
Fast scheduler solutions to the problem of priorities for polarized data traffic

Gérard Damm, John Blanton, Prasad Golla, Dominique Verchère, and Mei Yang

Alcatel USA Research and Innovation Department
1201 E. Campbell Rd, Richardson, Texas 75081, USA

{Gerard.Damm, John.Blanton, Prasad.Golla, Dominique.Verchere, Mei.Yang}@usa.alcatel.com

Abstract
Three fast scheduling algorithms are proposed to handle

efficiently polarized traffic in an advanced architecture for
multiple-server optical IP packet routers. These schedulers must be
capable of transferring several fixed-sized packets per port per
time slot rather than one cell per time slot. An optical burst packet
(OBP) contains a number of cells, obtained either from a network
protocol or from segmentation. To optimize the resource
utilization, it is important to maximize the filling ratio of these
OBPs, but also important to adjust the right time-out to trigger the
transfer of non-full packets. Moreover, the hardware
implementation must be feasible and cost-effective. The solutions
presented in this paper are detailed and compared by means of
simulations. The first of them, MultiSLIP, is a generalization of
iSLIP to the multiple-server architecture. The second one, PDRR,
is a generalization of DRR (Dual Round Robin) to multiple-server
architecture with priorities. The third one, FR-DRR (Flexible Ring
DRR), features a new arbitration scheme based on a circular list of
pending requests.

I. Introduction

The switch fabric model considered in this paper is a set of N
input ports are connected to a switching device such as an optical
matrix (OM), which is connected to N output ports. The input
memory is organized in VOQs (Virtual Output Queues) so as to
avoid HOL (Head Of Line) blocking [1]. In the classical
architecture, each port has one server, which allows the transfer of
one cell per port per matrix cycle (or time slot). The scheduling
problem comprises picking a requesting VOQ in each input port at
each time slot while optimizing a set of different properties such as
throughput maximization, fairness, non-starvation, and hardware
feasibility [2].

Figure 1. Multiple-server architecture

New advances in hardware systems have made it possible to
have more than one server per port, so as to match the high
capacity of the OM. This change imposes the design of innovative
scheduling algorithms. In the multiple-server architecture, the
scheduler can pick several OBPs (Optical Burst Packets) from
different VOQs in each input port, and can also transfer several
OBPs from one VOQ, with all the possible combinations. Any
input server can take an OBP from any VOQ in its port and send it
to any output server through the OM. Figure 1 represents the
architecture with N ports and H servers per port.

The OBP is the data unit transferred by a server each time slot. It
contains ECPs (Elementary Composite Packets), which in turn
contain a number K of cells. This composition mechanism is
usually referred to as burstification [3,4]. Figure 2 shows the
structure of an OBP. For the purpose of architecture comparison,
the capacity of a port (in bit/s) is supposed to be independent from
H. Therefore, an OBP contains N/H ECPs (H is supposed to be a
factor of N) so that each port can always send at most N ECPs at
each time slot, whatever H. Intuitively, the finest granularity and
highest flexibility should be obtained when H=N, i.e. when an
OBP contains only one ECP. This result is confirmed by the
simulations. In this paper, we will consider architectures in which
N=16 and H∈{2,4,8,16}.

Figure 2. Optical Burst Packet structure

The specification of a core router includes a time-out limit L,
which guarantees that, with a given probability, the transit time of
all incoming data is smaller than or equal to L seconds. When there
is uneven (polarized) data traffic into the different input queues, it
will eventually become necessary to trigger the transfer of non-full
OBPs through the matrix in order to clear data cells before they
grow stale. This reduces the throughput of the switch, since
non-full OBPs represent unused capacity. Due to space limitation,
we keep out of the scope of this paper all the functionalities related
to the ingress and egress stages, including reassembly of IP packets
previously segmented into cells.

To meet the conflicting requirements of maximizing the
throughput of the switch matrix and respecting the time limit, we
propose three scheduling algorithms, described in section II. We
compare them by simulation in Section III. Measured by the
average data cell transit time, the performance of each scheme is
assessed for a number of server and time slot configurations under
different degrees of traffic load and polarization. Section IV
presents a list of hardware implementation issues and section V
concludes the study.

