Optimized Parallel Implementation of Polynomial Approximation
Math Functions on a DSP Processor

Mei Yang, Jinchu Wang, Yuke Wang and S.Q. Zheng
Department of Computer Science
Univ. of Texas at Dallas, Richardson, TX 75083
{meivang, yuke, sizheng}@uitdallas.edu

Abstract

This paper presents a general method to implement
polynomial approximation math functions on
TMS320C67X architecture with multiple parallel
execution units. Our method consists of grain packing,
mapping and scheduling to reduce data dependency
overhead and fully utilize delay slots. Experimental results
of our method on TMS320C67x have achieved up to
70.2% performance improvement over 'C67x library
functions.

1. Introduction

Many real-time applications in the areas of signal
processing, process control, etc., require very fast
implementation of a large number of mathematical
functions. Four commonly used math functions include: a)
the exponential function, b) the logarithmic function, c)
trigonometric functions, and d) inverse trigonometric
functions [1]. These functions are generally implemented
by polynomial approximation. Most C compilers of DSP
processors provide these math functions in their libraries.

The TMS320C67x is the general-purpose floating-point
DSP family in the TMS320C6000™ DSP platform. It is
based on TI advanced VelociTI very-long-instruction-word
(VLIW) architecture, which can execute up to eight
instructions every clock cycle and achieve up to 1 Giga
floating-point operations per second (GFLOPS) [2]. The
high performance features make this DSP an excellent
choice for multi-channel and multifunction applications,
which have large numbers of math functions involved.

The C library functions provided by 'C67x use
polynomial approximation to implement these commonly
used math functions. The efficiency of these functions is
quite low due to the high data dependency and deep delay

344 0-7803-7150-X/01/$10.00@2001 IEEE

slots of instructions, which makes it very difficult to do
parallel scheduling. The optimization tools in its compiler
do not work well for exploring the parallelism of
computations with dependent data.

This paper proposes a grain packing approach to
reducing the data dependency and improving parallel
scheduling for polynomial approximation functions. The
proposed method is based on partitioning computations
into groups such that the inter-group data dependency is
minimized. The implementation of our optimization
method in assembly code takes advantage of the VLIW
architecture of 'C67x. Experimental results have shown
that performance (total cycle counts) improvement of our
method over TI "C67x library functions is up to 70.2%.

2. TMS320C67x DSP Processor

With performance of up to 1 GFLOPS and a complete
set of development tools, the TMS320C67x offers cost-
effective solutions to high-performance floating-point DSP
programming challenges [3].

Program RAM/cache Data RAM

32-bit address. 32.bit address JTAG test!
256-bit data 8-, 16-, 32-bit data emutation
-~ 512K bits RAM 512K bits RAM control
. gg 3L il
Program/data buses
B
32 .
Multichannel
(N (TVEY) buttersd
“G6x CPU core serial port
Program fetch Control —
Instruction dispatch ragisters Multichannel
e] e s
Data path 1 Data path 2 togic
Aregister fils | | [B register file
SRR i © BT
Emutation
[CLATST[MILDT) | (LZ[S2IMZ07 | interrupts
“ PLL clock
generator
| Power Management J

Figure 1. TMS320C67x block diagram

The high performance levels of the TMS320C67x DSP
chips are made possible by an innovative architecture
designed to meet a variety of applications. Figure 1 shows
the TMS320C67x architecture [2]. The "C67x processor
consists of three main parts: CPU (or the core),
peripherals, and memory. Eight functional units operate in
parallel, with two similar sets of the basic four functional
units. These units communicate using a cross-path between
two register files, each of which contains 16 32-bit
registers. ‘C67x provides a large bank of on-chip memory
and has a powerful and diverse set of peripherals.

Each ‘C67x instruction has a functional unit latency of 1
clock cycle followed by variable delay slots, each
corresponding to 1 clock cycle [4]. For "C67x applications,
delay slots must be taken care of in parallel scheduling. If
instructions are scheduled properly, "C67x hardware
resources can be fully utilized to hide instruction execution
latencies and speed up computations.

