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Abstract— The design of a fast and fair arbiter is criti-
cal to the efficiency of the scheduling algorithm, which is
the key to the performance of a high-speed packet switch.
In this paper, we propose a parallel round-robin arbiter
(PRRA) design based on a binary-tree structure. We show
that our design is simpler and faster than existing round-
robin arbiter designs.

I. INTRODUCTION

There are four major aspects in the design and implementation
of a fast packet switch: (1) a cost-effective switch matrix that pro-
vides many non-conflicting paths between inputs and outputs; (2) a
scheduling algorithm that chooses input packets to send to outputs;
(3) a fast arbitration scheme for resolving output contentions; and
(4) a fast mechanism that generates control signals for switching
elements to set up non-conflicting paths between inputs and out-
puts of the switch matrix. For a given switch matrix, the solution
of (3) can be used to implement (2) and (4). Hence, the design of
a fast arbitration is of critical importance to the design of a high-
performance packet switch. In this paper, we focus our discussion
on a cell-based crossbar switch for unicast I/O connections. In such
a switch, variabl e length packets are segmented into cells upon ar-
rival, transferred across the switch S, and then reassembled again
before they depart.

Consider an N X N non-blocking switch § with N inputs I; and
N outputs O;, 0 < 7 < N. To avoid head-of-line blocking [1], vir-
tual output queues (VoQs) are employed at each input. In each
cell slot, each mput I; may have multiple connection requests, each
being associated with an output, and each output may receive mul-
tiple requests. In order for the switch matrix to operate properly,
at most one connection request for each output can be granted dur-
ing any cell slot. Such a setting is called a conflict-free connection.
The cell scheduling problem for S can be abstracted as finding a
maximum weight matching (which corresponds to an optimal set of
conflict-free connections) in a bipartite graph for each cel slot to
satisfy a set of performance requirements, such as cell delay, fair-
ness, etc. Since the time complexity of all sequential maximum
weight matching (MWM) algorithms is too high to be implemented
in hardware, many distributed hardware scheduling algorithms have
been proposed ([2], [3], [5], [6], [8], [9]). Instead of findhg an MWM,
these algorithms assume that all requests have the same weight and
approximate a maximum size matching (MSM).
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Fig. 1. Hardware scheduler architecture for a crossbar switch.

Figure 1 shows the hardware scheduler architecture on which

these MSM approximation algorithms are implemented. In such a
scheduler, each input/output is associated with an N-input arbiter.
A simple scheme for assuring fairness of an arbiter is the round-robin
dynamic priority assignment. In this scheme, all request inputs are
arranged as a directed loop. In this loop, the request input that
follows the request input being served in the current cell slot s as-
signed the highest priority in the next cell slot. The priority of other
request inputs is determined by their positions in the loop from the
request input that is being served. The request input that releases
the output will be assigned the lowest priority.

In [7], Gupta and McKeown surveyed previously wel-known
round-robin arbiter designs, and proposed two new programmable
priority encoder (PPE) designs, both having O(log N) gate delay.
Both designs are rather too complicated for the simple round-robin
arbi tration scheme. In fi], Chao, Lam and Guo proposed a parallel
arbiter. Ths arbiter has a tree structure of O(log N) levels. Clearly,
it has O(log N) gate delay. By associating a 1-bit memory with each
internal node of the tree, this arbiter i mplements the round-robin se-
lection rule only under the condition that all N requests are present
in each cell slot. When there are N/2 + 1 request inputs repeatedly
requesting service in a specific pattern, this arbiter grants one re-
quest input N/2 times more than each of the remaining N/2 request
input, resulting unfairness.

In this paper, we propose a new parallel round-robin arbiter de-
sign (PRRA) based on a binary-tree structure. We formally prove
that the proposed PRRA design achieves the round-robin fairness
under any input patterns. The latency of our design is O(log N)
gate delay and consumes O(n) gates. Compared to the designs of
PPE, our design is much simpler and practically faster.