II. Description of the Schedulers

2.1. Computation of Grants

MultiSLIP
The first idea to deal with multiple-server architecture is to

generalize the single server iSLIP algorithm [5]. This solution,

input port 1

1

2

N

1

2

H

......

...
input port N

1

2

N

1

2

H

......

OM

output port 1

1

2

H

...

...
output port N

1

2

H

...

OBP

1K 21K 2

ECP #1ECP #N/H

...

MultiSLIP, is described in detail in [6]. Basically, it consists in
associating an RRA (Round Robin Arbiter) with each output server
for the Grant phase of the RGA (Request-Grant-Accept) strategy.
Each RRA makes its own pick according to its current state and the
propagated requests. The Accept phase uses only one RRA per
port to sequentially select among the issued grants. Just like in
iSLIP, an output arbiter is updated only if and only if its grant has
been accepted in the first iteration. Note that the choice between a
port arbiter that makes sequential selections and server arbiters that
make selections in parallel involves many issues, such as hardware
implementation, execution time, selection validations, etc.

PDRR
The second solution, PDRR (Prioritized Dual Round Robin),

generalizes DRR [7] to the multiple-server case. It also introduces
the use of priorities associated with each scheduling request from
the input VOQs. DRR uses the RG (Request-Grant) strategy. The
version of PDRR presented here makes use of port RRA both at
the input and the output sides. The requirement to service data
packets within the specified time limit is satisfied by assigning the
highest priority to queues containing incipiently stale data. The
need to make maximum use of available switch matrix capacity is
also satisfied by assigning an intermediate priority to requests for
full packets when there are no incipiently stale data cells. The
lowest priority is given to the non-full packets.

The handling of priorities is performed as described hereafter. In
the Request phase, the input port RRAs sequentially pick among
the highest priority requests, up to the number of available (not yet
matched) servers in their port. If a priority level is exhausted, the
next lower level is considered, and so on. In the output port RRAs,
the same sequential pick procedure is applied to make selections
(grants) among the issued requests.

FR-DRR
The flexible ring dual round robin (FR-DRR) scheme places the

burden of resolving the data priority conflicts entirely on the
scheduler. In this scheme, the VOQs do not explicitly request
service but only report the most recent additions of data cells to the
queues. A specific arbiter is introduced to manage those
differential requests: the Circular Queue Arbiter (CQA). It consists
of a linked list with a pointer. An element in a CQA represents a
request from a VOQ for the transfer of one OBP. The pointer
represents the currently favored request. It moves to the next
position after each use, and comes back to the head of the queue at
the end. New requests are always inserted at the end regardless of
the pointer position. If the selection is validated, the request is
removed from the list. This is a way to procure a proportional
service to the requesting VOQs: the more pending requests a VOQ
has, the more likely it will get serviced.

In FR-DRR, CQAs are used in the input ports for the Request
phase, whereas the Grant phase in the output ports uses server
RRAs. It would not make sense to use CQAs in the Grant phase,
since there is no corresponding persistent state, due to the
arbitration performed each cycle for issuing the requests.

Figure 3. Circular queue

Figure 3 shows an example of a circular queue state evolution.
In state (a), VOQ 1 has 3 pending requests and VOQ 2 has one
pending request. The pointer is currently set to the head of the

queue, on a request from VOQ 1. The CQA will therefore select it.
Let us assume it is not granted. In the next iteration, the pointer is
set to the next request from VOQ 1, as shown in state (b). Let us
assume that this time, it is granted. In this case, VOQ 1 benefited
over VOQ 2 from its larger number of pending requests. The
request is removed and the pointer is moved to the next position, as
shown in state (c). Note that the VOQ is still emptied in a FIFO
manner, regardless of the selected request. State (d) represents the
insertion of two additional requests, one request from VOQ 3 and
one request from VOQ 2.

2.2. Generation of Requests

All these schedulers are designed to process requests and issue
corresponding grants. However, the generation of a request is an
independent problem and has an important impact on the
efficiency of the whole scheduling.

