CONSTRUCTING SCHEDULERS FOR HIGH-SPEED,

HIGH-CAPACITY SWITCHES/ROUTERS

S. Q. Zhend, M. Yang®, and F. Masett
1 Department of Computer Science
Box 830688, MS EC 31, University of Texas at Dallas, Richardson, TX 75083-0688, USA
{sizheng, meiyang@utdallas.edu
I Research & Innovation, Alcatel USA, 3400 Plano Parkway, Plano, TX 75075, USA

Francesco.Masetti@alcatel.com

Abstract

The key to the design of CIOQ switches with space division multiplexing and grouped inputs/outpus (SDMG
ClOQ switches for short) is a fast scheduling scheme resolving input and output contentions. Such a scheduling
scheme is a typical application of the multi-requester, multi-server (MRMS) problem. To efficiently solve the MRMS
problem and provide fair services to all requesters, we introduce programhsablectors which can makegrants
out of N requests irO(log N) time. We first show that the function of a programmablselector can be reduced to
a programmable prefix sums operation. Based on a simple prefix sums circuit, we propose three programmable prefix
sums circuit designs. We further propose four different programniabkdector designs. Simulations on Synopsys'’s
designanalyzer demonstrate that our designs achieve significant performance improvement over the design using
programmable priority encoders. Due to their high performance, programragiectors are very useful for con-
structing schedulers for high-speed, high-capacity switches/routers, such as, SDMG CIOQ switches and multi-server
switches.

Keywords: Switch, scheduler, programmalileselector, programmable prefix sums.

1. Introduction

The exponential growth of Internet traffic demands high-speed, high-capacity IP switches/routers. In gen-
eral, an IP switch/router consists of a number of input/output (1/0O) modules that are interconnected by a
switching matrix. Typical tasks assigned to an I/O module include IP packet buffering, routing table lookup,
IP packet segmentation, packet filtering, queue management, etc. As these tasks being carried out by hard-
ware, IP packet switching becomes the bottleneck of router performance. There are two major challenges
in the design of high speed, high capacity IP switches/routers. (1) How to build a large capacity switching
matrix to improve the switching capacity? (2) How to design a fast scheduling scheme that resolves output
contention and schedules packet transmission between I/O modules within stringent time constraint while
achieving high switching throughput?

To achieve high switching capacity, people have proposed combined input and output queueing (CIOQ)
switches, which take the advantage of input queueing (IQ) switches and output queueing (OQ) switches [1].
In a CIOQ switch, the switching matrix needs to rkitimes faster than the line rate (referred as speedup
of k) to realizek times switching capacity. However, for CIOQ switches with high speed links, it may not
always possible to realize speeduptof

To remove the speedup requirement of the switching matrix, we have proposed a new CIOQ switch archi-
tecture which features in space division multiplexing expansion and grouped inputs/outputs (SDMG CIOQ
switch for short) in [2]. To achieve the same switching capacity as of an/N CIOQ switch with speedup
of k£, an SDMG CIOQ switch employs akik x Nk switching matrix. As shown in Figure 1, for @i x N
SDMG CIOQ switch, there ark connections between each input/output port and the switching matrix. To
remove head-of-line blocking [3], each input port maintairtual output queues (VOQs) [3], each of
which is associated with a destination output port.

We assume that an SDMG CIOQ switch is cell based. In such a switch, variable-length IP packets are
segmented into fix-sized cells as they arrive, transferred across the switching matrix (SM), and reassembled

again into IP packets before they depart. Time is divided into cell slots and one cell slot equals to the

Input port 1

Output port 1
- | I |
Nk x Nk
. switch matrix
Input port N
Output port N
1 1
N—> Rk P _IIT]

ﬁScheduler

Fig. 1. An SDMG CIOQ switch.

transmission time of a cell. At the start of each cell slot, a scheduling algorithm needs to decide which cells
can be transferred from (to) each input (output) since there may beNipgéquests t@& connections at each
input/output port.

