K-Selector-Based Dispatching Algorithm for Clos-Network Switches

Mei Yang', Mayauna McCullough?, Yingtao Jiang®, and Jun Zheng*

T Department of Electrical and Computer Engineering, University of Nevada Las Vegas, NV 89154, USA
* Department of Computer Science, Fort Valley State University, Fort Valley, GA 31030, USA

* Department of Computer Science, Queens College, New York, NY, USA

E-mail: {meiyang, yingtao} @egr.unlv.edu, *zheng@cs.qc.edu

Abstract—In this paper, we address the scheduling problem for
Clos-network switches with no buffers at the central stage. Ex-
isting scheduling (dispatching) algorithms for this type of switch,
such as CRRD and CMSD, are too complex for implementation.
We consider efficient and practical dispatching algorithms and
propose the k-selector based dispatching (KBD) algorithm. The
KBD algorithm differs from other dispatching algorithms in the
phase of matching within input modules. In KBD, only one k-
selector is used at each input module to select m out of nk requests
to send to the corresponding central modules. As such, the inter-
connection wires are totally removed in input modules and the re-
quired time for the first phase is improved significantly. Through
simulations, we show that KBD achieves comparable performance
to CMSD under Bernoulli and bursty traffic.

I. INTRODUCTION

The exponential increasing of Internet traffic imposes high-
speed and large-capacity switches and routers. Two approaches
are employed to implement a high-speed switch. One is a
single-stage switch architecture [1]. An example of the single-
stage switch architecture is crossbar switches. However, cross-
bar switches are not practical for larger switch size. For ex-
ample, a 1000 x 1000 switch would require 1M crosspoints,
which is prohibitively expensive to implement.

The other approach is to use a multi-stage switch architec-
ture, such as a Clos-network switch [1]. A Clos-network switch
architecture consists of three stages: the input stage, the central
stage, and the output stage. Each stage is composed of multiple
modules. Each module can be a crossbar switch. Each central
stage has one input for each input stage and one output for each
output stage. The number of alternative paths between an input
port and an output port is equal to the number of central mod-
ules [1]. The Clos-network switch architecture is very attractive
because of its scalability.

We can classify the Clos-network switch architecture into
two types, one has buffers to store cells in the central (stage)
modules and the other has no buffer in the central modules [1].
For example, the ATLANTA switch is an example of the second
type [5]. The focus of our study is on Clos-network switches
with no buffer at the central modules. Since there is no buffer
at the central stage to resolve contention, the scheduling (dis-
patching) between input modules and central modules is critical
for the switch performance.

The design goals of scheduling algorithms for multi-stage
switches are high throughput, high speed, no starvation, and
simple implementation. In the literature, a number of schedul-
ing algorithms for Clos-network switches have been proposed
[11, [3], [4], [8]. Even though some of existing solutions

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE

achieve very high throughput, they are all too complex for im-
plementation. In this paper, we focus our study on efficient yet
practical scheduling algorithms for Clos-network switches. We
propose a k-selector-based dispatching (KBD) algorithm which
does not require the increase of internal bandwidth. Using k-
selectors, the KBD algorithm ensures fairness in scheduling
cells from input modules to output modules. Through simu-
lations, we show that the scheduling performance of the KBD
algorithm is comparable to CMSD. More importantly, using k-
selectors, the KBD algorithm is faster and simpler than existing
dispatching algorithms.

The rest of the paper is organized as follows. Section II
reviews existing dispatching algorithms. Section III presents
the KBD algorithm. Section IV discusses its implementation
complexity. Section V presents the simulation results of the
KBD algorithm and compares them with CMSD. Section VI
concludes the paper.

