
Fault-Tolerant Routing Schemes in RDT(2,2,1)/α-Based Interconnection Network for  
Networks-on-Chip Designs 

Mei Yang†, Tao Li‡, Yingtao Jiang†, and Yulu Yang‡  
 

† Dept. of Electrical & Computer Engineering 
University of Nevada, Las Vegas 

Las Vegas, NV 89154, USA 
{meiyang, yingtao}@egr.unlv.edu 

‡ Dept. of Computer Science and Technology 
Nankai University 

Tianjing, 300071, China 
litao@mail.nankai.edu.cn, yangyl@nankai.edu.cn 

 
Abstract 

It has been well recognized that the fault-tolerance capability 
is vital for a NoC system, since one faulty link/processor may 
isolate a large fraction of processors. Continuing from a 
previous paper [13] where a RDT(2,2,1)/α-based 
interconnection network for NoC designs was proposed, in this 
paper, we investigate fault-tolerant routing schemes on NoC 
systems featuring a RDT-based interconnection network. In 
specific, we propose two fault-tolerant routing schemes in the 
presence of either single link/node failure or multiple link/node 
failures. The proposed routing schemes are based on 
deterministic routing. Alternative routes are discovered by 
properly selecting the intermediate nodes between the source 
and the destination nodes on the rank tori. As of the single 
link/node failure case, we show that the number of routers on the 
detoured route generated by the proposed routing scheme is at 
most 2 more than the number of routers on the original route.  
1. Introduction 

  Advances in VLSI technology will soon allow a single chip to 
contain more than one billion transistors [8], indicating that a 
large number of processing units (such as CPU, DSP, multimedia 
processor) shall be integrated into one packaged chip. In these 
new systems, communication resources are competed by the vast 
volume computational resources. With a communication-centric 
design style, Networks-on-Chip (NoC) [1] was proposed to 
mitigate the complex communication problems. A NoC system is 
composed of a large number of processing units communicating 
to other units through routers across the interconnection network. 
Packets travel through the network by passing one or more hops 
between the source and the destination tiles.  

As semiconductor technology scales down to nanometer 
domain, processing units (PUs), routers (nodes), and interconnect 
links (links) are all subject to new types of malfunctions and 
failures that are harder to predict and avoid [5]. Particularly, 
failures of nodes/links may isolate a large number of fault-free 
PUs. A major challenge in NoC designs thus is to provide fault 
tolerance under link/node failure(s).  

In [13], we proposed an interconnection network architecture 
for NoC based on a special Recursive Diagonal Torus (RDT) 
structure [12], named as RDT(2,2,1)/α. In RDT(2,2,1)/α, each 
node has links to form base torus (rank-0) and 2 upper tori with 
the cardinal number 2. RDT(2,2,1)/α provides a promising 
solution for interconnection networks of NoC designs with its 
distinct advantages: 1) high scalability due to its recursive 

structure, 2) low power consumption due to its smaller diameter 
and average distance, 3) architectural customizability with its 
embedded mesh/torus topologies, 4) fault-tolerance capability 
with a constant node degree of 8, and 5) feasibility of layout 
compatible with current and future VLSI technologies [7].  

In this paper, we attempt to investigate various fault-tolerant 
routing schemes applicable to the RDT(2,2,1)/α-based 
interconnection network. As pointed out in [4][7], adaptive 
routing which employs virtual channels [2][3] is infeasible for 
NoCs due to the need of large buffers and lookup tables as well 
as complex shortest-path algorithms. Instead, we consider the 
deterministic routing based fault-tolerant routing schemes which 
reroute the packets by properly selecting the intermediate routers 
between the source and the destination nodes. The proposed 
fault-tolerance routing schemes have no adverse impacts on 
routing in the absence of faults.  

The rest of the paper is organized as follows. In Section 2, we 
give an overview of the RDT structure. In Section 3, we describe 
the NoC architecture, the delay model, and the routing 
algorithms when no faults are present in the interconnection 
network. In Section 4, we present the fault-tolerant routing 
algorithm under single link/node failure. In Section 5, the fault-
tolerant routing algorithm under multiple link/node failures is 
presented. Section 6 concludes the paper.  
2. RDT(2,2,1)/α Structure 

The RDT structure [12] is constructed by recursively 
overlaying 2-D diagonal meshes (tori). The base torus is a two-
dimensional square array of N by N nodes, each of which is 
numbered with a two-dimensional number as follows: 

(0, 0)     (1, 0)     (2, 0)     …     (N-1, 0) 
(0, 1)     (1, 1)     (2, 1)     …     (N-1, 1) 
(0, 2)     (1, 2)     (2, 2)     …     (N-1, 2) 

.         .         .          .        . 