Due to its high performance, ease of use, and affordable
pricing, TMS320C67x generation is an ideal solution for
multi-channel, multi-function floating-point applications,
such as Digital Receiver, Virtual Reality 3-D graphics,
Audio, Radar, etc. These applications involve many math
functions including the four commonly used functions
mentioned earlier. These functions are generally
implemented by polynomial approximations [5].

3. Polynomial Approximation Math Functions

The polynomial approximation method is fundamentally
very simple. If a function f(x) has continuous derivatives

up to (n+1)" order, then this function can be expanded in
the following fashion [5]:

5
Sa)(x-a)”

f() = f(@)+ f (a)x—a)+ > (D

7P @yx-a)"
Fot———————+
n
where Rn, called the remainder after n+1 terms. If a = 0
the series is called the MacLaurin Series.

Rn

To obtain the desired accuracy, TI 'C67x library
approximate these functions by a polynomial of certain
sufficient order, the same technique introduced for 'C3x
[6]- The polynomial [6] can be generally expressed as:

P = & talils'). @

where x is the independent variable, » is the polynomial
order (a fixed integer), and qfi] is a set of n+/ fixed
coefficients. So the desired function, say fx) is then
approximated by a particular P(n,x) such that:

J(x)=P(n,x)+e(x),

xl< x < xu, 3)

where x/ and xu are the limits of the domain of x, and e(x)
or e(x)/f(x) is the error function which has been usually
minimized in the min-max (equi-ripple) sense. This is done
by selecting appropriate coefficients a[i]. The adjusted afi]
are somewhat different from the coefficients listed in [5].
General description of polynomial approximation
techniques used in TI math library functions can be found
in [6].

4. How TI 'C67x library Functions Work

TI 'C67x provides C library functions of these
commonly used functions for both single-precision floating
point and double-precision floating point [7]. Our
discussion is focused on single-precision floating-point
functions. The implementation of these functions all
involve a loop of additions and multiplications of a[i] and
¥'. Taking the example of natural logarithm function, Jogf
routine, its C main loop [7] is shown in Figure 2, which is
based on equation (4).

In(1+x) = kx +hyx” +hyx” + ko + ko’ +kx® + o x” + kx®
= x(k, + x(ky + x(ky + x(ky + x(ks + x(kg + x(k; + xkg)))))) @)

{inti;
float *p=a;
result=(f)*(*p++);
for (i=8-1; i>0; i--)
result=(f)*(((result)+(*p++)));

Figure 2. The main loop of logf function in"C67x library

In Figure 2, frepresents the independent variable x. It’s
very simple for C implementation. However, the high data
dependency between iterations (the i™ result depends on
the (i+1)™ result) and long delay slots of floating-point
instructions of 'C67x make it difficult to do parallel
scheduling. Therefore the efficiency of these functions on
"C67x is quite low. Figure 3 shows the compiled assembly
code on Code Composer Studiol.2 (CCS1.2). The latency
of each iteration is 8 cycles. The total number of cycles of
equation calculation is 60. Plus the cost of pre-processing
and post-processing, the maximum total running time of"
logf function (with C overhead) is 136 cycles, that is 814ns
when system clock is 167M Hz. The running time of other
functions (expf, sinf, cosf and atanf) is up to 265 cycles.
All these cycle numbers are reported by CCS1.2.

1. LDW *p_to_coef++, coef_| ;delay 4 slots
2. MPYSP f, sum, result ;delay 3 slots
3. NOP 3
4. ADDSP result, coef_i, sum ;delay 3 slots
5. NOP 2

Figure 3. The assembly code for each iteration of logf function
in"C67x library

345

It is desirable to optimize the efficiency of these library
functions, which are heavily used in many real-time
applications. Unfortunately, the performance of these
functions cannot be improved using all the optimization
options of the parallelizing compiler CCS1.2. While these
optimization techniques (e.g. software pipelining [8]) are
suitable for applications with a large number of
independent variables, such as FFT, FIR, TIR, etc.; they do
not work well for an implementation with dependent data
as shown in equation (4) and Figure 2. In the following, we
will introduce our general method to improve the
efficiency of these polynomial approximation math
functions.