II. RELATED WORK

Figure 1 shows a three-stage Clos-network switch, which
consist of k£ input modules (IMs), k output modules (OMs), and
m central modules (CMs). Each IM/OM has n input/output
ports. Each IM maintains nk virtual output queues (VOQs),
each dedicated for holding cells coming at the IM destined for
a particular output port. The following notations are used in this

paper.
i IM number, where 0 < ¢ < k — 1.
J OM number, where 0 < j < k — 1.
h Input port (IP)/output port (OP) number in
each IM/OM, respectively, where
0<h<n-1.
r CM number, where 0 < r < m — 1.
IM(4) (i + 1)th IM.
CM(r) (r + 1)th CM.
OM (j) (+ DHth OM.
IP(i, h) (h+ D)th IP at TM (3).
OP(j,h) (h+ 1)th OP at OM(5).
VOQ(i, j, h) VOQ at I M (i) that stores cells destined
for OP(j, h).
Ly(i,r) Output link at I M (¢) and connected to C M ().
Le(r,g) Output link at C M (r) and connected to OM (7).

In the literature, dispatching algorithms proposed for Clos-
network switches include the distributed and random dispatch-
ing schemes [1], concurrent round-robin dispatching scheme
(CRRD) [8], concurrent master-slave round-robin dispatching

YF]',F.

COMPUTER

SOCIETY

1P(i, h) .
7 M©) cM©) oMo A
)/
P(0, 0) Vogw,o, 0) m OP(0, 0)
= 1v0Q(0,0, n-1)
IP(0, - . i
IP(0, n-1) VOQ(D,A 1,0)]]ID OP(0, n-1)
—31 voQ(0, k-1,n-1)
* M@ " cMm) oM
1PG, 0) VOQ(i,O,D) Tm OP(j, 0)
= |vogq, 0,n1)
PG, 1) ""Q‘""‘““’ 0D (-o2eqD
*l= YO, k-1, n-1)
¢ M1 " CMm-1) oM@l
IP(k-1,0) VOQ(k-1, 0, 0) OP(k-1, 0)
—] Em—
=2 [v0Q(k-1,0,n-1)
IP(k-1, n-1) VOQ(k-l.k—],ﬂ) Tm OP(k-1, n-1)
== VOQ(k-, k-1, n-1)|

Fig. 1. Clos-network switch with VOQs in the IMs.

scheme (CMSD) [8], frame-based exhaustive matching algo-
rithm (FEM) [3], and matching algorithm for Clos-network
switches (MAC) [4].

The random dispatching algorithm was proposed for the AT-
LANTA switch [5]. There are two phases of the random dis-
patching algorithm: matching within IMs and matching be-
tween IMs and CMs.

Phase 1: Each IM selects up to m requests out of nk
nonempty VOQs in the round-robin manner and sends
the selected requests to m randomly selected CMs.

Phase 2: The arbiter associated with the output link of each
CM randomly selects one request among up to k re-
quests. Each CM sends up to k£ grants back to the
corresponding IMs. If a VOQ at the IM receives the
grant from the CM, it sends the corresponding cell in
the next time slot. Otherwise, the VOQ will send a
request again in the next time slot.

As one can see, random dispatching can send off cells evenly
to the CMs. However, a high switch throughput cannot be
achieved because of contention at the CMs [1]. One way to
solve that problem is to increase the size of the internal band-
width [1], which makes it difficult to implement a high-speed
switch in a cost-effective manner.

The concurrent round-robin dispatching (CRRD) scheme [8]
improves the random dispatching scheme by using round-robin
arbiters at both IMs and CMs. Each IM has nk VOQ arbiters
and m output-link arbiters. Each CM has m output link arbiters.
Each of these arbiter is associated with a pointer indicating the
selection starting point. CRRD also has two phases, matching
within IMs and matching between IMs and CMs. Phase 1 is
composed of a series of iterative steps.

Phase 1: Matching within IMs

Step 1:Each nonempty VOQs sends a request to every
output-link arbiter.

Step 2:Each output link arbiter selects a request from
nonempty VOQs in the round-robin fashion starting
from the position pointed by its pointer. It then sends
the grant to the selected VOQ.

Step 3:The VOQ arbiter selects one grant to accept starting
from the position pointed by its pointer. The granted

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE

requests are sent to their corresponding CMs.
Phase 2: Matching between IMs and CMs

Step 1:The arbiter associated with the output link of each
CM selects one request among up to k requests in the
round-robin manner starting from the position pointed
by its pointer. Each CM sends up to k grants back to
the corresponding IMs.