The key to the design of the SDMG CIOQ switch architecture is an efficient and fast cell scheduling algo-
rithm to resolve input and output contentions. The cell scheduling problem on the SDMG CIOQ switch can
be abstracted asrmaximumk-matchingproblem on the bipartite graph composed of nodes of input/output
ports [2] and edges of requests from input ports to output ports. Due to the high time complexity of op-
timal maximumék-matching algorithms, we have proposed an efficient approximation algorktRRRR in
[2], based on FIRM [4]. As many known scheduling algorithms for input-buffered switches, such as PIM
[5], iSLIP [6], DDR [7], FIRM [4], kFRR is also an iterative algorithm with each iteration consisting of the
following three steps.

Step 1Request Any input port with available connections sends requests to every output port for which

it has a request.

Step 2Grant. An output port with available connections grants up to the number of available connections,

starting from the highest priority input, and sends these grants back to their corresponding input
ports.

Step 3Accept An input port with available connections accepts grants up to the number of available

connections, starting from the highest priority output.
For brevity, we omit the details of howFRR updates the highest priority input/output pointers. Figure
2 shows the high-level block diagram of thERR scheduler implemented in hardware. Trant step is
implemented by a set o grant arbitration components, and theceptstep is implemented by a set df
accept arbitration components. Each arbitration component is responsible for selemtithof /V requests.
Clearly, the delay through a grant arbitration component and an accept arbitration component directly affects

the speed of theFRR scheduling algorithm.

Grant Accept
arbitration arbitration

State memory and update logic
1
i
Decision
Registers

Requests from VoQs

|
:
:

>

Fig. 2. Block diagram of th&kFRR scheduler for a?v x N SDMG CIOQ switch.

The function of an arbitration component used in #f#RR scheduler of an SDMG CIOQ switch is one
of many possible applications of the multi-requester, multi-server (MRMS) problem, which is defined as
follows. There areV requesters and servers, wheré < N. Given N binary input requests;’s, where
0 <i < N -1, with R, = 1 representing requesterhaving a request, select firstin{k, >~ ' R;}
requesters such th&t; = 1. All servers are functionally equivalent. At any time, at most one requester
can be served by a server. We define the implementation of:tkedection function as &-selector The
1-selector, an arbiter, is commonly used in constructing schedulers for input-buffered switches. Several
designs of high-speed 1-selector (e.g. [8], [9], [10]) have been reported.

A programmablek-selectoris one whose selection starting point can be dynamically changed to en-

sure fairness. One possible design of a programmalgielector is employing an arbiter, such as the pro-

grammable priority encoder (PPE) proposed in [9]. Since the PPE can only make one grant each time, we
have to run PPE up th times to make: grants. The time complexity of this design(gk log V), which

Is not fast enough to satisfy the requirements of some real-time MRMS applications, such as scheduling on
the SDMG CIOQ switch architecture. Thus, a more efficient hardware solution is needed.

In this paper, we propose several hardware designs of programmaeakectors, all having the time
complexity ofO(log V). To the best of our knowledge, our programmablgelector designs are the first
hardware designs that could makgrants out ofV requests simultaneously. Due to their high performance,
programmable:-selectors are very useful for constructing #€RR scheduler for SDMG CIOQ switches,
implementing schedulers for multi-server switches [11], [12], [13], and switch control/scheduling for high-
speed, high-capacity switches/routers.

The rest of the paper is organized as follows. In Section 2, we define the function of programimable
selectors. In Section 3, we reduce the programméidelection function to a programmable prefix sums
operation, and propose three different programmable prefix sums circuit designs based on a simple parallel
prefix sums circuit. In Section 4, we present four different programméaidelector designs, each one
is associated with a different next reference point generation circuit. In Section 5, we discuss and compare
simulation results of different programmaldteselector designs on Synopsydissignanalyzef15]. Section

6 concludes the paper.