5. Optimized Parallel Implementation of
Polynomial Approximation Math Functions

For the same computational problem, different
algorithms result in different data dependency structures.
When mapped to a particular architecture, different
algorithms may lead to different performance. Our goal of
optimization is to improve the parallelism of computations
by finding an aigorithm suitable for TMS320C67x
architecture. To achieve this goal, we need to reduce data
dependency and utilize delay slots of instructions. Our
approach consists of finding a computing process
equivalent to the polynomial expansion, partitioning this
process into independent groups and mapping these groups
to function units of 'C67x so that delay slots can be
utilized.

Taking example of /ogf function, we will explain how
the optimization method works. First, equation (4) can be
derived as the following:

In(l1+x)=rk;x+ k;,.\—z + k3x3 + k4x4 + k5x5 +k6x6 + k7x7 + k8x8
_ 3 5 7 (5)
= x(kj +k2:c)+.\ (k3 thyx)+xT (ks tkgx)+x (ky thgx)

The fine-grain data dependency graph is thus obtained in
Figure 4, which is different from traditional fine-grain
program graph [9]. Instead of improving performance by
reducing inter-processor communications, we use grain
packing technique to assign function units and fully utilize
delay slots. Here each node denotes an instruction, L, M
and + represents the instruction for load, multiplication and
addition respectively. Inside each node is the destination
operator. Each edge represents the data dependency of
next node (edge head) to previous node (edge tail). The
number on each edge gives the instruction delay slots.
There are 28 nodes in this graph.

Then we use grain packing [9] to optimize parallel
scheduling. Figure 5 presents the grain packing graph
which groups 28 small nodes into 16 larger nodes (named
as A;...Aq, B;...B;). We observe that operations of the

346

nodes at the same level can be executed in parallel; nodes
on different levels should be scheduled according to data
dependency; and computation in each node should be done
sequentially and at the same side of function units.
Computation of x**/ in node Ay can be scheduled in the

delay slots of other nodes.

Figure 5. Grain packing graph of equation (5)

‘C67x has eight functional units operating in parallel,
but each floating-point instruction can only use 2 function
units, such as LDW (.D1 and .D2), MPYSP (.M1 and .M2)
and ADDSP (.L1 and .L2) [4]. Due to this limitation, the
maximum paralleled operations of loads, multiplications or
additions in one cycle are 2. Then we get the optimized
parallel scheduling of packed graph shown in Figure 6, the
shaded area are delay slots. The total number of cycles is
only 25, which reduces 58.3% compared to 60.

Generally, these polynomial expansions can be divided
into two types, derived as equations (6)-(7).

2 5 7

Jr(x) =kg +kypx+kyx +k3,\'3+k_‘x4+k5x',*k6x6+k7.\' +k8.\'8(6)
7

= kg +x(hy +kox)+x7 (ky +kyx)+x (kg +kgx)+x’ (ky +kgx)

3 7 9 1 1 15 17
Fa(x) =k +kyx+kyx +k3x5+k4x thox +kgx 1+k7x 3+k8x +kgx

_ 3 27 2.1 215 2
=kgthpx+xT (ky+kgxT)ty (k_/+k5,\ Jrx (kg thyxT)+x T (kg tkgx)

Q)

&', In(1+x) belong to type 1, denoted as f;(x). Type 2,
denoted as fi(x), includes sin(x), cos(x) and tan’(x).
Similar to f;(x), we can get the optimized scheduling for

other math functions using polynomial approximation can
also be improved by our optimization.