Step 2:1f a VOQ at the IM receives the grant from the CM,
it sends the corresponding cell in the next time slot.
Otherwise, the VOQ will send a request again in the
next time slot.

Due to the desynchronization effect, CRRD achieves 100%
throughput under both uniform and nonuniform traffic [8].

The concurrent master-slave round-robin dispatching
(CMSD) scheme is an improved version of CRRD that
preserves CRRD’s advantages and provides more scalability
[8]. CMSD differs from CRRD in Phase 1. Each IM has m
master output-link round-robin arbiters, mk slave output-link
round-robin arbiters, and nk VOQ round-robin arbiters. Each
arbiter is associated with a pointer to indicate the selection
starting point. The master output-link arbiter associated with
Ly(i,7) is denoted as M L(i, 7). The slave output-link arbiter
associated with L;(i,7) and VOQ group G(i, j) is denoted as
SL(i,j,r). The phase 1 of CMSD works iteratively as follows.

Phase 1: Matching within IMs

Step 1:There are two sets of requests sent to the output-link
arbiters of an IM. One set of requests are sent from
a nonempty VOQ(, j, h) to every associated slave
arbiter SL(i, j,7) within G(7, 7). The other set is a
group-level request sent from G(i, j) that has at least
one nonempty VOQ to every master arbiter M L(i, 7).

Step 2:Each M L(i,7) chooses a request among k VOQ
groups independently in a round-robin fashion start-
ing from the position pointed by its pointer and sends
the grant to SL(i,j,7). SL(i,j,r) selects one VOQ
request in a round-robin fashion starting from the po-
sition pointed by its pointer and sends the grant to the
selected VOQ.

Step 3:The VOQ arbiter selects one grant to accept starting
from the position by its pointer. The granted requests
are sent to their corresponding CMs.

Figure 2 [8] shows an example of the Phase 1 of CMSD. The
steps of Phase 2 of CMSD is as same as those of CRRD. The
pointers of each arbiter in the IM is updated to one position
after the granted position only if the matching within the IM is
achieved at the first iteration in Phase 1 and the request is also
granted by the CM in Phase 2.

Similar to CRRD, CMSD also decreases contention at the
CM because the pointers are desynchronized. CMSD provides
100% throughput under both uniform and nonuniform traffic as
well. Since the master output-link arbiter of CMSD can choose
a VOQ group, not a VOQ itself in CRRD, the master output-
link arbiter of CMSD affects the matching between the IM and
CM more than the output-link arbiter of CRRD [8]. Therefore,
CMSD makes the matching between the IM and CM more ef-
ficient than CRRD when the number of iterations in the IM in-
creases. The throughput of CMSD is also independent of the

YF]',F.

COMPUTER

SOCIETY

Palir

At
Slave ourput-link arbiter \C
[yac L0 G, L
[vopi 0.0 @ 81
G0 | vogy.0, 1) @ p
VO, 0,2) ‘(?;Jw.u.n
L ;:\dif "
L voaie o . i)
G o, 1,1 y Je4
Vo, 1.2) ~
| (Fhaecn
e CH

vogu,2,00 O
VOALL 1) O
VOL2,2)

Gili, 2)
P
e !

arbiter

(b)

Slave utgut-link
bt Master
e,

—

output-link

.

S

Fig. 2. An example of phase 1 of the CMSD algorithm forn = k = m = 3.

number of iterations of the IM. The tradeoft is the much higher
complexity of CMSD than CRRD.

The FEM scheme uses the exhaustive dual round-robin
matching (EDRRM) scheme to improve the performance under
unbalanced traffic. FEM is composed of two phases. In Phase
1, it uses EDDRM to find a matching between input ports and
output ports. In Phase 2, a parallel matching scheme is em-
ployed to find routing paths between matched input ports and
output ports. The EDDRM scheme improves throughput by
maintaining the existing matching pairs between the input ports
and output ports so that the number of unmatched inputs and
outputs is dramatically decreased [6]. FEM further improves
the throughput by solving the starvation problem of some in-
put ports. The way FEM overcomes this problem is by setting
a timer for each head-of-line (HOL) frame. When the timer
expires, the request from the “expired” frame has the highest
preference to be granted [6]. The output port arbiter will favor
the request with higher preference. And the input port arbiter
will accept the grant with higher preference first. By such a
scheme, FEM achieves very high throughput under both uni-
form and unbalanced traffic. However, finding routing paths in
Phase 2 is difficult. Also the timer introduces extra complexity
to the scheduler design.

