
Fault-Tolerant Routing Schemes in RDT(2,2,1)/α-Based Interconnection Network for
Networks-on-Chip Designs

Mei Yang†, Tao Li‡, Yingtao Jiang†, and Yulu Yang‡

† Dept. of Electrical & Computer Engineering
University of Nevada, Las Vegas

Las Vegas, NV 89154, USA
{meiyang, yingtao}@egr.unlv.edu

‡ Dept. of Computer Science and Technology
Nankai University

Tianjing, 300071, China
litao@mail.nankai.edu.cn, yangyl@nankai.edu.cn

Abstract

It has been well recognized that the fault-tolerance capability
is vital for a NoC system, since one faulty link/processor may
isolate a large fraction of processors. Continuing from a
previous paper [13] where a RDT(2,2,1)/α-based
interconnection network for NoC designs was proposed, in this
paper, we investigate fault-tolerant routing schemes on NoC
systems featuring a RDT-based interconnection network. In
specific, we propose two fault-tolerant routing schemes in the
presence of either single link/node failure or multiple link/node
failures. The proposed routing schemes are based on
deterministic routing. Alternative routes are discovered by
properly selecting the intermediate nodes between the source
and the destination nodes on the rank tori. As of the single
link/node failure case, we show that the number of routers on the
detoured route generated by the proposed routing scheme is at
most 2 more than the number of routers on the original route.
1. Introduction

 Advances in VLSI technology will soon allow a single chip to
contain more than one billion transistors [8], indicating that a
large number of processing units (such as CPU, DSP, multimedia
processor) shall be integrated into one packaged chip. In these
new systems, communication resources are competed by the vast
volume computational resources. With a communication-centric
design style, Networks-on-Chip (NoC) [1] was proposed to
mitigate the complex communication problems. A NoC system is
composed of a large number of processing units communicating
to other units through routers across the interconnection network.
Packets travel through the network by passing one or more hops
between the source and the destination tiles.

As semiconductor technology scales down to nanometer
domain, processing units (PUs), routers (nodes), and interconnect
links (links) are all subject to new types of malfunctions and
failures that are harder to predict and avoid [5]. Particularly,
failures of nodes/links may isolate a large number of fault-free
PUs. A major challenge in NoC designs thus is to provide fault
tolerance under link/node failure(s).

In [13], we proposed an interconnection network architecture
for NoC based on a special Recursive Diagonal Torus (RDT)
structure [12], named as RDT(2,2,1)/α. In RDT(2,2,1)/α, each
node has links to form base torus (rank-0) and 2 upper tori with
the cardinal number 2. RDT(2,2,1)/α provides a promising
solution for interconnection networks of NoC designs with its
distinct advantages: 1) high scalability due to its recursive

structure, 2) low power consumption due to its smaller diameter
and average distance, 3) architectural customizability with its
embedded mesh/torus topologies, 4) fault-tolerance capability
with a constant node degree of 8, and 5) feasibility of layout
compatible with current and future VLSI technologies [7].

In this paper, we attempt to investigate various fault-tolerant
routing schemes applicable to the RDT(2,2,1)/α-based
interconnection network. As pointed out in [4][7], adaptive
routing which employs virtual channels [2][3] is infeasible for
NoCs due to the need of large buffers and lookup tables as well
as complex shortest-path algorithms. Instead, we consider the
deterministic routing based fault-tolerant routing schemes which
reroute the packets by properly selecting the intermediate routers
between the source and the destination nodes. The proposed
fault-tolerance routing schemes have no adverse impacts on
routing in the absence of faults.

The rest of the paper is organized as follows. In Section 2, we
give an overview of the RDT structure. In Section 3, we describe
the NoC architecture, the delay model, and the routing
algorithms when no faults are present in the interconnection
network. In Section 4, we present the fault-tolerant routing
algorithm under single link/node failure. In Section 5, the fault-
tolerant routing algorithm under multiple link/node failures is
presented. Section 6 concludes the paper.
2. RDT(2,2,1)/α Structure

The RDT structure [12] is constructed by recursively
overlaying 2-D diagonal meshes (tori). The base torus is a two-
dimensional square array of N by N nodes, each of which is
numbered with a two-dimensional number as follows:

(0, 0) (1, 0) (2, 0) … (N-1, 0)
(0, 1) (1, 1) (2, 1) … (N-1, 1)
(0, 2) (1, 2) (2, 2) … (N-1, 2)

.

.

.
(0, N-1) (1, N-1) (2, N-1) … (N-1, N-1)

where N = nk and both n and k are natural numbers. The torus
network is formed with four links between node(x, y) and its
neighboring four nodes: (mod(x±1, N), y) and (x, mod(y±1, N)).
This base torus is also called rank-0 torus.

