the

DSPs featuring parallel functional units. The general optimization methods for ILP proces-

sors (such as software pipelining [10, 13] and loop unrolling [9]) do not fully explore the

instruction-level parallelism when implementing polynomial approximation functions with

high cross-iteration dependency on these DSPs.

Different from the goal of minimizing the total operation count for traditional sequential

processors, the goal of code optimization for ILP processors is to minimize the number of

execution cycles (i.e. schedule length) [16]. The code optimization needs to consider the

resource constraints inherent in an ILP processor, such as the number of functional units

in a cluster, limited number of functional units where the instructions can be executed, the

number of cross data accesses, and the number of registers available in each functional unit.

Several code optimization methods have been proposed for ILP processors or multiprocessors

[8, 11, 18]. A list scheduling [17] based code generation framework for clustered ILP proces-

sors is proposed to combine the cluster assignment, register allocation, and instruction-level

scheduling [11]. However, it fails to simultaneously consider the constraint that the number

of cross data accesses is limited in one clock cycle. The scheme based on the split-node

data acyclic graph is too complex for implementing polynomial approximation functions [8].

A simpler scheduling algorithm proposed in [18] is not suitable for heterogenous processors

such as the various functional units typically seen in a DSP. More noticeably, all the above

mentioned code optimization methods have no optimization of the computation algorithm.

In this paper, we propose a code optimization scheme to reduce the data dependency

and improve the parallel scheduling for implementing polynomial approximation functions

on clustered ILP processors, particularly on DSPs based on the VLIW architecture. In the

proposed scheme, we first introduce the parallel algorithm with minimized data dependency.

We then schedule and map the constructed data dependency graph (DDG) to appropriate

clusters and functional units using the proposed parallel scheduling and mapping (PSAM)

algorithm based on list scheduling [17]. The PSAM algorithm prioritizes those nodes on the

3

critical path to minimize the total schedule length and ensures that the resulted schedule

satisfies the resource constraints imposed by a specific cluster ILP processor. As a result,

the proposed method produces the schedule lengths close to the lower bounds determined

by the critical path lengths of the DDGs. To evaluate our method, we have implemented

typical mathematical functions in assembly codes on a general-purpose floating-point DSP,

TI’s TMS320C67x (’C67x) processor. Experimental results show that our optimized codes

achieve up to 79.5% performance improvement (in terms of the total number of clock cycles)

over TI ’C67x library functions.

The rest of the paper is organized as follows. Section 2 provides the background infor-

mation including polynomial approximation functions and the general computation process

of these functions. Section 3 presents our code optimization method for parallel implemen-

tations of these polynomial approximation functions. Section 4 shows two typical working

examples of the proposed method on TI ’C67x processor. Section 5 presents the experimental

results and the comparison with TI ’C67x library functions. Section 6 concludes the paper.

2 Background

2.1 Polynomial Approximation Functions

The fundamentals of polynomial approximation mathematical functions are discussed in [1].

If a function f(x) has continuous derivatives up to the (n + 1)th order, then this function

can be expanded in the following fashion [1] (Taylor Series):

f(x) = f(a) +
f ′(a)(x− a)

1!
+ · · ·+ f (n)(a)(x− a)n

n!
+ Rn, (1)

where Rn is the remainder after the (n + 1)th term. If limn→∞ Rn = 0 and a = 0, the series

is called the MacLaurin Series.

The MacLaurin Series of the commonly used mathematical functions can be found in

[1, 6]. In this paper, we focus our study on the following typical mathematical functions

pertaining to digital signal processing applications.

ex = 1 +
x

1!
+

x2

2!
+ · · ·+ xn

n!
+ · · · −∞ < x < ∞ (2)

ln(1 + x) = x− x2

2
+

x3

3
− · · ·+ (−1)n−1 xn

n
+ · · · − 1 < x ≤ 1 (3)

4

sinx = x− x3

3!
+ · · ·+ (−1)n x2n+1

(2n + 1)!
+ · · · −∞ < x < ∞ (4)

cosx = 1− x2

2!
+

x4

4!
+ · · ·+ (−1)n x2n

(2n)!
+ · · · | x |< π

2
(5)

tan−1 x = x− x3

3
+ · · ·+ (−1)n x2n+1

(2n + 1)!
+ · · · | x |< 1 (6)

To achieve the required level of precision, these functions are typically approximated by

polynomials of certain sufficient degrees [19, 27]. A desired function, say f(x), is approxi-

mated by a polynomial approximation equation P (n, x) such that

f(x) = P (n, x) + e(x), xl < x < xu, (7)

where xl and xu are the lower and the upper bounds of x, respectively, and e(x) is the

error function usually minimized in the min-max (equi-ripple) sense [19]. Without the loss

of generality, we present the polynomial approximation equations of exponential, logarithm,

sin, cos, and arctangent functions in Equations (8)-(12). Note that cos function is generally

implemented by calling sin function, as shown in Equation (11), where n is the highest power

of the variable to bring the required error range down to ε.

exp(x) =
n∑

i=0

{a[i]xi}+ e(x) 0 ≤ x ≤ ln 2 and | e(x) |≤ ε (8)

ln(1 + x) =
n∑

i=1

{a[i]xi}+ e(x) 0 ≤ x ≤ 1 and | e(x) |≤ ε (9)

sin(x) = x
n∑

i=0

{a[i]x2i}+ xe(x) | x |≤ π

2
and | xe(x) |≤ ε (10)

cos(x) = sin(x +
π

2
) (11)

atan(x) = x
∑n

i=0{a[i]x2i}+ xe(x) − 1 ≤| x |≤ 1

and | xe(x) |≤ ε (12)

2.2 Implementation of These Functions

The implementation of each function consists of polynomial equation computation, pre-

processing, and post-processing. In the following, we introduce the polynomial equation

5

computation method that is commonly used. Discussion on the pre- and post-processing

techniques can be found in [19].