.         .         .         .         . 

.         .         .        .          . 
(0, N-1)    (1, N-1)    (2, N-1)   …     (N-1, N-1) 

where N = nk and both n and k are natural numbers. The torus 
network is formed with four links between node(x, y) and its 
neighboring four nodes: (mod(x±1, N), y) and (x, mod(y±1, N)). 
This base torus is also called rank-0 torus. 

On the rank-0 torus, a new torus-like network (rank-1 torus) is 
formed by adding four links between node (x, y) and nodes (x±n, 
y±n). The direction of the new torus-like network is at an angle 
of 45 degrees to the original torus. On the rank-1 torus, another 



torus-like network (rank-2 torus) can be formed by adding four 
links in the same manner. Similarly, a rank-(r+1) torus can be 
formed upon rank-r torus. An independent torus on rank-i is one 
that does not have links to other tori on rank-i. 

RDT(n, R, m) is a class of networks in which each node has 
links to form base torus (rank-0) and m upper tori (the maximum 
rank is R) with the cardinal number n. Thus, the degree of the 
RDT(n, R, m) is 4(m+1) [12]. One of the upper rank torus is 
assigned to each node in the RDT(n, R, m) after n, R, and m are 
set. Thus, the structure of the RDT(n, R, m) also varies with 
different assignments for upper rank tori to each node. This 
assignment is called torus assignment.  

A network in which every node has links to form all possible 
upper rank tori (i.e. RDT(n, R, R)) is called a perfect RDT 
(PRDT(n, R)), where n is the cardinal number, and R is the 
maximum rank. We refer a perfect torus as one that contains all 
links and no two links overlap.  

A PRDT is unrealistic due to its large degree (4(R+1)). 
Various structures of the practical RDT can be formed by 
changing n and m, which provide various characteristics and can 
be applied to different applications. We consider a practical RDT 
structure, RDT(2, 2, 1)/α, with its torus assignment shown in Fig. 
1. In this assignment, each node has eight links, four for the base 
(rank-0) torus and four for rank-1 or rank-2 tori. Fig. 1 only 
shows part of these links. In RDT(2,2,1)/α, we only use four 
independent rank-1 tori with their source nodes located at (0,0), 
(1,1), (2,0) and (3,1), respectively. Thirty-two rank-2 tori are 
formed on four rank-1 tori (1,0), (0,1), (2,1) and (3,0), 
respectively. Compared with other RDT(n, R, m) structures (such 
as RDT(2, 4, 1)/α, RDT(2, 4, 1)/ß [12]), RDT(2, 2, 1)/α is much 
simpler and suitable for networks with a thousand or less nodes. 
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Figure 1. Torus assignment for the RDT(2,2,1)/α. 

 
3. Routing Algorithms without Link/Node Faults 
3.1 The NoC Architecture 

Our study is based on the NoC architecture shown in Fig. 2, 
where each PU is attached on a switch/router which is connected 
to the interconnection links. Fig. 3 shows a possible router 
structure which consists of input and output ports and interface to 
the attached PU. At each input and/or output port, a limited 
number of buffers are provided to store packets, and a line 
controller is used to select the packet to be received from the 
input link or sent on the output link. A central controller 
performs the functions of routing and arbitration.  

 

Router

Processing unit
Network interface

 
Figure 2. NOC architecture. 
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Figure 3. Router structure. 

 
3.2 Delay Model 
    For an NoC application, an important performance metric is 
the delay, which depends on the traffic pattern of the application 
and many other factors, such as packet/flit size, router’s 
arbitration scheme, etc. [7]. In this study, we employ a simple 
delay model as follows.  