MultiSLIP
It is especially true for MultiSLIP, since it has no implicit

information regarding the age of the data or the filling ratio. We
have presented in [8] a discussion on the generation of requests
policy for VOQ-state unaware schedulers such as MultiSLIP. The
simplest one, called greedy policy, consists in sending requests
whenever at least one cell is in the queue. Comparatively, it
provides the best throughput for uniform traffic, but is very limited
for even slightly polarized traffic. The thrifty policy is better and
consists in holding data until either a packet is full or the time limit
is near. This policy performs rather well to handle polarized traffic
but fails to sluice non-full packets in temporary low traffic
situations. The best one, called conservative policy, improves the
thrifty policy by examining the amount of requests issued at port
level and comparing it to the number of servers. The possible
remaining capacity is not fully requested, since the performance
would otherwise drop back to the greedy policy level for polarized
traffic. To avoid requesting one third of the remaining servers
empirically proved to be efficient.

PDRR
As for PDRR, the policy for generating requests is simplified,

since the priority concept maps naturally to the VOQ state of
emergency. For the results presented in this paper, we have
considered 5 priority levels (the higher the number, the higher the
priority):

Figure 4. PDRR priority levels

The highest priority is for packets (full or not full) that will time
out in less than 2 time slots. The next level is for packets (full or
not full) that will time out in less than 10 time slots. Level 2 is for
full packets in long VOQs (more than 10 packets). Level 1 is for
full packets in short queues. Finally, the lowest level is for the
non-urgent non-full packets.

FR-DRR
The generation of requests for FR-DRR addresses the

throughput maximization requirement by making new requests for
full packets. The time-out specification is enforced by issuing
requests for packets that will grow stale in less than 10 slots.
Incidentally, the queue length in a port tends to be balanced thanks
to the proportional service, since a queue has a probability to be

Priority Request
4
3
2
1
0

Time-out (L) - 2 time slots
Time-out (L) - 10 time slots
full and VOQ length > 10

full and VOQ length <= 10
non-full packets

(a) (b)

(c) (d)

12 11 12 11

111 11322 2

serviced in proportion to its number of pending requests in the
flexible ring. A drawback of this policy is that the low traffic
conditions are not taken advantage of to evacuate non-full packets.
However, any extra cells that might have arrived in a queue
between the request and the grant are used to fill the OBPs as
much as possible. As a consequence of this padding out, the
number of grants received can be greater than the number of
requests issued. A simulation program, as well as a hardware
implementation, should occasionally expect grants for empty
VOQs. The corresponding lost bandwidth due to these wasted
grants is marginal, since it applies only to emergency requests.

III. Simulation Results

3.1. Traffic model

We used a polarized traffic pattern characterized by unbalanced
traffic in the VOQs, while the global traffic is still balanced (so as
to keep the same maximal throughput). For a given external load ρ,
the arrival process for an input port consists of N Bernoulli trials
with probability ρ every Kth of a slot, but the destination VOQ is
not uniformly distributed. Instead, the proportions of traffic
received by each VOQ form a geometric progression with a factor
q: each queue receives q times more traffic than the previous one.
With normalized proportions, the lowest traffic proportion is
(q-1)/(qN-1). The proportions are rotated from one input port to
another so that the output ports receive the same average traffic.
This is the definition of a geometrically polarized traffic. We will
consider polarization factor values q ranging from 1.0 to 2.0. The
value 1.0 is really a uniform traffic, where all the proportions are
equal to 1/N.

3.2. Analysis of the simulations

The length of the time slot determines K, the number of cells per
ECP. The maximum number of allowed iterations was either 4 or
unlimited. We present here only the most significant results, with
16 cells per ECP and 4 iterations allowed per scheduling.

Figure 5. Average transit time (number of slots) as a function
of the load for uniform traffic

Figure 5 shows the performance of the three schedulers in
uniform traffic, for two configurations: 4 servers (full lines) and 16
servers (dotted lines). In this figure, the following abbreviations
are used: ms for MultiSLIP, p for PDRR, and fr for FR-DRR. With
only 4 servers, PDRR is the best, closely followed by MultiSLIP.
FR-DRR has interesting performance only up to 60% load, and
then degrades. Given that a realistic time-out limit L corresponds
to about 100 slots, FR-DRR still reaches 95% throughput, whereas
PDRR and MultiSLIP reach 99%. When 16 servers are available

per port, the 3 schedulers converge to the same performance at
high loads, but as expected, FR-DRR does not handle low traffic as
well as the other two (also with 4 servers). Also, FR-DRR saturates
earlier, near 95%. So for a uniform traffic, FR-DRR does not
perform as well as PDRR and MultiSLIP, but is still acceptable.