The equation computation of each function involves iterations of multiplication and accu-

mulation operations of a[i] and xi, as shown in Equations (8)-(12). Based on their different

computation processes, we classify the polynomial equations discussed in Section 2.1 into

two types, f1(x) and f2(x): f1(x) includes exp(x) and ln(1 + x), and f2(x) includes sin(x),

cos(x), and atan(x). The general computation algorithm for f1(x) and f2(x) is based on

Equation (13) and Equation (14), respectively, where ki’s represent the coefficients a[i]’s

(1 ≤ i ≤ n).

f1(x) =
n∑

i=0

kix
i (13)

= k0 + k1x + k2x
2 + · · ·+ kn−1x

n−1 + knxn

= k0 + x(k1 + x(k2 + · · ·+ x(kn−1 + xkn) · · ·))

f2(x) =
n∑

i=0

kix
2i+1 (14)

= k0x + k1x
3 + k2x

5 + · · ·+ knx2n+1

= k0x + x(x2(k1 + x2(k2 + · · ·+
x2(kn−1 + x2kn) · · ·)))

The algorithms employed in Equations (13) and (14) are only efficient for computing

polynomial equations in sequential processors and they are not efficient for clustered ILP

processors featuring parallel functional units. Unfortunately, the implementation of these

functions with cross-iteration dependency cannot be optimized using the general optimization

methods built in the compilers provided by the vendors of the clustered ILP processors.

Although these optimization techniques, such as software pipelining [13], and loop unrolling

[9], are suitable for applications with a large number of independent variables, such as FFT

and FIR, they do not work well for applications with the cross-iteration dependency, such

as computing Equations (13)-(14). Existing code optimization methods [8, 11, 18] based

on list scheduling [17] are also not suitable for this application. In the next section, we will

present our code optimization method for implementing polynomial approximation functions

on clustered ILP processors.

6

3 Proposed Work

Our goal of optimization is to obtain a minimum schedule length by fully exploring the

parallelism of polynomial equation computation on clustered ILP processors. To achieve

this, we propose a code optimization method consisting of two phases:

1. Find a parallel algorithm to compute the polynomial equation with minimized data

dependency.

2. Schedule and map the data dependency graph constructed based on the parallel al-

gorithm to appropriate clusters and functional units of the targeted clustered ILP

processor with minimized schedule length subject to all the resource constraints.

Each phase is explained in detail as follows.

3.1 Parallel Algorithms

f1(x) and f2(x) can be rewritten as shown in Equations (15)-(16), where n = 2m.

f1(x) =
n∑

i=0

kix
i (15)

= k0 +
m∑

i=1

x2i−1(k2i−1 + k2ix)

= k0 + x(k1 + k2x) + · · ·+ x2i−1(k2i−1 +

k2ix) + · · ·+ x2m−1(k2m−1 + k2mx)

f2(x) =
n∑

i=0

kix
2i+1 (16)

= k0x +
m∑

i=1

x4i−1(k2i−1 + k2ix
2)

= k0x + x3(k1 + k2x
2) + · · ·+ x4i−1(k2i−1 +

k2ix
2) + · · ·+ x4m−1(k2m−1 + k2mx2)

Take f1(x) as an example. The computation of Equation (15) involves m groups of

operations: x(k1 +k2x), x3(k3 +k4x), · · ·, and x2m−1(k2m−1 +k2mx). Each group is composed

of the computation of x2i−1, 1 ≤ i ≤ m, and three two-operand multiplication or addition

7

operations. More importantly, the data dependency between each group is minimized so

that the computation of the m groups can be performed in parallel.

3.2 Scheduling And Mapping Data Dependency Graphs

For a given program, we use the data dependency graph to describe its data flow. Based on

the parallel algorithm, we generate the linear assembly code (i.e., the assembly code with

no cluster and functional unit assigned and no register allocated), construct the DDG, and

schedule and map the DDG to the targeted clustered ILP processor.

3.2.1 Construction of Data Dependency Graph

Definition 1 A Data Dependency Graph G = (V, E, D, T, Y) is a node-weighted and edge-

weighted directed graph, where V is the set of instructions, E is the set of edges connecting

two nodes with data dependency, D(e) represents the delay slots of the instruction of the node

where edge e originates from, T (u) represents the execution time (functional unit latency) of

node u, and Y (u) denotes the instruction type of node u.