For a NoC network shown in Fig. 2, the delay experienced by 
a packet on the route from the source PU to its destination PU 
includes the transmission delay on the wires (or wire delay), the 
processing delay of the routers and the queuing delay at the 
routers. We assume the processing delay and queuing delay are 
the same for all routers, denoted as Tp, Tq, respectively. There 
may exist different types of wires with various lengths. We 
denote the unit length wire delay as T0, the length of wire type i 
as li, and the number of wires of type i as ni. Let N be the number 
of hops a packet travels between a source to a destination router 
and m be the number of different types of wires. Then we can 
determine the total delay experienced by a packet as 

∑
=

+++=
m

i
iiqp lTcnNTT

1

2
0total )1)((T        (1) 

where c represents the constant proportional to the product of the 
resistance per unit length and the capacitance per unit length. 

As discussed in [10], the effect of length to wire delay can be 
alleviated by breaking long lines into shorter sections with a 
repeater driving each section. Hence, it is possible to match the 
wire delay of a long line to the total wire delay of a set of shorter 
lines assuming the length of the long line is less or equal to the 
sum of the lengths of shorter lines in the set. And we assume the 
processing and the queuing delays experienced at a router are far 
longer than the wire delay of the line connecting two adjacent 
routers. Hence the total delay experienced by a packet is 



dominated by the sum of the processing and queuing delays on 
the routers (including the intermediate routers, and the source 
and destination routers). Hence, Eqn. (1) can be simplified to  

)1)((Ttotal ++≈ NTT qp    (2) 
As one can see from Fig. 4, on the RDT(2, 2, 1)/α structure, if 

a route on rank-1 torus is selected to connect S1 and D1, the 
number of routers on this route is 2. This is much less than an 
alternative route on rank-0 torus that has 5 routers. In another 
example, the number of routers on the route from S2 to D2 on 
rank-2 torus is 2, which is much less than that of routers on the 
corresponding route on rank-1 and rank-0 tori, 5 and 9, 
respectively. These two examples indicate that, according to Eqn. 
(2), the total delay of a route can be reduced if more links on 
higher rank tori are included.  
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Figure 4. Wires on RDT(2, 2, 1)/α. For clearness, we only show the 

nodes representing routers.  
    All the routing schemes discussed in this paper are based on 
the delay model shown in Eqn. (2). For routing in the RDT(2, 2, 
1)/α-based interconnection network without link/router failure, 
we can directly apply the floating vector routing algorithm 
[9][12], which is based on the vector routing algorithm [12] 
proposed for PRDT structures. In the following, we will briefly 
introduce the two routing algorithms.   
3.3 Vector Routing Algorithm   
    The basic idea of the vector routing algorithm is to represent 
the route from a source node to the destination node with a 
combination of unit vectors, each of which corresponds to each 
rank of tori. Fig. 5 shows the directions of the unit vectors for 
each rank torus for RDT(2, 2, 1)/α, which rotate in clockwise 
direction at an angle of 45 degrees as the rank increases. 

Xrank-0

Yrank-0,
Xrank-2

Xrank-1Yrank-1

Yrank-2

 
Figure 5. Directions of unit vectors for RDT(2, 2, 1)/α. 

    We are given a vector from a source node to the destination 
node represented as 

00 YbXaA
rrr

+=  where 0X
r

 and 0Y
r

 are the 

unit vectors of the base (rank-0) torus. A
r

 can be represented 
with a combination of the unit vectors RX

r
, RY
r

, …, 
0X
r

, 0Y
r

 on 
rank-R to rank-0 tori as  

0000

00

...... YvXvYvXvYvXv

YbXaA

vhrrvrrhRRvRRh

rrrrrr

rrr

+++++++=

+=  

where (vrh, vrv) represents the vector on rank-r torus, where R ≥ r 
≥ 0. And vrh and vrv are maximized in order to use the upper rank 
torus as much as possible. Given the vector 

00 YbXaA
rrr

+= , we 
list the vector routing algorithm as follows.  

Algorithm Vector Routing (a, b): 
begin 
for r = 0 to R  do  
    g ← (a + b)/2 
    f ← - (a - b)/2 
    vrh ← a - (n * g – n * f) 
    vrv ← b - (n * g + n * f) 
    a ← g 
    b ← f 
end 

The vectors are computed at the source node and encapsulated 
into the packet. Then we route the packet to the nodes following 
the order of rank-R, rank-(R-1), …, rank-0 vectors. On the same 
rank torus, the routing is performed according to a predetermined 
order, for example, XY routing [11]. 
Theorem 1 The maximum number of routers that a packet 
travels on rank-r torus is n+1 when using the vector routing 
algorithm, where n is the cardinal number. 