The MAC algorithm has two phases: superframe matching
and superframe decomposition [5]. The superframe matching
phase determines the superframe matrix. Each entry in the ma-
trix represents matching opportunities between each scheduling
IM and each scheduling OM in one superframe. The super-
frame matrix is determined by the iterative request/grant/accept
algorithm [5]. In the superframe decomposition phase, the su-
perframe matrix is decomposed into F' * k module matching
matrices. Each module-matching matrix records the matching
status between the scheduling IMs and OMs in one matching
cycle of the next superframe [5].

Once the module-level matching algorithm has been com-
pleted, the matching sequence between the scheduling IMs and

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE

OMs is determined for the next superframe. The port-level
matching algorithm consists of k& matching cycles in a frame.
In each matching cycle, the port-level matching algorithm in-
cludes two steps: port-to-port matching assignment and CM
assignment [5]. MAC can achieve high performance and main-
tain good scalability. However, the problem with MAC is the
extra delay introduced in the k£ matching cycle and and high
implementation complexity.

III. THE KBD ALGORITHM

In this section, we propose a k-selector-Based Dispatching
(KBD) algorithm for Clos-network switches. In KBD, each IM
uses a k-selector [10] to select m out of nk requests to send to
CMs. Each CM has k round-robin arbiters, each used to select
one request to its corresponding OM. We use Py (z) to indicate
the pointer associated with the k-selector at I M (¢) and P (r, j)
to indicate the pointer for the arbiter for OM (j) in CM (r).
The KBD algorithm is an iterative algorithm with each itera-
tion consisting of two phases. The first phase of KBD matches
the VOQ requests in each IM with the output links of the IM
by selecting up to m out of nk requests using the k-selector.
The second phase of KBD matches the requests sent through
the output links of each IM with the output links of the corre-
sponding CMs. The detailed steps of each phase are described
as follows.
Phase 1: Matching within IMs
Step 1:Each nonempty VOQ sends a request to the k-selector
of the IM.

Step 2:The k-selector selects up to m requests in the round-
robin manner starting from P; for I M (7).

Step 3:The selected requests are sent to the corresponding
CMs through Ly(4,7)’s.

Phase 2: Matching between IMs and CMs

Step 1:The round-robin arbiter associated with OM (j) se-
lects one request by searching from the position of
Pc(r,j). Po(r,j) is updated to the request after the
granted one.

Step 2:Each C'M (r) sends the grants back their correspond-

ing IMs through L;(3,7)’s.

If the IM receives the grant from the CM, it sends a corre-
sponding cell from that VOQ in the next time slot. If IM ()
receives any grant from CMs, its k-selector pointer, P (i), is
updated to the request next to the last granted one or the first
request which is not granted if there is no request granted. The
update of the k-selector pointers is only performed in the first
iteration.

Figure 3 shows an example of one iteration of the KBD al-
gorithm for n = k = m = 2. Assume that the k-selector point-
ers of IM(0) and IM (1) are initialized as O and the round-
robin pointers at CM (0) and CM (1) are all initialized as O.
In Step 1 of Phase 1, VOQ(0,0), VOQ(0,2) and VOQ(0, 3)
send requests to the k-selector at IM(0) while VOQ(1,0),
V0Q(1,1), and VOQ(1,2) send requests to the k-selector at
IM(1). In Step 2 of Phase 1, the requests from VOQ(0, 0) and
VOQ(0,2) are selected while the requests from VOQ(1,0)
and VOQ(1,1) are selected. In Step 3 of Phase 1, the se-
lected requests are sent to CMs following the selection order.