2. Function of Programmable k-Selectors

The function of aprogrammablek-selectoris defined as follows. GiveV binary requestsk;’'s, where
0 <i < N—1,andtwo integers andk suchthad <z < N—1,1 < k < N, select firsmin{k, >~ ' R;}
input such that?; = 1 starting from positiorz in a circular manner. IR; is selected, then the output grant
signalG; = 1;if R; = 0, or R; = 1 but it is not selected (in such a casey ;' R; > k), thenG; = 0. This
k-selector is considered programmable because of the paramaetiich is specified dynamically each time

the device is invokedr is named as theeference pointvhich indicates the selection starting position.

The programmablé-selector function can be reduced to the following programmable prefix sums oper-
ation. GivenN binary requestsR = (R, Ry, -+, Ry_1), and an integer such that) < z < N — 1,
compute the prefix sumSum; = R, + Rui1)ymoan + -+ Ry for 0 < i < N — 1. After perform-
ing this prefix sums operation, requdstis granted if and only ifR;, = 1 andSum; < k. For example,
consider the case thaf = 8, £ = 3, x = 2, andR = (0,1,0,1,1,0,1, 1), we have(Sumg, Sumy, - - -,
Sumz) = (4,5,0,1,2,2,3,4), and the selected requests &g R4 and Rg.

The block diagram of a general programmabiselector is shown in Figure 3. It is the combination of a

programmable prefix sums circuit, a grant generation circuit, and a next reference point generation circuit.

In the following, we first introduce programmable prefix sums circuit designs.

Request k

L

Programmable Prefix Sums Circuit

S
Next Reference
Point Generation

anyGnt #
———| Register
Enable

Clk

Grant Generation

Grant

Fig. 3. The block diagram of a programmaltileselector.

3. Programmable Prefix Sums Circuit Designs
3.1 A Parallel Prefix Sums Circuit

We first discuss the design of a special case programmable prefix sums circuit with starting point
This prefix sums operation is defined as: given a sequence of intBger§ Ry, Ry, - - -, Ry_1), compute

the prefix sumsum; = Ry+ R +---+ R;for0 <i < N — 1.

Ry Rs Rg Ry Rg Ry Ryp Ryy Rip Rig Ry Ry

o S S :

Full adder
Sumo Suml Sum2 Sum3 Sum4 Sum5 Sum6 Sum7 Sums Sumg SumlDSumnSuleSumlSSumM Sumls
Fig. 4. A parallel prefix sums circuit using full adders.
Full adder
Carry save adder

Surrb Suml Sumz Sum3 Sum4 Sum5 Sume Sum7 Sum8 Surrb Sumlo S“mll
Fig. 5. A parallel prefix sums circuit using carry save adders and full adders.

We use adders to construct the parallel prefix sums circuit. Figure 4 displays the parallel prefix sum
circuit for N = 16 using full adders. Dotted blocks depict the recursive construction scheme of this circuit.
Due to ripple carries, such a design may not be the fastest one. Basically, there are two speedup methods.
One is using carry-look-ahead technique, and the other is using carry save adders to form a well-known
Wallace tree, as shown in Figure 5. Using carry save adders, the time complexity of this parallel prefix sums
circuit is O(log V) gate delay. We name this special-case prefix sums circuit (and its improved variations)

SIMPLE_PS

ConsiderN requestR = (R, Ry, -+, Ry_1) as an ordered circular queue. We define the prefix sums
problem with reference point af as follows: Given a sequence of integ®s= (R, R1,---, Ry_1) and
an integer variabl® < z < N — 1, compute the prefix sumSum; = R, + R(z41) moa v + -+ + R; for
0 <i < N — 1. Sincezx is a variable, this generalized problem is calpgdgrammable prefix sum®PS)

computation. In the following, we will present three programmable prefix sums circuit designs.

3.2 DesignSHIFT_PPS

Conceptually, this is the simplest design. The block diagram of this design is shown in Figure 6. One
SIMPLE_PS and two barrel shifters are used. Before prefix sums operafigna,are circular shiftedr
positions to the left. After prefix sums are computed, the sums are circular shifiesitions to the right.