II. DEsIGN OF PARALLEL ROUND-ROBIN ARBITER

In this section, we illustrate the parallel round-robin arbiter
(PRRA) design taking the example of an output arbiter O; with IV
request inputs. Without loss of generality, we assume that N = 27,
n > 2. The block diagram of an 8-input PRRA arbiter is shown in
Figure 2. The structure of this circuit can be vewed as a (log N+1)-
level complete binary tree. The nodes are partitioned into levels.
The node in level 0 is called the root node (or, simply, r-node). The
nodes in level log N are called leaf nodes (or, simply, [-nodes). Leaf
nodes, as represented by thick rectanglesin Figure 2, are connected
as a ring. All remaining nodes are called internal nodes. Internal
nodes are divided into two types. Type 1 internal nodes (or, simply,
71-nodes) are those in level (log N — 1), and type 2 internal node
(or, simply, 72-nodes) are those in levels 1 through level (log N — 2).

The structure of I-nodes and their connections are shown in Fig-
ure 3, in which a dashed rectangle represents an {-node, which con-
sists of an RS flip-flop Head. Input Request; (R;), which is from I;,
being 1 indicates that I; is requesting to be connected to O;. The
output H; of Head; being 1 indicates that a linear priority scheme
of Iy I(i41) mod N»*** s {4 N—1) mod N is currently used, with I;
having the highest priority to be connected to O;.

At any arbitration time, one and only one of Head;’s can be in
the 1-state (assume that initially Headg & set to 1). Suppose that
currently Heady is in 1-state, i.e. Hjy = 1. Then, if any I is
granted connection to Oy, Head(;11) mod i 18 set to 1 and Heady,
is reset to 0; otherwise Heady remains to in 1-state. Such a rotating
assignment is enforced by G;’s.

When I requests to connect to O;, Ry = 1. The outputs R;’s
and H;’s are used by the arbiter to determine which [-node will be
selected. Suppose that currently Hy = 1. There are two cases.
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Fig. 2. Structure of an 8-input parallel round-robin arbiter. (a)
Block diagram. (b) The tree structure.

Case 1: For some 7, R; = 1. In this case, the arbiter returns

G(k-l-a) mod N = 1, where
a=min{b|Rx1t) moa v = 1,0 <LbIN —1} (1)

and

Ge.=0 forc#a. (2)

The following flip-flops will be affected:
Heady < 0,Head(y4a41) mod N ¢ 1. (3)

Grant(kya) mod N = 1 is sent to I(x14) mod N-

Case 2: R; =0 for 0 << N — 1. In this case, the arbiter returns
G; =0for 0 <: < N —1. No [-node is selected because there is no
requests. All Head's in [-nodes remain unchanged. In particular,
Heady remains to be in 1-state.
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Fig. 3. Il-nodes.

Let w be an 7;-node or an is-node. We use outputs S° and St
of u to code the states of [-nodes in the subtree rooted at « as in
Table I. The coding is first generated by ¢1-nodes for all subtrees of
two [-nodes. An 7;-node is a combinational circuit, as shown in the
dashed rectangle in Figure 4. It has four inputs from its two child
nodes (which are leaf nodes): Ry and Hj from its left child, and
Rp and Hp from its right child. It provides two outputs S° and S!
to its parent node. If an ¢1-node is the left (respectively, right) child
of its parent node, then S° and S! are SOL and Si (respectively,
S% and Sll%) of its parent, respectively. An 7;-node has one input
G from its parent node. If this ¢1-node is the left (respectively,
right) child node of its parent node, this input is the output G,
(respectively, GR) of its parent node. This 71-node has two outputs
G and G, which in turn are G inputs of its left and right child

| St | S0 || states

Hjy = 1 is not in the subtree rooted
at v and the number of B; = 1 in
this subtree is 0

Hjy = 1 is not in the subtree rooted
at u, and the number of R; =1 in

this subtree is > 0.