The proof of Thm. 1 follows the proof of Thm. 5 in [12].  
3.4 Floating Vector Routing Algorithm   

The floating vector routing algorithm [12] was proposed for 
practical RDTs, such as RDT(2, 2, 1)/α. In this algorithm, the 
vector computation is done at the source node according to the 
vector routing algorithm for the PRDT, and stored in the packet 
header. Each router maintains a simple table indicating the 
direction to reach the nearest node for each rank of torus. A 
router checks the vector in the packet header, and sends the 
packet to the nearest router on the highest rank torus according to 
the simple table. This process is called floating, through which 
each router can use any rank of torus by only a single step packet 
transfer to a neighbor router. Based on Thm. 1 and the 
description of the floating vector routing algorithm, we have:  

Corollary 1 The maximum number of routers that a packet 
travels on rank-r torus is n+1 when using the floating vector 
routing algorithm, where n is the cardinal number. 

In [13], we have showed the feasibility of using the RDT(2, 2, 
1)/α structure as the interconnection network for a NoC design. 
In this paper, we further explore the fault-tolerance capability of 
the RDT(2, 2, 1)/α structure. In specific, we propose two fault-
tolerant routing schemes that introduce the least extra processing 
and queuing delays (equivalent to the least  increase of the 
number of routers as shown in Eqn. (2)) on the RDT(2, 2, 1)/α-
based interconnection networks. 

4. Fault-Tolerant Routing Algorithm under Single Link/Node 
Failure 
4.1 Fault Model 

The following assumptions are used in this paper. 1) Any link 
or node in the network can fail, and the faulty components are 
unusable; that is, data will not be transmitted over a faulty link or 
routed through a faulty node. 2) The fault model is static, that is, 
no new faults occur during a routing process. 3) Both source and 



destination nodes (on any rank torus) are fault-free. 4) The faults 
occur independently. 5) If a node fails, the four links associated 
with the node on rank-r torus also fail. 6) Faulty link(s)/node(s) 
are known to all other nodes in the same rank.  
4.2 Single Link/Node Failure 

Given a pair of source and destination nodes S and D on the 
RDT(2, 2, 1)/α structure, using the floating vector routing 
algorithm, we know that the route from S to D is composed of 
route segments on different rank tori and floated route segments 
on rank-0 torus. The route thus can be represented as S~S2-
D2~S1-D1/S0-D0/D, where ~ represents a floating on rank-0, and 
Sr and Dr represent the source node and the destination node on 
the route segment on a rank-r torus, respectively. Note that a 
route may consist of all the route segments or subsets of these 
route segments. For single link/node failure on one segment 
floating on rank-0 torus, we can always find one alternative route 
without increasing the number of routers since each router has 
four possible routes (each with the same number of hops/routers) 
to float to a router on an upper rank torus. In the following, we 
enumerate the cases of single link/node failure happening on the 
route segment on one rank torus.  

(a) (b)

Sr

Ir1 Dr

Sr Dr

(c)

Ir1

Sr Dr

Ir1

X X X

 
Figure 6. Three distinct cases of single link failure on rank-r torus of 

the RDT(2, 2, 1)/α structure. 

By Corollary 1, we know that on the RDT(2, 2, 1)/α structure, 
using the floating vector routing algorithm, the number of routers 
a packet travels from Sr to Dr is no more than 3. Hence, there are 
three possible single link failures on the route segment on rank-r, 
as shown in Fig. 6, where faulty links are marked by X. 
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Figure 7. Two distinct cases of single node failure on rank-r torus of 

the RDT(2, 2, 1)/α structure.  

    For the same reason of single link failure, there are two 
possible cases of single node failure, as shown in Fig. 7, where 
faulty nodes are marked by X. 

4.3 Fault-Tolerant Routing Algorithm under Single 
Link/Node Failure 

As one can see from Figs. 6 and 7, if the failure is on the X (or 
Y) direction, then we should detour the packet by sending it 
through the Y (or X) direction first. The vector needs to be 
changed to reflect the detour if necessary.  