There is an additional outptum = >N ;' R;, which will be used in th&ROUNDROBIN_SELECT design.

x Ro Ry Ry R4 Ry Rg Rg R,

N S Y S Y S

Barrel Shifter (circular left shift x positions)

I

Prefix Sums Circuit

IR

Barrel Shifter (circular right shift x positions)

L

Sum0 Sumy Sumy, Sumg Sumy Sumg Sumg Sumy, Sum

Fig. 6. A programmable prefix sums circuit using barrel shifters.

An N-bit barrel shifter can be implemented lyg N stages ofV 2 x 1 multiplexers withO(log V) gate
delay [14]. It should be noticed that the second barrel shifter is more expensive becauSe:@acbntains
log N bits. When implementing a programmabteelector, we can first use the comparators to oliqis,
as shown in Figure 11, before the grant signals are circular shifted right. This will significantly save circuitry

of the second barrel shifter.

X(2..0) T(7..0) Logic equations

000 11111111 Ty =1
001 11111110| T = T3 - 71 %o
010 11111100| Ty = T3 - 71

011 11111000| Ty = x5 - (x1 + x0)
100 11110000 Ts = 75

101 11100000| Ty = 3 + &1 - Zo
110 11000000| T) = 75 + 71

111 10000000| Ty = xo + 21 + o

TABLE |

TRUTH TABLE AND LOGIC EQUATIONS FOR THE THERMOMETER LOGIC OV = 8.

3.3 DesignDOUBLE_PPS

This design employs two copies 8fMPLE_PScircuit. One is used for computing prefix sums of the bits
preceding the:-th position, and the other is for calculating prefix sums of the remaining bits. The two parts
of prefix sums are merged into the final prefix sums.

We use anV-bit boolean vectorl to separate the two part$.is obtained by a thermometer encoding of

a (log V)-bit boolean vectok (the binary representation o} with the following transformation equation:

0 ifandonlyifi < x,
T, =
1 otherwise,
where0) < i < N — 1. Table | shows the truth table and logic equations for the thermometer logic of
N = 8. Given, a(log N)-bit x, we use a thermometer encoding circuit to genefaté’, - - -, Ty_1, which
haslog N gate delay. The sketch of a recursive algorithm for generating the boolean equatibrferof

N = 2width ‘wherewidth < 0 is shown in Figure 8. Thereafter, thié-bit thermometer encoder circuit can

be constructed. Figure 7 shows the thermometer encoder circul fer8. For example, ifr = 3, then

ToTy -+~ Ty = 00011111,

a

TU Ty Ty T3 Ty T5 Te Tz

—

Fig. 7. Athermometer encoder.

width := log N;
power2 := 1;
TO = 0;
for i = 0 to (width - 1) do
for j = 0 to (power2 - 1) do

tmp := Tj ;
Tj := tmp OR X7
T(j i powerZ):: tmp AND X7
endfor
power2 := power2 + power2;
endfor
for i = 0 to (N - 1) do
Ti = NOT(?i);
endfor

Fig. 8. An algorithm for obtaining” for N = 2vdth,

T is used to separate the requests into two parts at positidrhe first part hasR,, Ry, - -, R._1, 0,
.-+, 0), which is extracted out by AND dR andT. The second part ha$,---,0, R,,---, Ry_1), Which
is the result of AND ofR andT. For each part, we useamMPLE_P Sto compute prefix sums. Then we add
the prefix sums of the second part to the prefix sums of the first part. The final prefix sums are obtained by

merging the prefix sums of two parts. The circuitddusLE_ PP Sfor N = 4 is shown in Figure 9.

3.4 DesignCONVERT_PPS

Compared with Desig®HIFT_PPS DesignDouBLE_PP Sdoes not use barrel shifters, whereby reducing

delay caused by barrel shifters. But an additidBaiPLE_P Scircuit is needed. Can we save some circuitry

ToRp TiRy TRy TgRg N
T;'s are the output of a thermometer encoder with input x

iEIRIE
U

Prefix Sums Circuit Prefix Sums Circuit

MUX

48

Fig. 9. The DoublePPS circuit forN = 4.

Sumg Sumq Sum, Sumgz Sum

by removing the secon®MPLE_PS circuit? We present another design, named DeSignVERT PS
which uses on&IMPLE_P Sbut does not require barrel shifters.