Hjy = 1 is in the subtree rooted at u,
and the number of R; = 1 such that
¢ > k in this subtree is 0.

Hjy = 1 is in the subtree rooted at wu,
and the number of R; = 1 such that
¢ > k in this subtree is > 0.

TABLE 1
SY AND S! USED TO CODE THE STATES OF [-NODES OF A SUBTREER

ROOTED AT AN 71-NODE OR AN 72-NODE.

node, respectively. The 1/O relations of an 1-node are specified by
the following Boolean functions:

S = Rgr+Hg Rp (4)
S = H;+Hp (5)
Gp = G-Rp-(Hp+Hgr -Rg+Hp Hg) (6)
Gr = G-Rp-(Hr+H, R +H, -Hg-Ry) (7)

An iz-node is a combinational circuit, as shown in the dashed
rectangle in Figure 5. It has four inputs from its two child nodes
(which are either ¢;-nodes or i3-nodes): SOL and Si from its left
child, and S% and Sll% from its right child. It provides two outputs
S% and S! to its parent node. If an iz-node is the left (respectively,
right) child of its parent node, then its S% and S! are SOL and Si
(respectively, S% and Sll%) of its parent, respectively. As an 7;-node,
an 72-node has one input G from its parent node. If this i2-node is
the left (respectively, right) child node of its parent node, this input
is the output G, (respectively, G ) of its parent node. This 75-node
has two outputs G;, and G, which in turn are GG inputs of its left
and right child node, respectively. The I/O relations of an iz-node
are specified by the following Boolean functions:

$° = Sp+sY -8k (8)
s = si+sh ©)
GL = G-(S}-S)+5% S%+5%-5%
+57 58-Sk 5%+ 57 5% 5L 5%)
= G-(S;-S)+Sk-Sh+5]-Sx+5]-Sk) (10)
Gr = Sp-Sh+S]-5%+5] 5% Sk-s%

G- (Sk-S%+ 8L -5 +59-8%) (11)

An r-node is a sub-circuit of Figure 5, as shown in the dashed
rectangle in Figure 6. It has four inputs from its two child nodes:
SOL and Si from its left child, and S% and Sll% from its right child.
It provides two outputs GG;, and G, which in turn are G inputs of
its left and right child node, respectively. The I/O relations of an
r-node are specified by the following Boolean function:

Gp = S}-59+45L.59 450 .59.5L.550
= 5;-S)+5L-S%+57-5% (12)
Gr = Sk-5%+51.50459.59 (13)
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Fig. 4.

Fig. 5.

ip-node structure.

Now,

IIT. CORRECTNESS

In this section, we show that our design achieves pure round-robin
fairness.
Lemma 1: Let u be an i;-node or an i3-node of the PRRA. u
computes its S° and S! that satisfy their definitions given in Table
I.
Proof: By Equations (4) and (5), it is easy to see that each ¢1-node
computes its outputs S° and S' correctly. Assume that the inputs
Si SOL and S}%S% of any is-node u correctly code the state of u’s
left and right subtree, respectively. Applying induction on the node
levels using Equations (8) and (9), we conclude that the outputs S°
and S' of any i5-node satisfy their definitions given in Table I. O

Lemma 2: In any level of internal nodes of the PRRA, there is
exactly one node whose output S' = 1.

Proof: Since there is exactly one [-node whose head register can
be in 1-state, by the coding of S'S°, the claim directly follows from
Lemma 1. a

Lemma 3: The following statements hold for the r-node:

(i) The request to be granted, if any, must be found in the left
subtree of the r-node if and only if G, of the r-node is 1.

(ii) The request to be granted, if any, must be found in the right
subtree of the r-node if and only if G of the r-node is 1.

(iii) One and only one of G and Gr of the r-node is 1.

Proof: According to our round-robin priority scheme (Equation
(1), (2), (3), the request to be granted, if any, must be found in the
left subtree of the r-node if one of the following conditions hold:

Fig. 6.

r-node structure.