YF]',F.

COMPUTER

SOCIETY

In Step 1 of Phase 2, the arbiter for Ls(0,0) grants the re-
quest sent through L7 (0,0) (i.e., from VOQ(0, 0)), the arbiter
for Lo (1,0) grants the request sent through L7(1,1) (i.e., from
VOQ(1,1)), and the arbiter for L (1, 1) grants the request sent
through L;(0, 1)(i.e., from VOQ(0, 2)). The pointer of each ar-
biter is updated as shown in the figure. The grants are sent back
to the corresponding VOQs. According to the grant situation,
P;(0) is updated to 3 while P;(1) is updated to 2. In the next
iteration, the ungranted VOQ requests will be considered.

P(0)
/0] 1
v0Q(, 0) @. £ e
\ Arbiter for
voQ©, 1) O L selector L(0,0)
VOQ(0, 2) for IM(0) PO, 1)
Arbiter for
VOQ(0, 3) L.0.1)
P(1)
0]
Q24 Pu(1,0)
voQ(l, 0) Arbiter for qb
4 L(1,0
voQU, 1) @<«—> k-selector (10) P.(1,1)
voQ(l, 2) for IM(T) Atbiterfor | &
vVOoQ(,3) O L(1,1)

Fig. 3. An example of the KBD algorithm forn =k =m = 2.

Similar to CRRD and CMSD, the k-selector pointers at each
IM and the arbiter pointers at each CM have desynchronization
effect. In Figure 4, we demonstrate how the pointers are desyn-
chronized using an example of n = k = m = 2. Assuming
that no VOQ is empty, each VOQ sends a request at every time
slot to the k-selector at the IM. All the pointers are initialized
as 0. At time slot 7' = 0, the selected VOQ requests at 1M (0)
are VOQ(0,0) and VOQ(0, 1), which are sent to CM (0) and
CM (1) respectively. The selected VOQ requests at TM (1)
are VOQ(1,0) and VOQ(1,1), which are sent to C'M(0)
and C'M (1) respectively. At CM(0), VOQ(0,0) is granted
and Pc(0,0) is updated to 1, while at CM (1), VOQ(0,1)
is granted and Pc(1,0) is updated to 1. Hence Pr(0) is up-
dated to 2. At T = 1, due to the desynchronization of P;(0)
and P; (1), requests from VOQ(0, 2), VOQ(0, 3) and requests
from VOQ(0,0) and VOQ(0, 1) will be selected. All requests
are granted at C M (0) and C' M (1). All the pointers are updated
as shown in the figure. Due to the desynchronization effect, in
the following time slots, there is no contention at all CMs and
the largest size of matching is obtained.

T 0 1 2 3 4 5 6 7
IM(0) Pi(0) 0 2 0 2 0 2 0 2
IM1) Pi(1) 0 0 2 0 2 0 2 0
CM(0) [P.(0,0) 0 1 0 1 0 1 0 1
P.(0,1) 0 0 1 0 1 0 1 0
cM(Q1) (P1,0) 0 1 0 1 0 1 0 1
P.(,1) 0 0 1 0 1 0 1 0
Fig. 4. Desynchronization effect of the pointers in the KBD algorithm for

n=k=m=2.

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE

\ Timing (-gate delay) Area (gates)

Interconnection (wires) \

CRRD O(i(lognk +logm) O(nkm) Inkm(nk — 1)(m — 1)
+logk)
CMSD Of(imax (logk,logn) O(nkm) Epm(n —1)(m — 1)+
+logm) + log k) Skm(k — 1)(m - 1)
KBD O(i(lognk)) O((nk)*) N/A
TABLE I

IMPLEMENTATION COMPLEXITY OF CRRD, CMSD, AND KBD.

IV. IMPLEMENTATION COMPLEXITY

In this section, we analyze the implementation complexity
of the KBD algorithm. In specific, we analyze the required
time, area cost, and interconnection complexity of the KBD al-
gorithm and compare them with those of CRRD and CMSD. As
one can see, at each CM, there are k output-link arbiters for all
the three algorithms. There are up to k requests to each output-
link arbiter. Using the parallel round-robin arbiters proposed in
[11], the required time and area cost for the output-link arbiter
are O(log k)-gate delay and O(k)-gates respectively. At each
CM, all the output link arbiters consume O(mk)-gates.