Let Sum;'s, 0 < i < N — 1, be the prefix sums witkh = 0. We observe that the programmable prefix
sumsSum;'s with 0 <z < N — 1, can be obtained as follows.

« Case 1: Ifly = 1, thenT; = 1 andSum; = Sum for0 <i < N — 1.

e Case 2: IfT, = 0, thenT; = 0for0 < ¢ < zxz—1and7; = 1forz < i < N — 1. Thus,

Sum; = Sum), + Sumy_; for 0 <i < x — 1, andSum; = Sum) — Sum/,_, forx <i < N — 1.

Based on this observation, we construct a circuit naP8dCONVERT, as shown in Figure 10. Design

CONVERT_PPSis composed of three combinational circuits: /srbit SIMPLE_PS an N-bit thermometer

encoder, and afv-bit PS CONVERT.

To Sumg T Sumy T Sumy T3 Sumjg

Vot
0
—t —t o
MUX MUX MUX
'] -] ']
T T
MUX MUX MUX
MUX

Sumg Sumy Sum, Sumg Sum

Fig. 10. ThePS CoNVERTcircuit for N = 4.
4. Programmablek-Selector Designs

In this section, we will focus on designs of the other two major parts of a programimaielector, the grant

generation circuit and the next reference point generation circuit.

Rg Ry R, Ry Ry Rg Rg R;
% % % % % % % % b b
Programmable l
Prefix $ums Circuit
K Sumo‘ Suml‘ Sumz‘ Sum‘ SumA‘ Sums‘ Sume‘ Sum7l c
L T I 20 O O N O N D fa<=b c=1
o] [cons| comrel| compre] [compso| [carae] omparo] [Conpora]| ~ ohenss. =0
Gy Gy G, Gy Gy Gg Gg G,

Fig. 11. Grant generation circuit faN = 8.

4.1 Grant Generation Circuit

The grant generation signals are generated as follows: Grant gignal 1 if and only if R, = 1 and

Sum,; < k. Figure 11 shows the grant generation circuit /or= 8. The signalanyGnt in Figure 3 is

obtained by logical OR operation on &ll’s.

4.2 Next Reference Point Generation Circuits

A programmablé:-selector is used to serve all requesters iteratively. In each iteratior{k, >~ ' R;}
requests are selected. The next reference point (NRP) is determined after each iteration. An important
issue in determining NRP is to avoid request starvation and ensure fairness to all requesters. With the pro-
grammable prefix sums circuit and the grant generation circuit in place, various prograninsaéetors
can be designed by using different NRP generation circuits.

We usecurrent_ref_pt andnext_re f_pt to denote the reference point of the current and next prefix sums

operation, respectively. In the following, we will discuss four NRP generation circuits.

Go Gy Gn-1

Priority Encoder
—

Register Random Number

Generator

nen
‘ —
-
Register

(a) (b) (c)

nqn

Fig. 12. Three NRP generation circuits.

o« REGULAR_SELECT: Our first programmablé-selector design is based on the following NRP gener-
ation method:next ref pt = (current_ref_pt + ¢) mod N, wherec is a constant. The circuit of
REGULAR_SELECT s shown in Figure 12(a). The advantage of this design is its simplicity.

« RANDOM_SELECT: The NRP in this design is generated by a random generator, as shown in Figure
12(b). The advantage of this design is that it is conceptually simple. However, a truly random number
is hard to generate, especially using hardware.

« PRIORITY_SELECT: Let the current grant signals W&y, G, ---,Gy_1, and letj = max{i | G; =

1,0 < i < N — 1}. This design generatesxt ref pt = (j + 1) mod N using a priority encoder.