A node in the DDG can be any instruction of a DSP. We assume that Y (u) = 1 for

additions (ADD) represented as ellipses, Y (u) = 2 for multiplications (MPY) represented as

rectangles, Y (u) = 3 for memory operations (LOAD or STORE) represented as triangles,

and so on. Each node u is denoted as a pair (d, T (u)), where d is the destination operand. To

have a complete DDG, we typically add one dummy node l representing instruction NULL,

which takes 0 clock cycle to execute and has no destination operand. A source node is one

with no edge terminating at it. A sink node is one with no edge originating from it. In a

DDG, the dummy node is the only sink node.

An edge in the DDG shows the data dependency between two nodes, and the label on it

denotes its weight D(e). A critical path is defined as the longest path from any source node

to the sink node in a DDG. The length of a path is the sum of weights of all nodes and all

edges on the path. The critical path length determines the lower bound of the running time

of a program.

8

3.2.2 The PSAM Algorithm

When scheduling and mapping a DDG to clusters and functional units of the targeted clus-

tered ILP processor, the data dependency relations defined by the DDG must be satisfied.

Meanwhile, the schedule must satisfy all the resource constraints of the targeted clustered

ILP processor, including the number of functional units in a cluster, the functional units

that each instruction can be executed in, the number of cross data accesses allowed in one

clock cycle, and the number of registers available in each functional unit.

As a matter of fact, the corresponding DDG’s of all applications discussed in this paper

are directed acyclic graphs (DAGs). It is well known that optimal scheduling of nodes in

a DAG to a set of processors is an NP-hard problem [18]. In this section, we propose a

heuristic scheduling and mapping algorithm, named as the Parallel Scheduling and Mapping

(PSAM) algorithm, to schedule and map the DDG to clusters and functional units of a

specific clustered ILP processor satisfying all the aforementioned resource constraints.

To keep track of the schedule of functional units, we introduce the following variables.

y denotes a functional unit with y.CID representing the cluster that y belongs to. I(y, t)

denotes the node that is assigned to functional unit y to run at clock cycle t; its initial value

is set to NIL. F (Y (u), t) denotes the set of available functional units in which instructions

of type Y (u) can be executed at t; it is initialized as all possible functional units that

instructions of type Y (u) can be executed in. In the PSAM algorithm, we assume that

one DDG G = (V, E,D, T, Y) is represented using adjacency lists. Each node in G is also

associated with the following data structures.

C(u): The cluster that node u is assigned to.

P (u): The priority value of node u. It is defined as the length of the longest path starting

from u to the sink node l. Note that, for a DDG, the length of a path is the summation

of the weights of all the nodes and edges on the path.

R(u): The register allocated to the destination operand of u.

S(u): The clock cycle that node u is scheduled in.

9

col(u): The color of node u. If the node is already scheduled, ready to be scheduled, or not

ready to be scheduled, it is colored as BLACK, GRAY, or WHITE, respectively.

π(u): The parent node of node u, which is determined as the predecessor node of u on the

path to be scheduled. Initially, π(u) = NIL for each node u ∈ V .

pre(u): The list of predecessors of node u. For a node u with no predecessor, such as the

source node, pre(u) = NIL.

adj(u): The list of descendants of node u, which is one of the input to the PSAM algorithm.

For a node u with no descendant, such as the sink node, adj(u) = NIL.

The PSAM algorithm uses a priority queue Q [4] to manage the set of nodes ready to

be scheduled in a non-increasing sorted list of their priority values (P (u)’s) and instruction

types (Y (u)’s). Assuming that the number of cross data accesses is limited to x, we use X(t)

to record the number of cross data accesses at clock cycle t, 0 ≤ X(t) ≤ x.

Registers will also be allocated during the process of scheduling and mapping of nodes

to clusters and functional units. Considering a node (a two-operand or three-operand in-

struction) in the DDG, the source operand (if not an instant value) must be the destination

operand of its predecessor node. Hence, as long as we allocate the register for the destination

operand of each node, all the operands will get their register allocated. For example, for the

node of instruction ADD src1, src2, dst, only a register for dst needs to be allocated since

registers for src1 and src2 are allocated in its predecessor nodes. For each register r, we

use C(r) to denote the cluster it belongs to. We use A(y, t) to represent the set of registers

available in functional unit y at t; it is initialized as the set of all registers in functional unit

y.

The PSAM algorithm consists of three major steps.

Step 1: Compute P (u) as the length of the longest path from u to l for each node u ∈ V

using the Bellman-Ford algorithm.

Step 2: For each node u ∈ V , initialize pre(u), π(u), and col(u). Initialize Q by inserting all

source nodes.

10

Step 3: Schedule nodes in Q to appropriate clusters and functional units according to the

non-increasing order of their priority values.

If there is an available functional unit at some cluster in the current and following

clock cycles covering the functional unit latency of the instruction, schedule it in the

current clock cycle and insert its successor node(s) into Q if all the predecessor nodes

of the successor node are scheduled; otherwise, reinsert the node back into Q. The

scheduling process is continued until Q is empty.

The pseudocode of the PSAM algorithm is listed below. Using a breadth-first search

approach and a priority queue, PSAM prioritizes those nodes on the critical path to minimize

the total schedule length while satisfying the data dependency relations defined by the DDG.

PSAM also ensures that the resulted schedule satisfies the resource constraints imposed by

a specific cluster ILP processor. In most cases, the PSAM algorithm yields a near-optimal

schedule. Additionally, the PSAM algorithm minimizes the number of registers by reusing

registers allocated to a node’s parent node or its predecessor node.