(a) Hi = 1 is in the left subtree of the r-node, and there is a
request R; = 1 in the left subtree of the r-node such that ¢ > k.
(b) Hyx = 1 is in the left subtree of the r-node and there is no
request R; = 1 in the right subtree of the r-node.

(¢) Hj = 1is in the right subtree of the r-node, there is no request
R; = 1 such that ¢ > k and there is at least one R; = 1 in the left
subtree of the r-node.

By Lemma 1, these conditions correspond to Si SOL = 11,
S}%S% = 00 and Sisg S}%S% = 0110, respectively, of Equation (12).
If none of these conditions holds, the request to be granted, if any
, must be found in the right subtree of the r-node. This proves
(1). The argument for (ii), which corresponds to Equation (13), is
almost the same.

By Lemma 2, the following midterms of Si, SOL, Sll%, and S%
cannot be true: SiS% S}QS% =0 X 0X and SiSOLS}%S% =1x1x,
where X denotes “don’t-care”. The mutual exclusiveness of GG;, and
(iR can be easily established by the fact that all these midterms are
shaded in Equation (12) and (13). O

Lemma 4: In any level of i3-nodes, there is exactly one node with
input G = 1. Let u be any i2-node with input G = 1. The following
statement holds for u:

(i) The request to be granted, if any, must be found in the left
subtree of u if and only if G, of w is 1.

(ii) The request to be granted, if any, must be found in the right
subtree of u if and only if G of u is 1.

(iii) One and only one of G and G of w is 1.

Proof: By Lemma 2, SiSOL # 00 for the r-node. By Equations
(12) and (13), we know that if SiSOL = 00 then G; G = 01, and
if S}%S% # 00 then G G = 10. According to Equations (10) and
(11), we list in Table II all possible combinations of the inputs and
outputs of v. By an induction, we know that in any level of 73-nodes
there is exactly one node with input (G = 1, and one and only one
of G;, and Gr of uis 1.

Now let us prove (i). According to our round-robin priority
scheme (Equations (1), (2) and (3)), the request to be granted, if
any, must be found in the left subtree of « if one of the following
conditions hold:

(a) Hjy = 1isin the left subtree of u, and there is a request R; = 1
in the left subtree of u such that : > k.

(b) Hj = 1isin the left subtree of w and there is no request R; = 1
in the right subtree of u.

(c) Hj =1 is in the right subtree of u, there is no request R; = 1
such that ¢ > k and there is at least one R; = 1 in the left subtree
of w.

(d) Hg =1 is not in the tree rooted at u, and there is at least one
request in each of u’s left and right subtrees.

Compared with the proof of (i) of Lemma 3, one additional con-
dition is considered, which is (d). We add midterm Si S% Sllis% =
0101 to Equation (12), corresponding to this condition, and obtain
Equation (10). Clearly, one of conditions (a), (b), (¢) and (d) holds
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sts9 shosy st S0 Gp Gy

0 0 1 0 1 0 1
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 0
0 0 1 0 1 0 0 1
0 1 1 0 1 0 1 0
1 0 0 0 1 0 1 0
0 0 1 1 1 1 0 1
0 1 1 1 1 1 0 1
1 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0
1 1 0 1 1 1 1 0

TABLE 11

PossiBLE /O OF AN i2-NODE, ASSUMING ITS INPUT G = 1

for the two i2-nodes which are child nodes of the r-node. Then, (i)
follows from a simple induction on iz-nodes in level 1 through level
(log N-2). The proof of (ii) and (oii) is similar to the proof of (ii)
and (iii) of Lemma 3. o

Theorem 1: PRRA operates correctly.

Proof: Consider G, and G'r of any i;-node v that takes care of
requests R; and Rp from its two child nodes, which are [-nodes.
By Lemma 4, there is exactly one 71-node with input G = 1, and,
for this node, S18° # 00. The request to be granted, if any, must
be found in the subtree rooted at this node. Let v be this 71-node,
and let the request corresponding to Ry and Rg of v be R;+ and
R+ 41, respectively.