The three algorithms differ in the complexity at each IM. For
CRRD, each IM has nk VOQ arbiters and m output-link ar-
biters. For each VOQ arbiter, there are at most m requests.
Hence, the required time and area cost of each VOQ arbiter are
O(log m)-gate delay and O(m)-gates, respectively. For each
output-link arbiter at each IM, there are at most nk requests.
Therefore, the required time and area cost of each output-link
arbiter at each IM are O(lognk)-gate delay and O(nk)-gates,
respectively. Thus the total time complexity of the CRRD is
O(i(lognk + logm) + log k)-gate delay, where 7 is the num-
ber of iterations performed in Phase 1, and the total area cost of
the arbiters at each IM is O(nkm)-gates. In CRRD, each VOQ
arbiter is connected to all output-link arbiters with three groups
of wires. As analyzed in [8], the interconnection complexity of
CRRD is determined by 3nkm(nk — 1)(m — 1).

For CMSD, each IM has nk VOQ arbiters, nk slave output-
link arbiters, and m master output-link arbiters. For each VOQ
arbiter, there are at most m requests. Hence, the required
time and area cost of each VOQ arbiter are O(logm)-gate
delay and O(m)-gates, respectively. For each slave output-
link arbiter, there are at most nk requests. Therefore, the
required time and area cost of each slave output-link arbiter
at each IM are O(lognk)-gate delay and O(nk)-gates, re-
spectively. For each master output-link arbiter, there are at
most m requests from slave output-link arbiters. Therefore,
the required time and area cost of each master output-link ar-
biter at each IM are O(logm)-gate delay and O(m)-gates,
respectively. Thus the total time complexity of CMSD is
O(i(max (log k,logn) + logm) + log k)-gate delay and the
total area cost of the arbiters at each IM is O(nkm)-gates.
In CMSD, each VOQ arbiter is connected to its own slave
output-link arbiters with three groups of wires and each VOQ
group is connected to all the master output-link arbiters with
three groups of wires. The total interconnection complexity of
CMSD is 2nm(n — 1)(m — 1) + 3km(k — 1)(m — 1)[8].

For KBD, each IM has one k-selector. For each k-selector,

YF]',F.

COMPUTER

SOCIETY

there are at most nk requests. As shown in [10], the required
time and area cost for each k-selector are O(log nk)-gate and
O((nk)?) gates. Since only one k-selector is needed, no in-
terconnection wire is needed for KBD. Table I summarizes the
implementation complexity of the three algorithms. Compared
with CRRD and CMSD, KBD is much faster and has no inter-
connection cost. The tradeoff is that the area cost of KBD is
higher than CRRD and CMSD.

V. SIMULATION RESULTS

In this section, we evaluate the scheduling performance of
the KBD algorithm in terms of the average cell delay. The cell
delay is the summation of the cell’s waiting time in the VOQs
at IMs and the transit time of cell through the switch. We sim-
ulate the KBD algorithm and compare it with the performance
of the CMSD algorithm. Two traffic models, uniform Bernoulli
traffic and uniform bursty traffic, are considered in our simu-
lations. The bursty traffic is modelled following the two-state
Markov chain model as in [7], [9]. In the following, we show
the average cell delay of CMSD and KBD for a Clos-network
switch of sizen =k =m = 8.

Fig. 5 shows that under uniform traffic, KBD with one itera-
tion achieves similar performance to CMSD with one iteration
under load less than 0.60. For load above 0.60, the performance
of KBD is not as good as CMSD. The performance of KBD is
improved with more number of iterations. With four iterations,
KBD achieves nearly the same performance as CMSD.

Fig. 6 shows that under bursty traffic, KBD with one iteration
achieves similar performance to CMSD with one iteration under
load less than 0.60. For load above 0.60, the performance of
KBD is not as good as CMSD. The performance of KBD is
improved with more number of iterations. With four iterations,
KBD achieves even better performance as CMSD.