For example, fortV = 8, k = 3 and the current grant signals beit@, G1, G2, Gs, G4, G5, Gg, G7) =
(0,1,0,0,1,0,1,0), current_ref_pt = 4 andnext_ref_pt = 7. The block diagram of this circuit is
shown in Figure 12(c). We omit the circuit of a priority encoder here since it is a well-known logic
component.

o ROUNDROBIN_SELECT: The NRP of the Round Robin scheme is computed as follows. Let the cur-
rent output of the programmable prefix sums circuitheng, Sum., - - -, Sumy_1, and letSum =
NP R;, which can be easily generated from programmable prefix sums circuits, as shown in Figures
6, 9, and 10. IfSum < k, next_ref_pt = (j + 1) mod N such thatSum; = Sum andR; = 1,
otherwisenext_ref pt = (j + 1) mod N such thatSum; = k andR; = 1. Figure 13 shows the
circuit for ROUNDROBIN_SELECT. The output signal; = 1 if and only if next_ref_pt = j. This

design ensures fairness to all requesters.

Sum k a b

ifa<=b,c=1
- Comparatorl otherwise, ¢ = 0
Comparator,

c
a b

Sum ‘ Sum [Sum (Sumg ifa=b,c=1
0 1 2
Comparator,| otherwise, ¢ = 0
‘ Comparatori ‘ Comparatorz‘ ‘ Comparatorz‘ ‘ Comparamrz‘

C C (e} C
0 1 2 3
Ry R2 R3 c

e

Fig. 13. Circuit for generating NRP in desiJROUNDROBIN _SELECT.

R

E

5. Simulation Results and Comparisons

In this section, we present the simulation results of various designs of programirsddiectors with Syn-
opsys’sdesignanalyzerusing its librarylsi_10k [15]. Since the next reference point generation circuit is
generally simple and can be performed in parallel with the grant generation circuit, we focus on minimizing
the delay from requesR to grantsG in our simulations. We have written the Verilog HDL [16] codes for

the design of PPE, DesigsHIFT_PPS DesignDouBLE_PPS andCoNVERT_PPS and compiled them on

Design N=8 N=16 N=32 N=64

PPE ¢ =1) 8.91 12.41 1758 25.93

SHIFT_PPS 30.39 39.80 59.40 92.18

DouBLE_.PPS | 27.15 37.35 56.78 89.79

CONVERT_.PPS| 28.35 40.82 60.39 86.87

IMPROVEMENT | 23.8% 62.5% 79.8% 89.2%

TABLE Il

TIMING RESULTS FOR VARIOUS PROGRAMMABLEL-SELECTOR DESIGNS IN TERMS ORS.

Design N=8 N=16 N=32 N=64

PPE ¢ = 1) 192 468 1088 2457
SHIFT_PPS 413 1421 4816 16586

DouBLE_.PPS | 597 1696 4474 14091

CONVERT_.PPS| 588 1752 4799 13970

TABLE llI
AREA RESULTS FOR VARIOUS PROGRAMMABLHE;-SELECTOR DESIGNS IN TERM OF THE NUMBER O2-INPUT NAND

GATE.

the designanalyzer Table Il lists the timing results in terms a6 and Table Il lists the area cost of these
designs in terms of the number of 2-input NAND gates for= 8, 16, 32,64. Although not shown here,
we have done the simulations fof = 128. However, due to the limitation of the library, some designs of
N = 128 cannot fit completely. All these designs are optimized under the same operating conditions and the
tool is directed to optimize area cost of each design.

The performance of our proposed three designs is independenwbfle the design of PPE (PP&nly_smpls)

is only for k = 1. Each of our designs is much faster than the design of PPE Wwiseaver a certain value.

For example, wheV = 64, k = 32, DesignDoUBLE_PP Sonly takes 89.7%1sto make 32 grants while the
design of PPE takes at least.93 x 32 = 829.76 nsto make 32 grants. The bottom row of Table 1l shows
the timing improvement percentage@buBLE_PP Sover the design of PPE whén= N/2.

Among our three designs, DesigmouBLE_PPSachieves the best timing results with moderate area
cost. The performances of Desi@riIFT_PPSand DesignCONVERT_PP Sare comparable, while Design
SHIFT_PPSconsumes more area than Des{@aNVERT_PPSwith N is increasing since the barrel shifter
needs a large amount of interconnection resourcesy Axreases, the area cost of Des@ONVERT_PPS

tends to be the least one among the three designs. This is consistent with our analysis.