11

Algorithm: Parallel scheduling and mapping (PSAM)

Input: DDG G = (V, E,D, T, Y), x

Output: Schedule I and register allocation R

//Step 1:

∀u ∈ V , compute P (u) as the length of the longest path

from u to l using the Bellman-Ford algorithm

/Step 2:

for each node u ∈ V − l do

set pre(u) as the set of nodes u is adjacent to

π(u) ← NIL

R(u) ← NIL

if there is no v such that u ∈ adj(v) then

col(u) ← GRAY

ENQUEUE(Q,u)

else col(u) ← WHITE

end-for

for t ← 0 to M (M is a large number) do

X(t) ← 0

end-for

t ← 0

//Step 3:

while Q 6= ∅ do

Q′ ← ∅
while Q 6= ∅ do

u ← DEQUEUE(Q)

t ← max(t, S(π(u)) + T (π(u)) + D(π(u), u))

//if no functional unit available, reinsert u back to Q

if | U ={y | y ∈ F (Y (u), t) and I(y, t) = NIL}|=0 then

ENQUEUE(Q, u)

break

//for each source node, assign one available functional unit

//and register

else if π(u) = NIL and find y ∈ U such that X(t′) < x

for all t′ ∈ [t..t + T (u)− 1] then

C(u) ← y.CID

Find r ∈ A(y, t) and allocate r to R(u)

12

//for other nodes, assign u the same functional unit and

//register as its parent node as much as possible

else if π(u) 6= NIL and find y ∈ U such that

y.CID = C(π(u)) then

C(u) ← y.CID

if adj(π(u)) = {u} then R(u) ← R(π(u))

else Find r ∈ A(y, t) and allocate r to R(u)

else if find y ∈ U such that X(t′) < x for all

t′ ∈ [t..t + T (u)− 1] then

C(u) ← y.CID

if find v ∈ pre(u)− π(u) and adj(v) = {u} then

R(u) ← R(v)

else Find r ∈ A(y, t) and allocate r to R(u)

S(u) ← t; col(u) ← BLACK

//update corresponding variables

for t′ ← t to t + T (u)− 1 do I(Y, t′) ← u

F (Y (u), t′) ← F (Y (u), t′)− {y}
if (π(u) 6= NIL and y.CID 6= C(π(u))) or

(∃v ∈ pre(u) and y.CID 6= C(v)) then

X(t′) ← X(t′) + 1

end-for

for t′ ← t to t + T (u) + D(u)− 1 do

A(y, t′) ← A(y, t′)−R(u)

end-for

for each v ∈ adj(u) do

if col(v) 6= BLACK then

if S(u) > S(π(v))

then π(v) ← u

//insert v to Q if all its predecessor nodes are scheduled

if ∀w ∈ pre(v), col(w) = BLACK and v 6= l then

col(v) ← GRAY

ENQUEUE(Q′, v)

end-for

end-while

Q ← Q′

t ← t + 1

end-while 13

The complexity of each step of the PSAM algorithm is analyzed as follows. The first step

takes O(| V |3) time by the Bellman-Ford algorithm [4]. The second step takes O(| V |2)
time. The third step takes O(p | V | + | V |2) time, where p is the maximum number of

registers available, because the breadth-first search takes O(| V | + | V |2) time [4] and the

schedule of all nodes needs O(p | V |) time. Putting everything together, the complexity of

the PSAM algorithm is O(| V |3).
The PSAM algorithm differs from other list scheduling algorithms [8, 11, 18] by perform-

ing the cluster and functional unit assignments and register allocation subject to all resource

constraints pertaining to a cluster ILP processor. The PSAM algorithm is also suitable for

scheduling and mapping for other applications with directed acyclic DDGs on clustered ILP

processors.

4 Examples

In this section, we show how the proposed method works for the code optimization of two

functions, logrithm and arctangent as the example of f1(x) and f2(x) respectively, on TI

’C67x DSP.

TI ’C67x is a general-purpose floating-point DSP family featuring the VelociTI VLIW

architecture [25]. Its CPU has two data paths (clusters) (A and B) operating in parallel,

and each cluster has four parallel functional units (.L, .S, .M, and .D) and one register file

containing 16 32-bit registers. A cross data bus exists to connect the functional units of one

cluster to registers on the other for exchanging data between the two register files, and the

number of cross data accesses in one clock cycle is limited to two. Each functional unit (FU)

is controlled by a 32-bit instruction. Thus, the VLIW structure of ’C67x with 256-bit-width

instruction allows execution of up to 8 32-bit instructions in one clock cycle (CLK). Each

’C67x instruction has a functional unit latency (UL) of 1 clock cycle followed by various delay

slots (DS), each corresponding to 1 clock cycle in ’C67x. Table 1 shows the description of

commonly used floating-point instructions. As shown in the table, the number of functional

units each instruction can be executed in is limited. The schedule of a program on ’C67x

needs to satisfy all these resource constraints.