Jf>(x). The running t?me of eql'J.ati(?n calculation of f5(x) is 29 Function I?E:;::II?OZ:(dCLKs) g&;ﬁ:ﬁy g: g:;temem
cycles. In next section, we will give the performance of our oxf 74 513 65.3%
optimization method implemented on TMS320C67x and Togf 44 136 67.6%
comparison of it with TI "C67x library function. sinf 69 173 60.1%
v cosf 73 183 60.1%
.D1 .02 M M2 L1 L2 .51 .82 atai 79 265 70.2%
of k |of & _|ol ¥ |° 0 0 0 Table 1. Comparison of Optimized Implementation vs. TI
ok k|t 1 we | 1 1 library Function in terms of total cycles
2| o2 LL 2 2 2 2 2 2
e Ple] - - ’ : ? 7. Conclusion Remarks
4 4 4 3 4 X 4 idle 4| |die 4 4
5 5 5 p(':d 5 pr’gd 5 5 5 5 B B
o o R N R R o DSP processors have gained more importance and
. ; . , ; ; ; popularity in recent years for a wide variety of
s s 16 s s s s applications. To implement commonly used mathematical
o s o s ° 9 functions on DSP processors with parallel execution units
10 10 0 10 is an important and non-trivial task. In this paper, we have
1 1 ’ " presented a general optimization method based on the
12 12 de 12| e grain packing to achieve optimal parallel scheduling for
13 13 13 those commonly used mathematical functions. Experiment
14| e 14| 1de 14 results of our new implementation using this method have
15 15 15 achieved significant performance improvement over the
16 16 16 library functions of TMS320C67x provided by TI, the
7 17 7 manufacturer of the DSP processors. This work is valuable
18 18 1 to real-time applications using DSP, and it is also
19 19 19 1 19 19 10 19 applicable to other DSPs with parallel execution units.
20 20 20 20 20 20} 20 20
21 21 21| ide [21] idle [21] sumgy, | 21 21 21
22 22 22 22 22 - 22 22 22 References
23 23 23 23 23 23 e 23 23
u o " 2 M uil e 2 [1]. Das, D.; Mukhopadhyaya, K.; Sinha and B.P.,
“Implementation of four common functions on an LNS co-

Figure 6. Parallel scheduling for computation of equation (5)
Notes: prod,;;, represents k. o Prodgi+ 1y ai+2) TEPrESents
X gy hogiaox), 050 <3; SUMi+ 1) (2iv2) TEPTESENtS (Kap4 ;K314 2%),
and so on, 0<i <3.

6. Experimental Results

To evaluate the effectiveness of our proposed
optimization method, experiments of these commonly used
math functions are conducted on TMS320C67x. All
assembly programs are written and debugged on Code
Composer Studiol.2. Test programs of our optimization
functions and "C67x library functions are profiled and
number of clocks for these functions with C overhead are
measured in CCS1.2. The maximum running time (all pre-
processing and post-processing are counted) in clock
cycles (CLKs) of these new functions using our optimized
method vs. ‘C67x library functions are given in Table 1.

Noticeably, the improvement of our optimization
method is over 60% and up to 70.2%. It’s expected that

processor”, IEEE Transactions on Computers, Volume: 44
Issue: 1, Jan. 1995, pp. 155-161.

[2]. Texas Instruments, TMS320C62x/C67x Technical Brief,
1998. :

[3]. Texas Instruments website,
http://focus.ti.com/docs/prod/productfolder.jhtml?genericPa
rtNumber=TMS320C6701&pfsection=desc.

[4]. Texas Instruments, 7MS320C6000 CPU and Instruction Set
Reference Guide, 2000.

[5]. Milton Abramovitz and Irene A. Stegun, Handbook of
Mathematical Functions, New York: Dover Publications,
1965.

[6]. Texas Instruments, 4 Collection of Functions for the
TMS320C30. 1990.

[7]. Texas Instruments, rs.src. TMS320C62x/C67x library
functions package with Code Composer Studiol.2.

[8]. Yin-Tsung Hwang, Ying-Chou Chuang, “High Performance
Code Generation For VLIW Digital Signal Processors”,
Signal Processing Systems, 2000. SiPS 2000. 2000 IEEE
Workshop on, 2000, Page(s): 683 -692

[9]. Kai Hwang, Advanced Computer Architectures, McGraw-
Hill, 1993.

347