6. Concluding Remarks

In this paper, we defined programmablselectors for MRMS problems and proposed several programmable
k-selector circuit designs. A programmalteelector built with an integrated circuit (IC), such as FPGA or
ASIC, is very attractive due to its high speed and its easy integration into the interface between requesters and
servers. With the time complexity @?(log V), programmable:-selectors are very useful for switch con-
trol/scheduling in high-speed, high capacity IP switches/routers, such as constructing schedulers for SDMG
Cl1OQ switches [2] and multi-server switches [11], [12], [13]. Programmé&iselectors are also useful for
other real-time MRMS applications, such as the control op ang concentrator [17], [18], and the control
of a shared multi-bus system.

One possible extension of this work is to incorporate more “intelligence” into programrhaakectors.
For example, requests can be assigned priorities. A prioritized program#itablector can grant requests

according to their priorities and favoring the requests with higher priorities.

References

[1] S.T. Chuang, A. Goel, N. Mckeown, B. Prabhakar, Matching output queueing with a combined input output queuedEEEJournal
on Selected Areas in Communicatipksl. 17, No. 6, Jun. 1999, 1030-1039.
[2] M. Yangand S. Q. Zheng, An efficient scheduling algorithm for CIOQ switches with space division multiplexing expansion, to be presented

on|EEE Infocom2003San Francisco, Apr. 2003.

[3] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, Input vs. output queueing on a space-division packet $#iEH[ransaction on Commu-
nications, 35(12)1987, 1347-1356.
[4] D. N. Serpanos and P. |. Antoniadis, FIRM: A class of distributed scheduling algorithms for high-speed ATM switches with multiple input
gueuesProc. of IEEE Infocom20Q®000, 548-555.
[5] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, High-speed switch scheduling for local-area neMddkEransactions on Computer
Systems, 1(4)1993, 319-352.
[6] N.McKeown, TheiSLIP Scheduling Algorithm for Input-Queued SwitchHSEE/ACM Transactions on Networking, 7(2P99, 188-201.
[7] J. Chao, Saturn: a terabit packet switch using dual round réilBEEE: Communications Magazine, 38(12p00, 78-84.
[8] H. J.Chao, C. H. Lam, and X. Guo, A fast arbitration scheme for terabit packet switetoes of Globecom 1999999, 1236-1243.
[9] P. Gupta, N. McKeown, Designing and implementing a fast crossbar scheldiit&,Microelectronics, 19(1)20-29, 1999.
[10] S. Q. Zheng, M. Yang, J. Blanton, P. Golla and D. Verchere, A parallel round-robin arbiter for switch céntml,of IEEE Midwest
Symposium on Circuits and Systergag. 2002.
[11] J. Blanton, H. Badt, G. Damm, and P. Golla, lterative scheduling algorithms for optical packet swi@Bex)01 WorkshopHelsinki,
Jun. 2001.
[12] G. Damm, J. Blanton, P. Golla, D. Verchere, and M. Yang, Fast scheduler solutions to the problems of priorities for polarized data traffic,
Proc. of International Symposium on Telecommunicat{®®%'01), Tehran, Iran, Sept. 2001.
[13] M. Yang, S. Q. Zheng and D. Verchere, TkBDR scheduling algorithms for multi-server packet switches, to appdaria. ISCA 15th
International Conference on PDC3002, 78-83.
[14] V. P. Heuring, H. F. Jordar€omputer systems design and architeciifddison-Wesley, 1996).
[15] Synopsys Design Analyzer Datasheet, available at http://www.synopsys.com/products/logic/deaisahirdr 1997.
[16] IEEE Standards BoartEEE standard hardware description language based on the verilog hardware description lang98ge
[17] M. Garey, F. Hwang, and G. Richards, Asymptotic results for partial concentrdEE, Transactions on Communications, 36(2988,
214-217.

[18] N. Pippenger, Superconcentratdd$AM Journal on Computing, 8977, 298-304.