In each packet, we add a field flag, which is set as “floating” 
when the packet is floated to a node or “routing” when the packet 

is routed to a node on a rank-r link, and a variable r to indicate 
the current rank value. Fig. 8 shows the packet format. 

flag rank-R
vectors ...  packet payload

packet
header

header
length r rank-0

vectors
payload
length CRC

Figure 8. Packet format. 
Let +

rX  denote the +X direction on rank-r, −
rX  denote the -X 

direction on rank-r, +
rY  denote the +Y direction on rank-r, and 

−
rY  denote the -Y direction on rank-r. A distributed fault-tolerant 

floating routing algorithm is listed as follows, where (ix, iy) 
represents the vector of a node i on rank-0 torus. 

Algorithm Floating Vector Routing under Single Failure (FVRSF): 
begin     
     //Step 1: the source node computes the vectors, other nodes   

//check the flag and decrement the vector value accordingly 
 if i = S and S ≠ D then 
  call Vector Routing to compute vectors from rank R to 0 
  set r as max{i | (vih, viv) ≠ (0, 0)} 
 else if flag = “routing” then 
  if the packet is received from −

rX  then vrh ← vrh -1 
  else vrh ← vrh +1 
  if the packet is received from −

rY  then vrv ← vrv -1 
  else vrv ← vrv +1 
 else if flag = “floating” then 
  if the packet is received from  −

0X  then voh ← voh -1 

  else voh ← voh +1 
  if the packet is received from −

0Y  then vov ← vov -1 

  else vov ← vov +1 
     //Step 2: check the availability of the link and send the packet 

//accordingly 
 if i is on rank-r then 
  set flag as “routing” 
  if (vrh, vrv) ≠ (0, 0) then 
  if vrh ≠ 0 and the link on the vrh direction (i.e., +

rX  for vrh>0 

or −
rX  for vrh<0) is not faulty then 

  send the packet to vrh direction 
  else if vrh = 0 and the link on the vrv direction (i.e., +

rY  for 

vrv>0 or −
rY  for vrv<0) is not faulty then 

  send the packet to vrv direction 
  else 
  if vrh ≠ 0 and the link on the vrh direction is faulty then 
  if vrv = 0 then send the packet to +

rY  
  else send the packet to vrv direction 
  else if the link on the vrv direction is faulty then 
  send the packet to +

rX  
  else if find p = r-1 to 0 that (vph, vpv) ≠ (0, 0) then 
  r ← p, goto Step 2 
  else goto end 

     //Step 3: floating to a node nearest to node i on rank-r 
 find the non-faulty node j(jx, jy) on rank-r torus with min{abs(ix – jx –

v0h) + abs(iy – jy–v0v)} by checking the table on node i 
 set flag as “floating” 
 if ix ≠ jx then send the packet to (jx – ix) direction  
 else send the packet to (jy – iy) direction 
end 



Theorem 2 Consider a route from a source node S to a 
destination node D on the RDT(2, 2, 1)/α structure. If there exists 
a single link/node failure on the original route generated by the 
floating vector routing algorithm, the number of routers on the 
detoured route (also the shortest route) generated by the fault-
tolerant floating vector routing algorithm is at most 2 more than 
the number of routers on the original route.  
Proof: As discussed in the fault model, single link/node failure 
only affects routing on one rank torus. Based on Corollary 1, we 
can derive three possible cases of single link failure as shown in 
Fig. 6, and the two possible cases of single node failure as shown 
in Fig. 7. One can verify that, the fault-tolerant floating routing 
algorithm, with the mbedded vector routing algorithm, computes 
the shortest route (with the least number of routers) from Sr to Dr 
on each rank-r, and further the shortest route from S to D. The 
number of routers on the detoured route generated by the fault-
tolerant floating vector routing algorithm, compared with the 
original route, is either equal to the number of routers on the 
original route (as the case shown in Fig. 7 (a)) or 2 more than the 
number of routers on the original route (as the case shown in Fig. 
7(b) and the cases shown in Fig. 6). The increase of the number 
of routers on the detoured route is minimized for all three cases. 
Hence the theorem follows. ■ 
    The above theorem indicates that the extra queuing and 
processing delays is minimized using the FVRSF algorithm. 
Another advantage of the FVRSF algorithm is that each router 
decides the best route based on the fault information of its four 
links on one rank torus. No global fault information thus needs to 
be maintained at each router. In this way, the overhead 
introduced is very low.  

