
CONSTRUCTING SCHEDULERS FOR HIGH-SPEED,

HIGH-CAPACITY SWITCHES/ROUTERS

S. Q. Zheng†, M. Yang†, and F. Masetti‡

† Department of Computer Science

Box 830688, MS EC 31, University of Texas at Dallas, Richardson, TX 75083-0688, USA

{sizheng, meiyang}@utdallas.edu

‡ Research & Innovation, Alcatel USA, 3400 Plano Parkway, Plano, TX 75075, USA

Francesco.Masetti@alcatel.com

Abstract

The key to the design of CIOQ switches with space division multiplexing and grouped inputs/outpus (SDMG

CIOQ switches for short) is a fast scheduling scheme resolving input and output contentions. Such a scheduling

scheme is a typical application of the multi-requester, multi-server (MRMS) problem. To efficiently solve the MRMS

problem and provide fair services to all requesters, we introduce programmablek-selectors which can makek grants

out of N requests inO(log N) time. We first show that the function of a programmablek-selector can be reduced to

a programmable prefix sums operation. Based on a simple prefix sums circuit, we propose three programmable prefix

sums circuit designs. We further propose four different programmablek-selector designs. Simulations on Synopsys’s

designanalyzer demonstrate that our designs achieve significant performance improvement over the design using

programmable priority encoders. Due to their high performance, programmablek-selectors are very useful for con-

structing schedulers for high-speed, high-capacity switches/routers, such as, SDMG CIOQ switches and multi-server

switches.

Keywords: Switch, scheduler, programmablek-selector, programmable prefix sums.

1. Introduction

The exponential growth of Internet traffic demands high-speed, high-capacity IP switches/routers. In gen-

eral, an IP switch/router consists of a number of input/output (I/O) modules that are interconnected by a

switching matrix. Typical tasks assigned to an I/O module include IP packet buffering, routing table lookup,

IP packet segmentation, packet filtering, queue management, etc. As these tasks being carried out by hard-

ware, IP packet switching becomes the bottleneck of router performance. There are two major challenges

in the design of high speed, high capacity IP switches/routers. (1) How to build a large capacity switching

matrix to improve the switching capacity? (2) How to design a fast scheduling scheme that resolves output

contention and schedules packet transmission between I/O modules within stringent time constraint while

achieving high switching throughput?

To achieve high switching capacity, people have proposed combined input and output queueing (CIOQ)

switches, which take the advantage of input queueing (IQ) switches and output queueing (OQ) switches [1].

In a CIOQ switch, the switching matrix needs to runk times faster than the line rate (referred as speedup

of k) to realizek times switching capacity. However, for CIOQ switches with high speed links, it may not

always possible to realize speedup ofk.

To remove the speedup requirement of the switching matrix, we have proposed a new CIOQ switch archi-

tecture which features in space division multiplexing expansion and grouped inputs/outputs (SDMG CIOQ

switch for short) in [2]. To achieve the same switching capacity as of anN ×N CIOQ switch with speedup

of k, an SDMG CIOQ switch employs anNk ×Nk switching matrix. As shown in Figure 1, for anN ×N

SDMG CIOQ switch, there arek connections between each input/output port and the switching matrix. To

remove head-of-line blocking [3], each input port maintainsN virtual output queues (VOQs) [3], each of

which is associated with a destination output port.

We assume that an SDMG CIOQ switch is cell based. In such a switch, variable-length IP packets are

segmented into fix-sized cells as they arrive, transferred across the switching matrix (SM), and reassembled

again into IP packets before they depart. Time is divided into cell slots and one cell slot equals to the

Nk x Nk

switch matrix

.

.

.

1

.

.

.

Input port 1

Scheduler

1

N

.

.

.

1

N

.

.

.

Output port 1

N

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

k

1

k

1

k

1

k

Input port N

Output port N

1

.

.

.

.

.

.

N

Fig. 1. An SDMG CIOQ switch.

transmission time of a cell. At the start of each cell slot, a scheduling algorithm needs to decide which cells

can be transferred from (to) each input (output) since there may be up toN requests tok connections at each

input/output port.