To optimize the codes for logarithm and arctangent functions, following the first phase

14

Instruc- Syntax Description FU CLKs UL DS

tion

ADDSP (.unit) src1, dst = src1+ .L1, 4 1 3

src2, dst src2;32-bit .L2

addition

MPYSP (.unit) src1, dst = src1× .M1, 4 1 3

src2, dst src2;32-bit .M2

multiplication

LDW (.unit)∗+B14/ dst = mem; .D1, 5 1 4

B15[ucst15], Load 32 bits .D2

dst from memory

STW (.unit) mem = src; .D1, 1 1 0

src,∗+B14/ Store 32 bits .D2

B15[ucst15] into memory

Table 1: Description of commonly used floating-point instructions.

of the proposed method, we derive the two functions as shown in Equations (17) and (18).

It was shown that n = 8 is enough to satisfy the required error range for most practical

applications [19, 27].

ln(1 + x) = k1x + k2x
2 + k3x

3 + k4x
4 (17)

+k5x
5 + k6x

6 + k7x
7 + k8x

8

= x(k1 + k2x) + x3(k3 + k4x) +

x5(k5 + k6x) + x7(k7 + k8x)

atan(x) = x + k1x
3 + k2x

5 + k3x
7 + k4x

9 (18)

+k5x
11 + k6x

13 + k7x
15 + k8x

17

= x + x3(k1 + k2x
2) + x7(k3 + k4x

2)

+x11(k5 + k6x
2) + x15(k7 + k8x

2)

We then construct the DDGs from the linear assembly codes generated according to

Equations (17) and (18). The DDG of Equation (17) implemented on ’C67x is shown in

15

Crtical path length = 25

s
1234

, 1

s
12345678

, 1

x

4 4 4 4 4 4 4 4

3

333

3

3

3 3 3 3

3 3 3 3

3

3 3 33

3 3

3

3

3

LDW ADDSP

MPYSP

k
1
,1 k

3
,1 k

5
,1 k

7
,1k

2
,1 k

4
,1 k

6
,1 k

8
,1 x2,1

x3,1 x4,1

x5,1 x7,1

p
2
,1 p

4
,1 p

6
,1 p

8
,1

s
12

, 1 s
34

, 1 s
56

, 1 s
78

, 1

p
12

,1 p
34

,1 p
56

,1 p
78

,1

s
5678

, 1

NULL

ln(1+x)=x(k
1
+k

2
x)+x3(k

3
+k

4
x)+x5(k

5
+k

6
x)+x7(k

7
+k

8
x)

 =x(k
1
+p

2
)+x3(k

3
+p

4
)+x5(k

5
+p

6
)+x7(k

7
+p

8
)

 =xs
2
+x3s

4
+x5s

6
+x7s

8

 =(p
12

+p
34

)+(p
56

+p
78

)

 =s
1234

+s
5678

 =s
12345678

Figure 2: The DDG of Equation (17).

LDW ADDSP

MPYSP NULL

s
1234

, 1

s
012345678

, 1

x

4 4 4 4 4 4 4 4

3

333

3

3

3 3 3 3

3 3 3 3

3

3 3 33

3 3

3

3

Crtical path length = 29

k
1
,1 k

3
,1 k

5
,1 k

7
,1k

2
,1 k

4
,1 k

6
,1 k

8
,1 x2,1

x3,1 x4,1

x7,1 x8,1

p
2
,1 p

4
,1 p

6
,1 p

8
,1

s
12

, 1 s
34

, 1 s
56

, 1 s
78

, 1

p
12

,1 p
34

,1 p
56

,1 p
78

,1

s
5678

, 1

x11,1 x15,1

3 3 3

3

s
01234

, 1

3

atan(x)=x+x3(k
1
+k

2
x2)+x7(k

3
+k

4
x2)+x11(k

5
+k

6
x2)+x15(k

7
+k

8
x2)

 =x+x3(k
1
+p

2
)+x7(k

3
+p

4
)+x11(k

5
+p

6
)+x15(k

7
+p

8
)

 =x+x3s
12

+x7s
34

+x11s
56

+x15s
78

 =x+(p
12

+p
34

)+(p
56

+p
78

)

 =x+s
1234

+s
5678

 =s
01234

+s
5678

 =s
012345678

Figure 3: The DDG of Equation (18).

16

Fig. 2, which has 28 nodes. Note that there is no need to load x since it is the function

argument. The latency of the critical path of Fig. 2 (as shown by dark paths) is 25 CLKs,

which determines the lower bound of parallel scheduling without considering any resource

constraint. The DDG of Equation (18) implemented on ’C67x is shown in Fig. 3, which has

31 nodes and the critical path length of 29 CLKs.

Applying the PSAM algorithm with G set as the DDG in Fig. 2 and x = 2, we obtain

the scheduling and mapping of logrithm function shown in Fig. 4(a), in which each column

represents a functional unit and each entry shows the instruction that is assigned to the

functional unit at each clock cycle. Functional units .S1 and .S2 are not included since they

are not used by any instruction in our examples. The empty entries represent idle clock

cycles. The shaded entries are the delay slots of an instruction. Using the schedule produced

by the PSAM algorithm, the computation of Equation (17) only takes 26 CLKs, which is

only 1 CLK longer than the lower bound given by the critical path length of Fig. 2.