On the rank-0 torus, a new torus-like network (rank-1 torus) is
formed by adding four links between node (x, y) and nodes (x±n,
y±n). The direction of the new torus-like network is at an angle
of 45 degrees to the original torus. On the rank-1 torus, another

torus-like network (rank-2 torus) can be formed by adding four
links in the same manner. Similarly, a rank-(r+1) torus can be
formed upon rank-r torus. An independent torus on rank-i is one
that does not have links to other tori on rank-i.

RDT(n, R, m) is a class of networks in which each node has
links to form base torus (rank-0) and m upper tori (the maximum
rank is R) with the cardinal number n. Thus, the degree of the
RDT(n, R, m) is 4(m+1) [12]. One of the upper rank torus is
assigned to each node in the RDT(n, R, m) after n, R, and m are
set. Thus, the structure of the RDT(n, R, m) also varies with
different assignments for upper rank tori to each node. This
assignment is called torus assignment.

A network in which every node has links to form all possible
upper rank tori (i.e. RDT(n, R, R)) is called a perfect RDT
(PRDT(n, R)), where n is the cardinal number, and R is the
maximum rank. We refer a perfect torus as one that contains all
links and no two links overlap.

A PRDT is unrealistic due to its large degree (4(R+1)).
Various structures of the practical RDT can be formed by
changing n and m, which provide various characteristics and can
be applied to different applications. We consider a practical RDT
structure, RDT(2, 2, 1)/α, with its torus assignment shown in Fig.
1. In this assignment, each node has eight links, four for the base
(rank-0) torus and four for rank-1 or rank-2 tori. Fig. 1 only
shows part of these links. In RDT(2,2,1)/α, we only use four
independent rank-1 tori with their source nodes located at (0,0),
(1,1), (2,0) and (3,1), respectively. Thirty-two rank-2 tori are
formed on four rank-1 tori (1,0), (0,1), (2,1) and (3,0),
respectively. Compared with other RDT(n, R, m) structures (such
as RDT(2, 4, 1)/α, RDT(2, 4, 1)/ß [12]), RDT(2, 2, 1)/α is much
simpler and suitable for networks with a thousand or less nodes.

12 12

21 21 21 21

12 12

12 12

21 21 21

12 12

21

12 12

21 21 21 21

12 12

12 12

21 21 21

12 12

21

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

1

2

1

2

1

2

1

2

21 21 21 21 1

8

8

2

1

2

1

2

1

2

1

2

9

12 12 12 12 2 19

Figure 1. Torus assignment for the RDT(2,2,1)/α.

3. Routing Algorithms without Link/Node Faults
3.1 The NoC Architecture

Our study is based on the NoC architecture shown in Fig. 2,
where each PU is attached on a switch/router which is connected
to the interconnection links. Fig. 3 shows a possible router
structure which consists of input and output ports and interface to
the attached PU. At each input and/or output port, a limited
number of buffers are provided to store packets, and a line
controller is used to select the packet to be received from the
input link or sent on the output link. A central controller
performs the functions of routing and arbitration.

Router

Processing unit
Network interface

Figure 2. NOC architecture.

Switching fabric

LC

LC

LC

LC

LC

Input
channels

Output
channels

Routing Arbitration

Central controller

Injection
channels

Ejection
channels

Processor
interface

LC: link controller

LC

Figure 3. Router structure.

3.2 Delay Model
 For an NoC application, an important performance metric is
the delay, which depends on the traffic pattern of the application
and many other factors, such as packet/flit size, router’s
arbitration scheme, etc. [7]. In this study, we employ a simple
delay model as follows.

For a NoC network shown in Fig. 2, the delay experienced by
a packet on the route from the source PU to its destination PU
includes the transmission delay on the wires (or wire delay), the
processing delay of the routers and the queuing delay at the
routers. We assume the processing delay and queuing delay are
the same for all routers, denoted as Tp, Tq, respectively. There
may exist different types of wires with various lengths. We
denote the unit length wire delay as T0, the length of wire type i
as li, and the number of wires of type i as ni. Let N be the number
of hops a packet travels between a source to a destination router
and m be the number of different types of wires. Then we can
determine the total delay experienced by a packet as

∑
=

+++=
m

i
iiqp lTcnNTT

1

2
0total)1)((T (1)

where c represents the constant proportional to the product of the
resistance per unit length and the capacitance per unit length.