VI. CONCLUSION

In this paper, we propose a k-selector-based dispatching
(KBD) algorithm for Clos-network switches. The KBD algo-
rithm is different from other dispatching algorithms (such as
CRRD and CMSD) in the first phase, i.e., matching within in-
put modules. It uses only one k-selector to select m out of nk
requests to send to the corresponding central modules. Hence,
there is no need for interconnection wires. Also we show that
the required time of KBD is also better than CRRD and CMSD.
Through simulations, we show that KBD achieves performance
comparable to CMSD under both uniform Bernoulli and bursty
traffic. In a sum, KBD is an efficient and practical scheduling
algorithm for multistage switches. Future work includes evalu-
ation of KBD under nonuniform traffic and extension of KBD
to provide differentiated services.

REFERENCES

[1] H. J. Chao, C. Lam, and E. Oki, Broadband packet switching
technologies-a practical guide to ATM switches and IP routers, John Wi-
ley & Sons, 2001.

H. J. Chao, “Next generation routers,” Proc. of IEEE, vol. 90, no. 9, Sept.
2002, pp. 1518-1558.

H. J. Chao, Z. Jing, and K. Deng, “Packet scheduling scheme for a 3-stage
Clos-network photonic switch,” in Proc. ICC, 2003, vol. 2, pp. 1293-
1298.

[2]
[3]

Proceedings of the Third International Conference on Information Technology: New Generations (ITNG'06)
0-7695-2497-4/06 $20.00 © 2006 IEEE

10000

—8— KBD (I iteration)
—6— KBD (2 iterations)
—a— KBD (4 iterations)

1000 -+~ - - CMSD (I iteration)

- --©--- CMSD (2 iterations)

-+ - A - - CMSD (4 iterations)

Average delay (cell time)
g

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load

Fig. 5. Delay performance of KBD and CMSD for n=m=k=8 under uniform
Bernoulli traffic.

10000

—&— KBD (1 iteration)
—o— KBD (2 iterations)
—A— KBD (4 iterations)
1000
- - -EF-- CMSD (I iteration)
---©--- CMSD (2 iterations)

---A--- CMSD (4 iterations)

100

Average delay (cell time)

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load

Fig. 6. Delay performance of KBD and CMSD for n=m=k=8 under bursty
traffic with average burst size = 16.

[4] H.J. Chao, Z. Jing, S. Y. Liew, “Matching algorithms for three-stage
bufferless Clos network switches,” IEEE Communications Magazine, vol.
41, no. 10, Oct. 2003, pp. 46-54.

F. M. Chiussi, J. G. Kneuer, and V. P. Kumar, “Low-cost scalable switch-
ing solutions for broadband networking: the ATLANTA architecture and
chipset,” IEEE Commun. Mag., pp. 44-53, Dec. 1997.

C. Clos, “A study of nonblocking switching networks,” Bell Syst. Tech. J.,
pp. 406-424, Mar. 1953.

N. McKeown, “The ¢SLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188-201, Apr.
1999.

E. Oki, Z. Jing, R. Rojas-Cessa, H. J. Chao, “Concurrent round-robin-
based dispatching schemes for clos-network switches,” IEEE/ACM Trans.
Networking, vol. 10, no. 6, Dec. 2002, pp. 830-844.

Mei Yang and S. Q. Zheng, “An efficient scheduling algorithm for CIOQ
switches with space-division multiplexing expansion”, in Proc. IEEE IN-
FOCOM, 2003, pp.1643-1650.

S. Q. Zheng, Mei Yang, and F. Masetti-Placci, “Constructing schedulers
for high-speed, high-capacity switches/routers,” Int’l J. Computers and
Applications, vol. 25, pp. 264-271, Nov. 4, 2003.

S. Q. Zheng and Mei Yang, “Parallel round-robin arbiters,” to appear in
IEEE Trans. Parallel and Distributed Systems.

[51

9

—

[10]

(1]

YF]',F.

COMPUTER

SOCIETY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