Functional units Functional units

L
k

2

L
k

6

0

1

2

3

L
k

1

L
k

54

�
�
�
�
�

Idle

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

L
k

4

L
k

8

L
k

3

L
k

7

� �
� �
� �
� �
� �

Idle

M
x2

.D1 .D2 .M1

M
X3

M
p

2

M
p

6

M
x5�

Idle

M
p

12

M
p

56

�
�
�

Idle

.M2

�
�

Idle

M
x3

M
p

4

M
p

8

M
x7�

Idle

M
p

34

M
p

78

�
�
�

Idle

.L1

� �
� �
� �

Idle

A
s

12

A
s

56

� �
� �

Idle

.L2

�
�
�

Idle

A
s

34

A
s

78

�
�
�
�

Idle

A
s

5678

A
s

1234

26

Clock

cycles

L
k

8

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

.D1 .D2 .M1

M
p

8

.M2 .L1

A
s

78

.L2

�
�
�

Idle

�
�

Idle

Clock

cycles

�
�

Idle�
�

Idle

L
k

7

L
k

6

�
Idle

�
Idle

M
p

78

L: LDW

M: MPYSP

A: ADDSP

...

M

p
12345678

62

63

64

65

Idle

Idle Idle

Idle

A
s

678

19

20

61

�
�
�
�

Idle

� �
� �
� �
� �

Idle

�
�

� �
� ��

Idle�
�� �

� �
� �

Idle

� �
� ��

Idle�
�

� �
� �

Idle�
�

Idle� �
� �

Idle�
�

Idle�
�

Idle

ln(1+x)=x(k
1
+k

2
x)+x3(k

3
+k

4
x)+x5(k

5
+k

6
x)+x7(k

7
+k

8
x)

 =x(k
1
+p

2
)+x3(k

3
+p

4
)+x5(k

5
+p

6
)+x7(k

7
+p

8
)

 =xs
2
+x3s

4
+x5s

6
+x7s

8

 =(p
12

+p
34

)+(p
56

+p
78

)

 =s
1234

+s
5678

 =s
12345678

ln(1+x)=k
1
x+k

2
x2+k

3
x3+k

4
x4+k

5
x5+k

6
x6+k

7
x7+k

8
x8

 =x(k
1
+x(k

2
+x(k

3
+x(k

4
+x(k

5
+x(k

6
+x(k

7
+xk

8
)))))))

 =x(k
1
+x(k

2
+x(k

3
+x(k

4
+x(k

5
+x(k

6
+x(k

7
+p

8
)))))))

 =x(k
1
+x(k

2
+x(k

3
+x(k

4
+x(k

5
+x(k

6
+xs

78
))))))

 =x(k
1
+x(k

2
+x(k

3
+x(k

4
+x(k

5
+x(k

6
+p

78
))))))

 =x(k
1
+x(k

2
+x(k

3
+x(k

4
+x(k

5
+xs

678
)))))

 =...

 =p
12345678

A

s
12345678

M
x4

(a) (b)

Figure 4: (a) Optimized parallel scheduling and mapping of Fig. 2. (b) Scheduling and mapping

of the DDG constructed from the linear assembly code based on Equation (13).

17

Register Corresponding variable Register Corresponding variable

A
0

x B
0

k
4
, p

4
, s

34
, p

34

A
1

k
2
, p

2
, s

12
, p

12
, s

1234
, s

12345678
B

1
k

8
, p

8
, s

78
, p

78

A
2

x2 B
2

x4, x7

A
3

k
6
, p

6
, s

56
, p

56
, s

5678
B

3
k

3

A
4

x3 B
4

k
7

A
5

k
1

A
6

x5

A
7

k
5

Figure 5: Register allocation for logrithm function generated from the PSAM algorithm.

�
�
�

Idle

L
k

2

L
k

6

0

1

2

3

L
k

1

L
k

5
4

�
�
�
�
�

Idle

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

L
k

4

L
k

8

L
k

3

L
k

7

� �
� �
� �
� �
� �

Idle

M
x2

.D1 .D2 .M1

M
X3

M
p

2

M
p

6

M
x7

M
x11

M
p

12

M
p

56

�
�
�

Idle

.M2� �
� �

Idle

M
x3

M
x4

M
p

4

M
p

8

M
x8

M
x15

M
p

34

M
p

78

� �
� �
� �

Idle

.L1

�
�
�

Idle

A
s

12

A
s

56

�
�

Idle

A
s

1234

A
s

012345678

.L2

�
�
�

Idle

A
s

34

A
s

78

�
�
�
�

Idle

A
s

5678

26

27

28

A
s

01234

L: LDW

M: MPYSP

A: ADDSP

Funtional units Functional units

L
k

8

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

69

.D1 .D2 .M1

M
p

8

.M2�
�

Idle

.L1

A
s

78

.L2

� �
� �
� �

Idle

� �
Idle

A
s

678

70

Clock

cycles

�
�

Idle

� �
� �

Idle

L
k

7

L
k

6

�
�

Idle� �
� �
� �

Idle

M
p

78

M
x2

29

71

72

73

...