Fig. 9 illustrates two examples of the FVRSF algorithm. The 
original route from S1 (2, 1) to D1 (7, 6) generated by the floating 
vector routing algorithm is (2, 1)-(3, 1)-(5, 3)-(7, 5)-(7, 6), which 
travels through 5 routers. Assume that the link between (3, 1)-(5, 
3) on rank-1 fails. The detoured route generated by the FVRSF 
algorithm is (2, 1)-(3, 1)-(1, 3)-(3, 5)-(5, 7)-(7, 5)-(7, 6) with 7 
routers, which is 2 more than the number of routers on the 
original route. 

12 12

21 21 21 21

12 12

12 12

21 21 21

12 12

21

12 12

21 21 21 21

12 12

12 12

21 21 21

12 12

21

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

1

2

1

2

1

2

1

2

21 21 21 21 1

8

8

2

1

2

1

2

1

2

1

2

9

S1

D1

S2

D2

12 12 12 12 29 1
 

Figure 9. Two examples of the FVRSF algorithm.  
 As another example, the original route from S2 (0, 0) to D2 (8, 

8) generated by the floating routing algorithm is (0, 0)-(1, 0)-(9, 
0)-(9, 8)-(8, 8), which includes 5 routers. In the case of failure of 
node (9, 0), the detoured route generated by the FVRSF 
algorithm is (0, 0)-(1, 0)-(1, 8)-(9, 8)-(8, 8) with 5 routers. 
Obviously, this is the best detoured route with the least number 
of routers that a packet has to travel. 
5. Fault-Tolerant Routing Algorithm under Multiple Failures 

5.1 Multiple Link/Node Failures 
Multiple link/node failures may exist on different rank tori of 

the RDT(2,2,1)/α structure. As discussed in Section 4.1, a node 
failure can be modeled as multiple link failures. As such, we 
only consider link failures here. Based on the construction of the 
RDT(2,2,1)/α structure, we can decompose multiple link failures 
on different rank tori into sets of link failures on the same 
independent torus on one rank torus. In the following, we discuss 
the fault-tolerance routing scheme under multiple link failures on 
the same independent torus on one rank-r torus.  

When multiple link/node failures exist on a rank-r torus, the 
FVRSF algorithm cannot generate the detoured route with the 
least number of routers since the decision made by each router is 
not based on global view of other failures. In this case, we adopt 
the method discussed in [6] to identify the best intermediate 
router through which the detoured route uses the least number of 
routers. Note that there may exist more than one such 
intermediate routers. We use Iri to denote such intermediate 
routers between Sr and Dr.  
5.2 Fault-Tolerant Routing Algorithm under Multiple 
Failures 

When applying the method of identifying the best intermediate 
router in combination with the vector routing algorithm, the 
following requirements have to be satisfied for an intermediate 
router Iri to ensure that the faulty links are avoided when routing 
from Sr via Iri to Dr on rank-r torus. 
1) All the faulty links shall not appear on all possible Sr-Iri 

routes generated by the vector routing algorithm. 
2) All the faulty links shall not appear on all possible Iri -Dr 

routes generated by the vector routing algorithm. 
3) There is no Iri΄giving a shorter route than Iri.  

The first requirement guarantees that packets can be routed 
from Sr to Iri, and the second requirement guarantees that packets 
can be routed from Iri to Dr. Since the vector routing algorithm is 
a deterministic routing scheme, these two requirements are 
sufficient to ensure that packets can avoid the faulty links. The 
third requirement guarantees that the final route is the shortest 
possible route.  

Let RS
d be the set of routers reachable through vector routing 

from S, let RD
d be the set of routers that can reach D through 

vector routing. Let n(i, j) be the number of routers on the 
minimal delay route from router i to router j. We define Rk as 
follows: a router I is in Rk if and only if n(S, I) + n(I, D) = n(S, 
D) + k. Let k΄ be the smallest k for which Rk∩RS

d∩RD
d is non-

empty. Then we have: 
Theorem 3 A router I satisfies all three requirements if and only 
if I∈Rk∩RS

d∩RD
d.  