The key to the design of the SDMG CIOQ switch architecture is an efficient and fast cell scheduling algo-

rithm to resolve input and output contentions. The cell scheduling problem on the SDMG CIOQ switch can

be abstracted as amaximumk-matchingproblem on the bipartite graph composed of nodes of input/output

ports [2] and edges of requests from input ports to output ports. Due to the high time complexity of op-

timal maximumk-matching algorithms, we have proposed an efficient approximation algorithm,kFRR in

[2], based on FIRM [4]. As many known scheduling algorithms for input-buffered switches, such as PIM

[5], iSLIP [6], DDR [7], FIRM [4], kFRR is also an iterative algorithm with each iteration consisting of the

following three steps.

Step 1:Request. Any input port with available connections sends requests to every output port for which

it has a request.

Step 2:Grant . An output port with available connections grants up to the number of available connections,

starting from the highest priority input, and sends these grants back to their corresponding input

ports.

Step 3:Accept. An input port with available connections accepts grants up to the number of available

connections, starting from the highest priority output.

For brevity, we omit the details of howkFRR updates the highest priority input/output pointers. Figure

2 shows the high-level block diagram of thekFRR scheduler implemented in hardware. TheGrant step is

implemented by a set ofN grant arbitration components, and theAcceptstep is implemented by a set ofN

accept arbitration components. Each arbitration component is responsible for selectingk out ofN requests.

Clearly, the delay through a grant arbitration component and an accept arbitration component directly affects

the speed of thekFRR scheduling algorithm.

1

2

.

.

.

N

1

2

N

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S
ta

te
 m

e
m

o
ry

 a
n

d
 u

p
d

a
te

 l
o

g
ic

R
e
q
u
e
s
ts

 f
ro

m
 V

o
Q

s

.

.

.

.

.

.

.

.

.

D
e
c
is

io
n

R
e
g
is

te
rs

Grant

arbitration

Accept

arbitration

k

Fig. 2. Block diagram of thekFRR scheduler for anN ×N SDMG CIOQ switch.

The function of an arbitration component used in thekFRR scheduler of an SDMG CIOQ switch is one

of many possible applications of the multi-requester, multi-server (MRMS) problem, which is defined as

follows. There areN requesters andk servers, wherek ≤ N . GivenN binary input requests,Ri’s, where

0 ≤ i ≤ N − 1, with Ri = 1 representing requesteri having a request, select firstmin{k,
∑N−1

i=0 Ri}

requesters such thatRi = 1. All servers are functionally equivalent. At any time, at most one requester

can be served by a server. We define the implementation of thisk-selection function as ak-selector. The

1-selector, an arbiter, is commonly used in constructing schedulers for input-buffered switches. Several

designs of high-speed 1-selector (e.g. [8], [9], [10]) have been reported.

A programmablek-selectoris one whose selection starting point can be dynamically changed to en-

sure fairness. One possible design of a programmablek-selector is employing an arbiter, such as the pro-

grammable priority encoder (PPE) proposed in [9]. Since the PPE can only make one grant each time, we

have to run PPE up tok times to makek grants. The time complexity of this design isO(k log N), which

is not fast enough to satisfy the requirements of some real-time MRMS applications, such as scheduling on

the SDMG CIOQ switch architecture. Thus, a more efficient hardware solution is needed.

In this paper, we propose several hardware designs of programmablek-selectors, all having the time

complexity ofO(log N). To the best of our knowledge, our programmablek-selector designs are the first

hardware designs that could makek grants out ofN requests simultaneously. Due to their high performance,

programmablek-selectors are very useful for constructing thekFRR scheduler for SDMG CIOQ switches,

implementing schedulers for multi-server switches [11], [12], [13], and switch control/scheduling for high-

speed, high-capacity switches/routers.

The rest of the paper is organized as follows. In Section 2, we define the function of programmablek-

selectors. In Section 3, we reduce the programmablek-selection function to a programmable prefix sums

operation, and propose three different programmable prefix sums circuit designs based on a simple parallel

prefix sums circuit. In Section 4, we present four different programmablek-selector designs, each one

is associated with a different next reference point generation circuit. In Section 5, we discuss and compare

simulation results of different programmablek-selector designs on Synopsys’sdesignanalyzer[15]. Section

6 concludes the paper.