As discussed in [10], the effect of length to wire delay can be
alleviated by breaking long lines into shorter sections with a
repeater driving each section. Hence, it is possible to match the
wire delay of a long line to the total wire delay of a set of shorter
lines assuming the length of the long line is less or equal to the
sum of the lengths of shorter lines in the set. And we assume the
processing and the queuing delays experienced at a router are far
longer than the wire delay of the line connecting two adjacent
routers. Hence the total delay experienced by a packet is

dominated by the sum of the processing and queuing delays on
the routers (including the intermediate routers, and the source
and destination routers). Hence, Eqn. (1) can be simplified to

)1)((Ttotal ++≈ NTT qp (2)
As one can see from Fig. 4, on the RDT(2, 2, 1)/α structure, if

a route on rank-1 torus is selected to connect S1 and D1, the
number of routers on this route is 2. This is much less than an
alternative route on rank-0 torus that has 5 routers. In another
example, the number of routers on the route from S2 to D2 on
rank-2 torus is 2, which is much less than that of routers on the
corresponding route on rank-1 and rank-0 tori, 5 and 9,
respectively. These two examples indicate that, according to Eqn.
(2), the total delay of a route can be reduced if more links on
higher rank tori are included.

12 12

21 21 21 21

12 12

12 12

21 21 21

12 12

21

12 12

21 21 21 21

12 12

12 12

21 21 21

12 12

21

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

1

2

1

2

1

2

1

2

21 21 21 21 1

8

8

2

1

2

1

2

1

2

1

2

9

S1

D1

S2 D2

12 12 12 12 29 1

Figure 4. Wires on RDT(2, 2, 1)/α. For clearness, we only show the

nodes representing routers.
 All the routing schemes discussed in this paper are based on
the delay model shown in Eqn. (2). For routing in the RDT(2, 2,
1)/α-based interconnection network without link/router failure,
we can directly apply the floating vector routing algorithm
[9][12], which is based on the vector routing algorithm [12]
proposed for PRDT structures. In the following, we will briefly
introduce the two routing algorithms.
3.3 Vector Routing Algorithm
 The basic idea of the vector routing algorithm is to represent
the route from a source node to the destination node with a
combination of unit vectors, each of which corresponds to each
rank of tori. Fig. 5 shows the directions of the unit vectors for
each rank torus for RDT(2, 2, 1)/α, which rotate in clockwise
direction at an angle of 45 degrees as the rank increases.

Xrank-0

Yrank-0,
Xrank-2

Xrank-1Yrank-1

Yrank-2

Figure 5. Directions of unit vectors for RDT(2, 2, 1)/α.

 We are given a vector from a source node to the destination
node represented as

00 YbXaA
rrr

+= where 0X
r

 and 0Y
r

 are the

unit vectors of the base (rank-0) torus. A
r

 can be represented
with a combination of the unit vectors RX

r
, RY
r

, …,
0X
r

, 0Y
r

 on
rank-R to rank-0 tori as

0000

00

...... YvXvYvXvYvXv

YbXaA

vhrrvrrhRRvRRh

rrrrrr

rrr

+++++++=

+=

where (vrh, vrv) represents the vector on rank-r torus, where R ≥ r
≥ 0. And vrh and vrv are maximized in order to use the upper rank
torus as much as possible. Given the vector

00 YbXaA
rrr

+= , we
list the vector routing algorithm as follows.

Algorithm Vector Routing (a, b):
begin
for r = 0 to R do
 g ← (a + b)/2
 f ← - (a - b)/2
 vrh ← a - (n * g – n * f)
 vrv ← b - (n * g + n * f)
 a ← g
 b ← f
end

The vectors are computed at the source node and encapsulated
into the packet. Then we route the packet to the nodes following
the order of rank-R, rank-(R-1), …, rank-0 vectors. On the same
rank torus, the routing is performed according to a predetermined
order, for example, XY routing [11].
Theorem 1 The maximum number of routers that a packet
travels on rank-r torus is n+1 when using the vector routing
algorithm, where n is the cardinal number.

The proof of Thm. 1 follows the proof of Thm. 5 in [12].
3.4 Floating Vector Routing Algorithm

The floating vector routing algorithm [12] was proposed for
practical RDTs, such as RDT(2, 2, 1)/α. In this algorithm, the
vector computation is done at the source node according to the
vector routing algorithm for the PRDT, and stored in the packet
header. Each router maintains a simple table indicating the
direction to reach the nearest node for each rank of torus. A
router checks the vector in the packet header, and sends the
packet to the nearest router on the highest rank torus according to
the simple table. This process is called floating, through which
each router can use any rank of torus by only a single step packet
transfer to a neighbor router. Based on Thm. 1 and the
description of the floating vector routing algorithm, we have:

Corollary 1 The maximum number of routers that a packet
travels on rank-r torus is n+1 when using the floating vector
routing algorithm, where n is the cardinal number.