    The fault-tolerant routing algorithm under multiple failures is 
described as follows, where (Ivih, Iviv) represents the vector for 
the intermediate router on the rank-r torus with link failures. 
Correspondingly, in the packet header, a new field of the 
intermediate node vector on the current rank will be inserted.  

Algorithm Floating Vector Routing under Multiple Failures (FVRMF): 
begin     
 //Step 1: the source node computes the vectors, other nodes 

//check the flag and decrement the vector value accordingly 
 if i = S and S ≠ D then 
  call Vector Routing to compute vectors from rank R to 0 
 else if flag = “routing” then 
  set r as the highest rank with (vrh, vrv) ≠ (0, 0) 



  if (Ivih,Iviv) ≠ (0, 0) then 
  if the packet is received from −

rX  then Ivih ← Ivih -1  
  else Ivih ← Ivih +1 
  if the packet is received from −

rY  then Iviv ← Iviv -1 
  else Iviv ← Iviv +1 
  if (vrh,vrv) ≠ (0, 0) then 
  if the packet is received from −

rX  then vrh ← vrh -1 
  else vrh ← vrh +1 
  if the packet is received from −

rY  then vrv ← vrv -1 
  else vrv ← vrv +1 
 else if flag = “floating” then 
  if the packet is received from −

0X  then voh ← voh -1 

  else voh ← voh +1 
  if the packet is received from −

0Y  then vov ← vov -1 

  else vov ← vov +1 
 //Step 2: if the router is the source node on rank-r, identify  

//the intermediate router and update the vector list 
 if i is on rank-r then 
  if flag = “floating” then 
  set flag as “routing” 
  Sr ← i 
  Dr ← (vrh, vrv) 

  compute RSr
d as defined 

  compute RDr
d as defined 

  k ← 0 
  compute Rk as defined 
  while Rk∩RS

d∩RD
d = ∅  do 

  k ← k + 1 
  compute Rk as defined 
  set I as one router in Rk∩RS

d∩RD
d 

  insert I=(Ivih, Iviv) to the intermediate router list on rank-r 
  if (Ivih, Iviv) ≠ (0, 0) then 
  if Ivih ≠ 0 then send the packet to Ivih direction 
  else send the packet to Iviv direction 

  if (vrh, vrv) ≠ (0, 0) then 
  if vrh ≠ 0 then send the packet to vrh direction 
  else send the packet to vrv direction 
   else if find p = r-1 to 0 that (vph, vpv) ≠ (0, 0) then 
  r ← p, goto step 2 
  else goto end 
 //Step 3: floating to a node nearest to node i on rank-r 
 find the non-faulty node j(jx, jy) on rank-r torus with min{abs(ix – jx 

– v0h)+ abs(iy – jy-v0v)} by checking the table on node i  
 set flag as “floating” 
 if ix ≠ jx then send the packet to (jx – ix) direction  
 else send the packet to (jy – iy) direction 

end 
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               Figure 10. An example of the FVRMF algorithm. 

Fig. 10 shows an example of the FVRMF algorithm under 
multiple failures on the same rank torus. There are three link 
failures on rank-1 torus shown in dotted lines. According to the 
FVRMF algorithm, I1 will be selected as the best intermediate 
router between S1 D1 with the minimized number of routers.  

If there exists a possible route between a source node to a 
destination node, we can find a best detoured route with the least 
number of routers using the FVRMF algorithm. However, due to 
the complexness of multiple failures, there is no bound on the 
number of routers that will be used on the detoured route.  
6. Conclusion 
   In this paper, we investigate fault-tolerant routing schemes on 
NoC systems featuring a RDT-based interconnection network. 
We proposed the FVRSF and FVRMF algorithms for fault-
tolerant routing under single link/node failure or multiple 
link/node failures respectively. Both algorithms are based on 
deterministic routing, and hence, no virtual channel is needed. 
We showed that using FVRSF algorithm, the number of routers 
on the detoured route is at most 2 more than the number of 
routers on the original route. The FVRMF algorithm guarantees 
that an alternative route is always found by identifying the best 
intermediate router. Future work includes the study of the delay 
performance under real traffic patterns and the study of fault-
tolerant routing schemes under different delay and fault models.  
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