2. Function of Programmablek-Selectors

The function of aprogrammablek-selectoris defined as follows. GivenN binary requestsRi’s, where

0 ≤ i ≤ N−1, and two integersx andk such that0 ≤ x ≤ N−1, 1 ≤ k ≤ N , select firstmin{k,
∑N−1

i=0 Ri}

input such thatRi = 1 starting from positionx in a circular manner. IfRi is selected, then the output grant

signalGi = 1; if Ri = 0, or Ri = 1 but it is not selected (in such a case,
∑N−1

i=0 Ri > k), thenGi = 0. This

k-selector is considered programmable because of the parameterx, which is specified dynamically each time

the device is invoked.x is named as thereference pointwhich indicates the selection starting position.

The programmablek-selector function can be reduced to the following programmable prefix sums oper-

ation. GivenN binary requests,R = (R0, R1, · · · , RN−1), and an integerx such that0 ≤ x ≤ N − 1,

compute the prefix sumsSumi = Rx + R(x+1) mod N + · · · + Ri for 0 ≤ i ≤ N − 1. After perform-

ing this prefix sums operation, requestRi is granted if and only ifRi = 1 andSumi ≤ k. For example,

consider the case thatN = 8, k = 3, x = 2, andR = (0, 1, 0, 1, 1, 0, 1, 1), we have(Sum0, Sum1, · · · ,

Sum7) = (4, 5, 0, 1, 2, 2, 3, 4), and the selected requests areR3, R4 andR6.

The block diagram of a general programmablek-selector is shown in Figure 3. It is the combination of a

programmable prefix sums circuit, a grant generation circuit, and a next reference point generation circuit.

In the following, we first introduce programmable prefix sums circuit designs.

� �� �

Programmable Prefix Sums Circuit

Grant Generation Next Reference
Point Generation

Register

Grant

Clk

Encoder

anyGnt

Enable

x
kRequest

Fig. 3. The block diagram of a programmablek-selector.

3. Programmable Prefix Sums Circuit Designs

3.1 A Parallel Prefix Sums Circuit

We first discuss the design of a special case programmable prefix sums circuit with starting pointx = 0.

This prefix sums operation is defined as: given a sequence of integersR = (R0, R1, · · · , RN−1), compute

the prefix sumsSumi = R0 + R1 + · · ·+ Ri for 0 ≤ i ≤ N − 1.

+

+ + ++

+ + +

+

+ + +

+

+

+

+

+

R4 R5 RR R7 R6 8 R11 12 R R14R R RRR R R10

Sum0

15

1 2Sum 3Sum 4Sum 5Sum 6Sum 7Sum 8Sum 9Sum Sum10 11Sum 12Sum Sum 15Sum14Sum13

1 2 3 9 130

Sum

Full adder

Fig. 4. A parallel prefix sums circuit using full adders.

CSA CSA CSA

CSA

CSA CSA CSA CSA

+

+ + + + + + +

CSA CSA

CSA

CSA

CSACSA

CSA

+

+ ++

CSA

R R R R RR R0 3 4 5 6 7 8 91

Sum

R2

0 6Sum21 Sum3 Sum4 Sum5 Sum7 Sum8 Sum9 Sum10 Sum11

RRR

Sum

10 11

Sum

Full adder

Carry save adder

R

Fig. 5. A parallel prefix sums circuit using carry save adders and full adders.

We use adders to construct the parallel prefix sums circuit. Figure 4 displays the parallel prefix sum

circuit for N = 16 using full adders. Dotted blocks depict the recursive construction scheme of this circuit.

Due to ripple carries, such a design may not be the fastest one. Basically, there are two speedup methods.

One is using carry-look-ahead technique, and the other is using carry save adders to form a well-known

Wallace tree, as shown in Figure 5. Using carry save adders, the time complexity of this parallel prefix sums

circuit is O(log N) gate delay. We name this special-case prefix sums circuit (and its improved variations)

SIMPLE PS.

ConsiderN requestsR = (R0, R1, · · · , RN−1) as an ordered circular queue. We define the prefix sums

problem with reference point ofx as follows: Given a sequence of integersR = (R0, R1, · · · , RN−1) and

an integer variable0 ≤ x ≤ N − 1, compute the prefix sumsSumi = Rx + R(x+1) mod N + · · · + Ri for

0 ≤ i ≤ N − 1. Sincex is a variable, this generalized problem is calledprogrammable prefix sums(PPS)

computation. In the following, we will present three programmable prefix sums circuit designs.