A

s
012345678

Idle

Idle Idle

L
k

6

M
p

678

�
�

Idle

Clock

cycles

�
�
�
�

Idle

�
� �

�
�
�
�

Idle

�
�
� �
� �
�
�� �

� �

Idle

�
�

Idle�
�

Idle� �
� �

Idle�
�

Idle� �
� �

Idle

atan(x)=x+x3(k
1
+k

2
x2)+x7(k

3
+k

4
x2)+x11(k

5
+k

6
x2)+x15(k

7
+k

8
x2)

 =x+x3(k
1
+p

2
)+x7(k

3
+p

4
)+x11(k

5
+p

6
)+x15(k

7
+p

8
)

 =x+x3s
12

+x7s
34

+x11s
56

+x15s
78

 =x+(p
12

+p
34

)+(p
56

+p
78

)

 =x+s
1234

+s
5678

 =s
01234

+s
5678

 =s
012345678

atan(x)=x+k
1
x3+k

2
x5+k

3
x7+k

4
x9+k

5
x11+k

6
x13+k

7
x15+k

8
x17

 =x+x(x2(k
1
+x2(k

2
+x2(k

3
+x2(k

4
+x2(k

5
+x2(k

6
+x2(k

7
+x2k

8
))))))))

 =x+x(x2(k
1
+x2(k

2
+x2(k

3
+x2(k

4
+x2(k

5
+x2(k

6
+x2(k

7
+p

8
))))))))

 =x+x(x2(k
1
+x2(k

2
+x2(k

3
+x2(k

4
+x2(k

5
+x2(k

6
+x2s

78
)))))))

 =x+x(x2(k
1
+x2(k

2
+x2(k

3
+x2(k

4
+x2(k

5
+x2(k

6
+p

78
)))))))

 =x+x(x2(k
1
+x2(k

2
+x2(k

3
+x2(k

4
+x2(k

5
+x2k

678
))))))

 =...

 =s
012345678

(a) (b)

Figure 6: (a) Optimized parallel scheduling and mapping of Fig. 3 using the PSAM algorithm. (b)

Scheduling and mapping of the DDG constructed from the linear assembly code based on Equation

(14).

As a comparison, Fig. 4(b) shows the scheduling and mapping of the DDG constructed

from the linear assembly code generated according to Equation (13), in which there is no

instruction executed in parallel and it takes 65 CLKs to finish the equation computation.

Fig. 5 shows the resulted register allocation.

Similarly, we obtain the parallel scheduling and mapping of Fig. 3 in Fig. 6(a). Fig. 6(b)

shows the scheduling and mapping of the DDG constructed from the linear assembly code

18

Register Corresponding variable Register Corresponding variable

A
0

x B
0

k
4
, p

4
, s

34
, p

34

A
1

k
2
, p

2
, s

12
, p

12
, s

1234
, s

01234
, s

012345678
B

1
k

3

A
2

x2 B
2

x4

A
3

k
1

B
3

k
8
, p

8
, s

78

A
4

x3 B
4

k
7

A
5

k
6
, p

6
, s

56
B

5
x8, x15, p

78

A
6

x7

A
7

k
5

A
8

x11, p
56

, s
5678

Figure 7: Register allocation for arctangent function generated by the PSAM algorithm.

Function Description OI ’C67x LF Improve-

(CLKs) (CLKs) ment %

expf exponential 74 213 65.3%

function

logf natural logarithm 44 136 67.6%

function

log10f 10 base logarithm 47 154 69.5%

function

sinf sin function 70 173 60%

cosf cos function 74 183 60%

atanf arctangent function 79 265 70.2%

atan2f arctangent function 87 424 79.5%

with two arguments

Table 2: Comparison of optimized implementations of typical mathematical functions vs. TI ’C67x

library functions in terms of the total clock counts.

generated according to Equation (14). The schedule length of atan(x) is reduced from 73

CLKs to 29 CLKs, which is equivalent to the lower bound determined by the critical path

length of Fig. 3. The resulted register allocation is shown in Fig. 7.

It is worthy to point out that code optimization of pre- and post-processing is also impor-

tant for code efficiency. The details of optimizations of pre- and post-processing techniques

for implementing these functions on ’C67x can be found in [28].

19

5 Experimental Results

To evaluate the performance of the proposed code optimization method, experiments of typ-

ical mathematical functions, ln(1 + x), exp(x), sin(x), cos(x), and atan(x), are conducted

on TI ’C67x development tools, Code Composer Studio2.0 (CCS2.0). exp(x) is optimized

similar to ln(1+x) while sin(x) and cos(x) are optimized similar to atan(x). We generate all

assembly codes, compile, and debug them on CCS2.0. Our programs achieve the same preci-

sion as ’C67x library functions do. Programs of our optimized implementations are profiled

and the number of clock cycles of each program with C overhead is measured in CCS2.0.

Table 2 compares the maximum running times (all pre-processing and post-processing are

counted) of our optimized implementations (OI) of these functions vs. ’C67x library func-

tions (LF) in terms of the number of clock cycles (CLKs). Due to pipeline flushing, missing

pipeline conflicts, and extra program fetches, the listed results may have 1 to 2 CLKs error

when halting the simulator [22].

Noticeably, the overall improvement of our optimized implementations of these functions

over ’C67x library functions is more than 60% (up to 79.5% in some cases). As all polynomial

approximation functions can be categorized into f1(x) and f2(x), it is expected that per-

formance of other polynomial approximation mathematical functions implemented in ’C67x

library can also be significantly improved by the proposed code optimization method.

6 Concluding Remarks

In this paper, we considered the code optimization of polynomial approximation functions

on clustered ILP processors and proposed a general code optimization method. In the

proposed method, we first find the parallel algorithm with minimized data dependency.