If S'1S° = 01 for v, then R;+R;+4y1 = 01, 10 or 11, and
Hy+ Hiv 41 = 00. The term G- Ry, -Hp, - Hg of Equation (6) sets G
to 1 for R;* R;*41 = 10 or 11, and the term G - Rp -H; -Hg -R;
of Equation (7) sets G+ 41 to 1 for R;+ R;»41 = O1.

If S159 = 10 for v, then R;+R;+41 = X0 and H;+ Hi» 4 = 01, or
Ri+Ri+y1 = 00 and H;+ H;» 41 = 10. The term G - Ry, - Hg - Ry of
Equation (6) sets G+ to 1 only when R;* R;+ 41 = 10.

If S15° = 11 for v, then R;+R;+41 = 1x and H;+ H;+ 1 = 10,
or R;+Ri»y1 = x1 and H;+ H;= 41 = 01. The term G - Ry - Hp of
Equation (6) sets G;+ to 1 when R;+ R;»41 = 1X and Hy+H;» 41 =
10. The term G - Ry - Hi of Equation (7) sets G+ 41 to 1 when
Ri+Rivy1 = x1 and H;» H;» 41 = 01. The term G - Ry - Hy - R of
Equation (7) sets G+ 41 to 1 when R;+ Rj»41 = 0l and H+ Hy+ 41 =
10.

All possible cases are covered by the proposed PRRA design.
Therefore, PRRA correctly grants a request, if any, following the
linear priority defined with Hj as the head. It is easy to see that
the RS flipflops correctly select the next value of k once GG;’s are
generated. We conclude that PRRA correctly implements the func-
tions described in Case 1 and Case 2 at the beginning of this section.
a

IV. SiMuLATION RESULTS

In terms of time complexity, the proposed PRRA design takes
O(log N) gate level delay to get the grants ready. The area cost of
the binary tree structure is O(N) gates.

Simulations of the proposed PRRA design and PPE (PPE_only
_smpls in [7]) are conducted on Altera’s ACEX1K series CPLD
(FPGA). We focus on minimizing the delay from requests R;s to
grants G;. Table III compares the timing and area cost of PRRA
and PPE in terms of ns t and number ¢ of logic cells (LCs), with en-
tries t/c. All these designs are optimized under the same operating

Design N=8 N=16 N=32 N=64 |

PPE 13.8/41 17.5/137 30.0/676 39.9/2600

PRRA  15.3/34 17.4/76  19.9/172 25.5/318
TABLE III

Timing and area cost of Design PPE and Design PRRA.

conditions and the tool is directed to achieve the fastest implemen-
tation of each design. It shows that PRRA is faster than PPE for
N >= 16 and PRRA consumes much fewer logical cells than PPE
under all N configurations. Further, we can see that PRRA is more
scalable than PPE due to its binary-tree structure.

V. CONCLUDING REMARKS

In this paper, we proposed a parallel round-robin arbiter and
showed that our design is simpler, more scalable than existing
round-robin arbiter designs while achieving pure round-robin fair-
ness. Practically the proposed PRRA design is faster and consumes
less area than the programmable priority encoder [7]. As a basic
building block, PRRA is very useful for implementing well-known
1SLIP, DRR and other round-robin matching scheduling algorithms
for high packet switches with input buffers. It is also useful for other
applications, such as the arbitration of a shared bus, arbitration for
permutation networks such as the 3-stage Clos network [11] and
multi-stage Benes networks [10].

We can replace N RS flip-flops by an encoder, a decoder and
a log, N-bit register to make the proposed PRRA programmable.
Such a programmable arbiter can operate in two modes. Normally,
the arbiter uses round-robin policy to select requests. By providing
the register with a specific value, the arbiter can assign any request
the highest priority.
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