3.2 DesignSHIFT PPS

Conceptually, this is the simplest design. The block diagram of this design is shown in Figure 6. One

SIMPLE PS and two barrel shifters are used. Before prefix sums operation,Ri’s are circular shiftedx

positions to the left. After prefix sums are computed, the sums are circular shiftedx positions to the right.

There is an additional outputSum =
∑N−1

i=0 Ri, which will be used in theROUNDROBIN SELECT design.

Prefix Sums Circuit

Barrel Shifter (circular left shift x positions)

Barrel Shifter (circular right shift x positions)

Sum
0

Sum1 Sum2 Sum Sum4 Sum Sum6 7 Sum

R R6 7R0 R R R R4 R5321

3 5 Sum

x

Fig. 6. A programmable prefix sums circuit using barrel shifters.

An N -bit barrel shifter can be implemented bylog N stages ofN 2× 1 multiplexers withO(log N) gate

delay [14]. It should be noticed that the second barrel shifter is more expensive because eachSumi contains

log N bits. When implementing a programmablek-selector, we can first use the comparators to obtainGi’s,

as shown in Figure 11, before the grant signals are circular shifted right. This will significantly save circuitry

of the second barrel shifter.

x(2..0) T(7..0) Logic equations

000 11111111 T7 = 1

001 11111110 T6 = x2 · x1 · x0

010 11111100 T5 = x2 · x1

011 11111000 T4 = x2 · (x1 + x0)

100 11110000 T3 = x2

101 11100000 T2 = x2 + x1 · x0

110 11000000 T1 = x2 + x1

111 10000000 T0 = x2 + x1 + x0

TABLE I

TRUTH TABLE AND LOGIC EQUATIONS FOR THE THERMOMETER LOGIC OFN = 8.

3.3 DesignDOUBLE PPS

This design employs two copies ofSIMPLE PScircuit. One is used for computing prefix sums of the bits

preceding thex-th position, and the other is for calculating prefix sums of the remaining bits. The two parts

of prefix sums are merged into the final prefix sums.

We use anN -bit boolean vectorT to separate the two parts.T is obtained by a thermometer encoding of

a (log N)-bit boolean vectorx (the binary representation ofx) with the following transformation equation:

Ti =





0 if and only if i < x,

1 otherwise,

where0 ≤ i ≤ N − 1. Table I shows the truth table and logic equations for the thermometer logic of

N = 8. Given, a(log N)-bit x, we use a thermometer encoding circuit to generateT0, T1, · · · , TN−1, which

haslog N gate delay. The sketch of a recursive algorithm for generating the boolean equations ofT for

N = 2width, wherewidth ≤ 0 is shown in Figure 8. Thereafter, theN -bit thermometer encoder circuit can

be constructed. Figure 7 shows the thermometer encoder circuit forN = 8. For example, ifx = 3, then

T0T1 · · ·T7 = 00011111.

T T T T T
0 1 2 4 6 7T 3 T T5

2x x 1 x 0
"1"

Fig. 7. A thermometer encoder.

width := log N;

0
T := 0;

for i = 0 to (width - 1) do

 for j = 0 to (power2 - 1) do

T := tmp OR x ;

 tmp := T ;
j

 T := tmp AND x ;
(j + power2)

power2 := power2 + power2;

endfor
ii

for i = 0 to (N - 1) do

endfor

 T := NOT(T);

 endfor

power2 := 1;

i

i

j

Fig. 8. An algorithm for obtainingT for N = 2width.

T is used to separate the requests into two parts at positionx. The first part has(R0, R1, · · · , Rx−1, 0,

· · · , 0), which is extracted out by AND ofR andT. The second part has(0, · · · , 0, Rx, · · · , RN−1), which

is the result of AND ofR andT. For each part, we use aSIMPLE PSto compute prefix sums. Then we add

the prefix sums of the second part to the prefix sums of the first part. The final prefix sums are obtained by

merging the prefix sums of two parts. The circuit ofDOUBLE PPSfor N = 4 is shown in Figure 9.