We have run simulations for polarization factors ranging from
1.25 to 2.0, and present the most polarized case in Figure 6. Here
again, we compare the average transit ime for configurations with
4 servers and with 16 servers. The rightmost point in a curve is the
last measurement before saturation (last successful simulation as
the load goes up). For instance, FR-DRR can only sustain up to
70% of traffic with 4 servers, while MultiSLIP approaches 90%
and PDRR reaches 98%. With 16 servers, FR-DRR is weaker than
the other two at low loads, but performs well at high loads.
MultiSLIP starts to saturate just after 90%. PDRR has a larger
average transit time, but reaches slightly higher loads than
FR-DRR (99% versus 96%). In all cases, the transit times are
acceptable, so the critical performance indicator is the maximum
admissible throughput (saturation point).

Figure 6. Average transit time (number of slots) as a function
of the load for polarized traffic (factor 2.0)

Therefore, PDRR proves to be the best combination, since it
maintains the highest load even under highly polarized traffic and
low number of servers. It also handles low traffic well and
provides an acceptable average transit time. Its request generation
is straightforward and the implementation makes use of simple
round robin arbiters, as described in the next section. However, it
requires the management of priorities in the computation of grants.

MultiSLIP is the second best of this test. Its maximum load is a
little limited under polarized traffic and its generation of requests
requires to sum port requests and to compare the total to the
number of available servers. However, its implementation can be
designed fairly easily based on the experience of iSLIP.

Finally, FR-DRR is based on a new arbitration idea and provides
globally acceptable results, except for the maximum throughput in
polarized traffic with few servers. Also, the management of low
traffic could be improved by other means.

IV. Hardware Implementation Issues

An important point for designing fast scheduling algorithms is
simple hardware implementation possibilities. The implementation
of our three proposed scheduling algorithms can be based on the
architecture shown in Figure 7, assuming there is only one arbiter
at each input/output port (i.e. port arbiters, not server arbiters). 2N

0

2

4

6

8

10

12

14

16

0.00 0.20 0.40 0.60 0.80 1.00

Load

ms-4
p-4
fr-4
ms-16
p-16
fr-16

0

2

4

6

8

10

12

14

16

0.00 0.20 0.40 0.60 0.80 1.00

Load

ms-4
p-4
fr-4
ms-16
p-16
fr-16

arbiters are used for this architecture. An N2-byte wide vector is
needed to record request status of VOQs. In order to find the
maximum match, multiple iterations may be required to achieve
final decisions for both RG and RGA.

For RG strategy, the request arbiters select multiple requests
among the contending VOQs and pass them to grant arbiters,
where grant decisions are made. If there still are available servers
or ungranted requests, the previous grant decisions are fed back to
request arbiters and another iteration is started, provided the
maximum number is not reached. Otherwise, the final decisions
are sent to configure the switch matrix and set the input/output
ports and their servers. Similarly, for RGA, the grant arbiters grant
multiple requests among requests from all VOQs and pass them to
accept arbiters, where accept decisions are made. If there still are
available servers or ungranted requests, the previous accept
decisions are fed back to grant arbiters to possibly start another
iteration. Otherwise, the final decisions are sent out. Therefore,
each request/grant arbiter should maintain a matrix of requests and
update it before each iteration. The decision register should
maintain a matrix of server status and update it after each iteration.

Figure 7. Block diagram of the switch scheduler

The design of arbiters varies for the different scheduling
algorithms. For MultiSlip and PDRR, round-robin arbiters are
employed, which can be implemented by programmable priority
encoders [5]. Each arbiter should have its own register for accepts
“ai“and grants “gi”. In PDRR, the priority of each request must be
filed in the request vector. For FR-DRR, round robin arbiters are
used at the grant side; at the request side, a linked list based on
RAM is proposed to be an ideal structure for a flexible ring.