According to the parallel algorithm, the linear assembly code for the targeted clustered ILP

processor is generated and the DDG is constructed. We then schedule and map the DDG

to appropriate clusters and functional units of the targeted clustered ILP processor using

the proposed PSAM algorithm. The PSAM algorithm prioritizes those nodes on the critical

path to minimize the total schedule length while satisfying the data dependency relations

defined by the DDG. The advantage of the PSAM algorithm over other list scheduling

20

based algorithms is it considers all resource constraints imposed by a specific cluster ILP

processor, including the number of functional units in a cluster, the functional units that each

instruction can be executed in, the number of cross data accesses allowed in one clock cycle,

and the number of registers available in each functional unit. Through the examples of several

typical polynomial approximation functions on TI ’67x, we showed that our method produces

the schedule lengths close to the critical path lengths of the DDGs and achieves significant

performance improvement over the traditional computation method. The proposed method

and the PSAM algorithm are particularly useful for many real-time digital signal processing

applications.

References

[1] M. Abramovitz and I.A. Stegun, Handbook of Mathematical Functions (New York:

Dover Publications, 1965).

[2] Analog Device, TigerSHARC Processor [Online], Available:

http://www.analog.com/processors/processors/tigersharc /index.html.

[3] Cody and Waite, Software Manual for the Elementary Functions (Prentice Hall, 1980).

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Instruction to Algorithms, 2nd

Edition (The MIT Proces, Cambridge, MA, 2001).

[5] D. Das, K. Mukhopadhyaya, and B.P. Sinha, Implementation of four common functions

on an LNS co-processor, IEEE Trans. Computers, 44(1), 1995, 155-161.

[6] Engineering Fundamentals, Taylor Series [Online], Available: http://www.efunda.com.

[7] J. Eyre and J. Bier, The evolution of DSP processors, IEEE Signal Processing Magazine,

1(2), 2000, 43-51.

[8] S. Hanono and S. Devadas, Instruction selection, resource allocation and scheduling in

the VIV retargetable code generator, Proc. the 35th ACM/IEEE Design Automation

Conf., 1998, 510-515.

21

[9] J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach,

3rd Ed. (Elsevier Science & Technology Books, 2002).

[10] Y.T. Hwang and Y.C. Chuang, High performance code generation for VLIW digital

signal processors, Proc. IEEE Workshop on Signal Processing Systems (SiPS), 683-692.

[11] K. Kailas, K. Ebcioglu, and A. Agrawala, CARS: a new code generation framework

for clustered ILP processors, Proc. the 7th Int’l Symp. on High-Performance Computer

Architecture, 2001, 133-143.

[12] B. Kruatrachue and T. Lewis, Grain size determination for parallel processing, IEEE

Software, 5(1), 1988, 23-31.

[13] M. Lam, Software pipelining: an efficient scheduling techniques for VLIW machines,

Proc. the SIGPLAN’88 Conf. on Programming Language Design and Implementation,

1988, 318-328.

[14] Motorola 1995. DSP 56K Central Architecture Overview.

[15] B. Rau and J. Fisher, Instruction-level parallel processing: History, overview, and per-

spective, Journal of Supercomputing, 7(1/2), 1983, 9-50.

[16] M. Schlansker, T.M. Conte, J. Dehnert, K. Ebcioglu, J.Z. Fang, and C.L. Thompson,

Compilers for instruction-level parallelism, Computer, 30(12), 1997, 63-69.

[17] R. Sethi, Algorithms for Minimal-Length Schedules (John Wiley & Sons, Inc., New

York, 1976), Chapter 2. Computer and job-shop scheduling theory.

[18] S. Shang, S. Sun, and Q. Wang, An efficient parallel scheduling algorithm of depen-

dent task graphs, Proc. the 4th Int’l Conf. on Parrallel and Distributed Computing,

Applications and Technologies, 2003, 595-598.

[19] Texas Instruments, A Collection of Functions for the TMS320C30 (Texas Instruments,

1990).

[20] Texas Instruments, TMS320C3x General-Purpose Applications User’s Guide (Texas In-

struments, 1990).

22

[21] Texas Instruments, TMS320C62x/C67x Technical Brief (Texas Instruments, 1998).

[22] Texas Instruments, Code Composer Studio User’s Guide (Texas Instruments, 2000).

[23] Texas Instruments, TMS320C6000 Optimizing Compiler User’s Guide (Texas Instru-

ments, 2000).

[24] Texas Instruments, TMS320C6000 Programmer’s Guide (Texas Instruments, 2000).

[25] Texas Instruments, TMS320C6701, Floating-Point Digital Signal Processor [Online],

Available: http://focus.ti.com/docs/prod.

[26] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide (Texas

Instruments, 2000).

[27] Texas Instruments 2001. TMS320C62x/C67x library functions package with Code Com-

poser Studio1.2.

[28] M. Yang, Y. Wang, J. Wang, and S.Q. Zheng, Optimized scheduling and mapping of

logarithm and arctangent functions on TI TMS320C67x processor, Proc. IEEE Intl

Conf. on Acoustics, Speeach, and Signal Processing (ICASSP), 2002, 31563159.

23