3.4 DesignCONVERT PPS

Compared with DesignSHIFT PPS, DesignDOUBLE PPSdoes not use barrel shifters, whereby reducing

delay caused by barrel shifters. But an additionalSIMPLE PScircuit is needed. Can we save some circuitry

T TTR R R

+ + + +

Prefix Sums Circuit Prefix Sums Circuit

are the output of a thermometer encoder with input x

MUX

"1"

0 0 1 2 2 3 3T1

"0"

R
’sT i

MUX

MUX

MUX

MUX

0Sum 1Sum 2Sum 3Sum Sum

Fig. 9. The DoublePPS circuit forN = 4.

by removing the secondSIMPLE PS circuit? We present another design, named DesignCONVERT PS,

which uses oneSIMPLE PSbut does not require barrel shifters.

Let Sum′
i’s, 0 ≤ i ≤ N − 1, be the prefix sums withx = 0. We observe that the programmable prefix

sumsSumi’s with 0 ≤ x ≤ N − 1, can be obtained as follows.

• Case 1: IfT0 = 1, thenTi = 1 andSumi = Sum′
i for 0 ≤ i ≤ N − 1.

• Case 2: IfT0 = 0, thenTi = 0 for 0 ≤ i ≤ x − 1 and Ti = 1 for x ≤ i ≤ N − 1. Thus,

Sumi = Sum′
i + SumN−1 for 0 ≤ i ≤ x− 1, andSumi = Sum′

i − Sum′
x−1 for x ≤ i ≤ N − 1.

Based on this observation, we construct a circuit namedPS CONVERT, as shown in Figure 10. Design

CONVERT PPSis composed of three combinational circuits: anN -bit SIMPLE PS, anN -bit thermometer

encoder, and anN -bit PS CONVERT.

Sum2Sum10Sum Sum3

+ ++

10 0 T1 T2 Sum’2 T3 Sum’

+

" 0 "

+ + +

Sum’

MUX MUX MUX

MUX MUX MUX

T

" 1 "

Sum’ 3

" 0 "

MUX

Sum

" 1 "

Fig. 10. ThePS CONVERT circuit for N = 4.

4. Programmablek-Selector Designs

In this section, we will focus on designs of the other two major parts of a programmablek-selector, the grant

generation circuit and the next reference point generation circuit.

0 1 2 3 4

Comparator Comparator Comparator Comparator

R5 R6 R7

76

R0 R1 R2 R3 R4

5

Comparator

Sum Sum Sum Sum Sum Sum Sum Sum

Comparator Comparator

G G G G G1 2 3 40 6 G75 GG

Comparator

k

Comparator

c

if a <= b, c = 1
otherwise, c = 0

a b

Programmable

Prefix Sums Circuit

Fig. 11. Grant generation circuit forN = 8.

4.1 Grant Generation Circuit

The grant generation signals are generated as follows: Grant signalGi = 1 if and only if Ri = 1 and

Sumi ≤ k. Figure 11 shows the grant generation circuit forN = 8. The signalanyGnt in Figure 3 is

obtained by logical OR operation on allGi’s.

4.2 Next Reference Point Generation Circuits

A programmablek-selector is used to serve all requesters iteratively. In each iteration,min{k,
∑N−1

i=0 Ri}

requests are selected. The next reference point (NRP) is determined after each iteration. An important

issue in determining NRP is to avoid request starvation and ensure fairness to all requesters. With the pro-

grammable prefix sums circuit and the grant generation circuit in place, various programmablek-selectors

can be designed by using different NRP generation circuits.

We usecurrent ref pt andnext ref pt to denote the reference point of the current and next prefix sums

operation, respectively. In the following, we will discuss four NRP generation circuits.

 ...

(c)(b)(a)

+

"1"Random Number

Generator

+

"c"

Register
Register

G1 n-1

Register
Priority Encoder

G0 G

Fig. 12. Three NRP generation circuits.

• REGULAR SELECT: Our first programmablek-selector design is based on the following NRP gener-

ation method:next ref pt = (current ref pt + c) mod N , wherec is a constant. The circuit of

REGULAR SELECT is shown in Figure 12(a). The advantage of this design is its simplicity.

• RANDOM SELECT: The NRP in this design is generated by a random generator, as shown in Figure

12(b). The advantage of this design is that it is conceptually simple. However, a truly random number

is hard to generate, especially using hardware.

• PRIORITY SELECT: Let the current grant signals beG0, G1, · · · , GN−1, and letj = max{i | Gi =

1, 0 ≤ i ≤ N − 1}. This design generatesnext ref pt = (j + 1) mod N using a priority encoder.