V. Conclusion

We have presented three scheduler solutions that are able to
handle a multiple-server architecture. This kind of architecture is
likely to be more and more widely used for optical burst packet
networks, since the speed of optical components increases faster
than the speed of electronic components. Parallel data access in the
electronic components will be required to fully exploit the capacity
of the new optical matrices. We extended two concepts that
already existed in the classical single-server architecture (iSLIP
and DRR) and proposed a new arbitration scheme, the Flexible
Ring, based on a linked list. Because of the aggregation of cells
into OBPs, an additional issue is the bandwidth loss due to non-full
OBPs. An appropriate request generation procedure has to be
proposed so as to maximize the filling ratio while respecting the
time-out specification of the router. We proposed a different
request generation procedure for each scheduler. In all cases, the
idea is to give priority to urgent packets, then to full packets, then

to the others. In the switch fabric, pathological situations can be
modeled with geometrically polarized traffic.

We have compared the performance by simulation of MultiSLIP
(multiple-server iSLIP), PDRR (Prioritized Dual Round Robin)
and FR-DRR (Flexible Ring Dual Round Robin) with different
architecture configurations and different polarization factors. All
three scheduler solutions prove to be good candidates, but
FR-DRR would need some improvement in the case of high
polarization and small number of servers. The best solution is
PDRR, both in terms of theoretical performance and practical
hardware implementation. It is an iterative scheduling algorithm,
based on the RG strategy, with independent port round robin
arbiters that make sequential selections for each unmatched server
within each iteration. It reaches very high throughputs even under
highly polarized traffic and small number of servers, and maintains
a low average transit time.

Further work

We are expanding further PDRR so as to deal with the QoS
issues related to the next generation Internet. Also, we are
investigating alternative (and implementable) arbitration schemes
that are well adapted to the new multiple-server architectures. They
involve both the design of atomic arbiters and the interaction
scheme between a group of arbiters.

Acknowledgements

We would like to thank Francesco Masetti, leader of the Core
Routing project in the Research and Innovation department of
Alcatel, for his support to this paper and our study.

References

[1] M. Hluchyj and M. Karol, “Queueing in High-Performance
Packet Switching”, IEEE Journal on Selected Areas in
Communications, Vol. 6, No.9, December 1988, pp. 1587-1597.
[2] N. McKeown, “Fast Switched Backplane for a Gigabit
Switched router”, White Paper, http://www.cisco.com/.
[3] Y. Xiong, H. C. Cankaya, M. Vandenhoute, “Performance of
Optical Routers in Burst-Switched WDM Networks”, Proceedings
of Networld+Interop 2000 Conference, May 2000.
[4] F. Masetti et al., “The Perspective of Optical Packet Switching
in IP-Dominant Backbone and Metropolitan Netwoks”, IEEE
Communications Magazine, March 2001.
[5] N. McKeown, “The iSLIP Scheduling Algorithm for Input-
Queued Switches”, IEEE/ACM Transactions on Networking,
Vol.7, No.2, April 1992.
[6] J. Blanton, H. Badt, G. Damm, and P. Golla, “Iterative
Scheduling Algorithms for Optical Packet Switches”, unpublished,
submitted to IEEE Communications Letters.
[7] J. Chao, “Saturn: A Terabit Packet Switch Using Dual Round-
Robin”, IEEE Communications Magazine, December 2000, pp.
78-84.
[8] J. Blanton, H. Badt, G. Damm, and P. Golla, “Impact of
Polarized Traffic on Scheduling Algorithms for High Speed
Optical Switches”, ITCom 2001, Denver, August 2001.

St
at

es
 o

f V
O

Q
s (

N
2 b

yt
e)

1

2

N

.

.

1

2

N

.

.

D
ec

is
io

n
R

eg
is

te
rs

.

.

.

.

.

.

.

.

.

.

.

.

N2

N2

1

Request/Gra
nt

Grant/Acc
ept

	Abstract
	I. Introduction
	II. Description of the Schedulers
	
	2.1. Computation of Grants
	2.2. Generation of Requests

	III. Simulation Results
	
	3.1. Traffic model
	3.2. Analysis of the simulations

	IV. Hardware Implementation Issues
	V. Conclusion
	References