For example, forN = 8, k = 3 and the current grant signals being(G0, G1, G2, G3, G4, G5, G6, G7) =

(0, 1, 0, 0, 1, 0, 1, 0), current ref pt = 4 andnext ref pt = 7. The block diagram of this circuit is

shown in Figure 12(c). We omit the circuit of a priority encoder here since it is a well-known logic

component.

• ROUNDROBIN SELECT: The NRP of the Round Robin scheme is computed as follows. Let the cur-

rent output of the programmable prefix sums circuit beSum0, Sum1, · · · , SumN−1, and letSum =

∑N−1
i=0 Ri, which can be easily generated from programmable prefix sums circuits, as shown in Figures

6, 9, and 10. IfSum ≤ k, next ref pt = (j + 1) mod N such thatSumj = Sum andRj = 1;

otherwise,next ref pt = (j + 1) mod N such thatSumj = k andRj = 1. Figure 13 shows the

circuit for ROUNDROBIN SELECT. The output signalFj = 1 if and only if next ref pt = j. This

design ensures fairness to all requesters.

Comparator Comparator Comparator Comparator

Sum
1 2

Sum

C C2 3

0
F

MUX

R R R1 2 3
C1

0
Sum

R0
C0

3F

3Sum

Sum

MUX

1
F F 2

k

"0" "1"

Comparator
1

2 2 22

c

a b

Comparator2

if a = b, c = 1

otherwise, c = 0

c

a b

Comparator1

if a <= b, c = 1

otherwise, c = 0

Fig. 13. Circuit for generating NRP in designROUNDROBIN SELECT.

5. Simulation Results and Comparisons

In this section, we present the simulation results of various designs of programmablek-selectors with Syn-

opsys’sdesignanalyzerusing its librarylsi 10k [15]. Since the next reference point generation circuit is

generally simple and can be performed in parallel with the grant generation circuit, we focus on minimizing

the delay from requestsR to grantsG in our simulations. We have written the Verilog HDL [16] codes for

the design of PPE, DesignSHIFT PPS, DesignDOUBLE PPS, andCONVERT PPS, and compiled them on

Design N=8 N=16 N=32 N=64

PPE (k = 1) 8.91 12.41 17.58 25.93

SHIFT PPS 30.39 39.80 59.40 92.18

DOUBLE PPS 27.15 37.35 56.78 89.79

CONVERT PPS 28.35 40.82 60.39 86.87

IMPROVEMENT 23.8% 62.5% 79.8% 89.2%

TABLE II

TIMING RESULTS FOR VARIOUS PROGRAMMABLEk-SELECTOR DESIGNS IN TERMS OFns.

Design N=8 N=16 N=32 N=64

PPE (k = 1) 192 468 1088 2457

SHIFT PPS 413 1421 4816 16586

DOUBLE PPS 597 1696 4474 14091

CONVERT PPS 588 1752 4799 13970

TABLE III

AREA RESULTS FOR VARIOUS PROGRAMMABLEk-SELECTOR DESIGNS IN TERM OF THE NUMBER OF2-INPUT NAND

GATE.

thedesignanalyzer. Table II lists the timing results in terms ofnsand Table III lists the area cost of these

designs in terms of the number of 2-input NAND gates forN = 8, 16, 32, 64. Although not shown here,

we have done the simulations forN = 128. However, due to the limitation of the library, some designs of

N = 128 cannot fit completely. All these designs are optimized under the same operating conditions and the

tool is directed to optimize area cost of each design.

The performance of our proposed three designs is independent ofk, while the design of PPE (PPEonly smpls)

is only fork = 1. Each of our designs is much faster than the design of PPE whenk is over a certain value.

For example, whenN = 64, k = 32, DesignDOUBLE PPSonly takes 89.79nsto make 32 grants while the

design of PPE takes at least25.93 × 32 = 829.76 ns to make 32 grants. The bottom row of Table II shows

the timing improvement percentage ofDOUBLE PPSover the design of PPE whenk = N/2.

Among our three designs, DesignDOUBLE PPSachieves the best timing results with moderate area

cost. The performances of DesignSHIFT PPSand DesignCONVERT PPSare comparable, while Design

SHIFT PPSconsumes more area than DesignCONVERT PPSwith N is increasing since the barrel shifter

needs a large amount of interconnection resources. AsN increases, the area cost of DesignCONVERT PPS

tends to be the least one among the three designs. This is consistent with our analysis.

6. Concluding Remarks

In this paper, we defined programmablek-selectors for MRMS problems and proposed several programmable

k-selector circuit designs. A programmablek-selector built with an integrated circuit (IC), such as FPGA or

ASIC, is very attractive due to its high speed and its easy integration into the interface between requesters and

servers. With the time complexity ofO(log N), programmablek-selectors are very useful for switch con-

trol/scheduling in high-speed, high capacity IP switches/routers, such as constructing schedulers for SDMG

CIOQ switches [2] and multi-server switches [11], [12], [13]. Programmablek-selectors are also useful for

other real-time MRMS applications, such as the control of anp× q concentrator [17], [18], and the control

of a shared multi-bus system.

One possible extension of this work is to incorporate more “intelligence” into programmablek-selectors.

For example, requests can be assigned priorities. A prioritized programmablek-selector can grant requests

according to their priorities and favoring the requests with higher priorities.

References

[1] S. T. Chuang, A. Goel, N. Mckeown, B. Prabhakar, Matching output queueing with a combined input output queued switch,IEEE Journal

on Selected Areas in Communications, Vol. 17, No. 6, Jun. 1999, 1030-1039.

[2] M. Yang and S. Q. Zheng, An efficient scheduling algorithm for CIOQ switches with space division multiplexing expansion, to be presented

on IEEE Infocom2003, San Francisco, Apr. 2003.

[3] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, Input vs. output queueing on a space-division packet switch,IEEE Transaction on Commu-

nications, 35(12), 1987, 1347-1356.

[4] D. N. Serpanos and P. I. Antoniadis, FIRM: A class of distributed scheduling algorithms for high-speed ATM switches with multiple input

queues,Proc. of IEEE Infocom2000, 2000, 548-555.

[5] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, High-speed switch scheduling for local-area networks,ACM Transactions on Computer

Systems, 1(4), 1993, 319-352.

[6] N. McKeown, TheiSLIP Scheduling Algorithm for Input-Queued Switches,IEEE/ACM Transactions on Networking, 7(2), 1999, 188-201.

[7] J. Chao, Saturn: a terabit packet switch using dual round robin,IEEE Communications Magazine, 38(12), 2000, 78-84.

[8] H. J. Chao, C. H. Lam, and X. Guo, A fast arbitration scheme for terabit packet switches,Proc. of Globecom 1999, 1999, 1236-1243.

[9] P. Gupta, N. McKeown, Designing and implementing a fast crossbar scheduler,IEEE Microelectronics, 19(1), 20-29, 1999.

[10] S. Q. Zheng, M. Yang, J. Blanton, P. Golla and D. Verchere, A parallel round-robin arbiter for switch control,Proc. of IEEE Midwest

Symposium on Circuits and Systems, Aug. 2002.

[11] J. Blanton, H. Badt, G. Damm, and P. Golla, Iterative scheduling algorithms for optical packet switches,ICC 2001 Workshop, Helsinki,

Jun. 2001.

[12] G. Damm, J. Blanton, P. Golla, D. Verchere, and M. Yang, Fast scheduler solutions to the problems of priorities for polarized data traffic,

Proc. of International Symposium on Telecommunications(IST’01), Tehran, Iran, Sept. 2001.

[13] M. Yang, S. Q. Zheng and D. Verchere, ThekDDR scheduling algorithms for multi-server packet switches, to appear inProc. ISCA 15th

International Conference on PDCS, 2002, 78-83.

[14] V. P. Heuring, H. F. Jordan,Computer systems design and architecture(Addison-Wesley, 1996).

[15] Synopsys Design Analyzer Datasheet, available at http://www.synopsys.com/products/logic/deanalyzerds.html, 1997.

[16] IEEE Standards Board,IEEE standard hardware description language based on the verilog hardware description language, 1995.

[17] M. Garey, F. Hwang, and G. Richards, Asymptotic results for partial concentrators,IEEE Transactions on Communications, 36(2), 1988,

214-217.

[18] N. Pippenger, Superconcentrators,SIAM Journal on Computing, 6, 1977, 298-304.