In [13], we have showed the feasibility of using the RDT(2, 2,
1)/α structure as the interconnection network for a NoC design.
In this paper, we further explore the fault-tolerance capability of
the RDT(2, 2, 1)/α structure. In specific, we propose two fault-
tolerant routing schemes that introduce the least extra processing
and queuing delays (equivalent to the least increase of the
number of routers as shown in Eqn. (2)) on the RDT(2, 2, 1)/α-
based interconnection networks.

4. Fault-Tolerant Routing Algorithm under Single Link/Node
Failure
4.1 Fault Model

The following assumptions are used in this paper. 1) Any link
or node in the network can fail, and the faulty components are
unusable; that is, data will not be transmitted over a faulty link or
routed through a faulty node. 2) The fault model is static, that is,
no new faults occur during a routing process. 3) Both source and

destination nodes (on any rank torus) are fault-free. 4) The faults
occur independently. 5) If a node fails, the four links associated
with the node on rank-r torus also fail. 6) Faulty link(s)/node(s)
are known to all other nodes in the same rank.
4.2 Single Link/Node Failure

Given a pair of source and destination nodes S and D on the
RDT(2, 2, 1)/α structure, using the floating vector routing
algorithm, we know that the route from S to D is composed of
route segments on different rank tori and floated route segments
on rank-0 torus. The route thus can be represented as S~S2-
D2~S1-D1/S0-D0/D, where ~ represents a floating on rank-0, and
Sr and Dr represent the source node and the destination node on
the route segment on a rank-r torus, respectively. Note that a
route may consist of all the route segments or subsets of these
route segments. For single link/node failure on one segment
floating on rank-0 torus, we can always find one alternative route
without increasing the number of routers since each router has
four possible routes (each with the same number of hops/routers)
to float to a router on an upper rank torus. In the following, we
enumerate the cases of single link/node failure happening on the
route segment on one rank torus.

(a) (b)

Sr

Ir1 Dr

Sr Dr

(c)

Ir1

Sr Dr

Ir1

X X X

Figure 6. Three distinct cases of single link failure on rank-r torus of

the RDT(2, 2, 1)/α structure.

By Corollary 1, we know that on the RDT(2, 2, 1)/α structure,
using the floating vector routing algorithm, the number of routers
a packet travels from Sr to Dr is no more than 3. Hence, there are
three possible single link failures on the route segment on rank-r,
as shown in Fig. 6, where faulty links are marked by X.

(a) (b)

Sr

Ir1 Dr

Sr

Ir1

Nr1 Nr1
X

X
X

X
X

X
X

X
X X

Figure 7. Two distinct cases of single node failure on rank-r torus of

the RDT(2, 2, 1)/α structure.

 For the same reason of single link failure, there are two
possible cases of single node failure, as shown in Fig. 7, where
faulty nodes are marked by X.

4.3 Fault-Tolerant Routing Algorithm under Single
Link/Node Failure

As one can see from Figs. 6 and 7, if the failure is on the X (or
Y) direction, then we should detour the packet by sending it
through the Y (or X) direction first. The vector needs to be
changed to reflect the detour if necessary.

In each packet, we add a field flag, which is set as “floating”
when the packet is floated to a node or “routing” when the packet

is routed to a node on a rank-r link, and a variable r to indicate
the current rank value. Fig. 8 shows the packet format.

flag rank-R
vectors ... packet payload

packet
header

header
length r rank-0

vectors
payload
length CRC

Figure 8. Packet format.
Let +

rX denote the +X direction on rank-r, −
rX denote the -X

direction on rank-r, +
rY denote the +Y direction on rank-r, and

−
rY denote the -Y direction on rank-r. A distributed fault-tolerant

floating routing algorithm is listed as follows, where (ix, iy)
represents the vector of a node i on rank-0 torus.

Algorithm Floating Vector Routing under Single Failure (FVRSF):
begin
 //Step 1: the source node computes the vectors, other nodes

//check the flag and decrement the vector value accordingly
 if i = S and S ≠ D then
 call Vector Routing to compute vectors from rank R to 0
 set r as max{i | (vih, viv) ≠ (0, 0)}
 else if flag = “routing” then
 if the packet is received from −

rX then vrh ← vrh -1
 else vrh ← vrh +1
 if the packet is received from −

rY then vrv ← vrv -1
 else vrv ← vrv +1
 else if flag = “floating” then
 if the packet is received from −

0X then voh ← voh -1

 else voh ← voh +1
 if the packet is received from −

0Y then vov ← vov -1

 else vov ← vov +1
 //Step 2: check the availability of the link and send the packet

//accordingly
 if i is on rank-r then
 set flag as “routing”
 if (vrh, vrv) ≠ (0, 0) then
 if vrh ≠ 0 and the link on the vrh direction (i.e., +

rX for vrh>0

or −
rX for vrh<0) is not faulty then

 send the packet to vrh direction
 else if vrh = 0 and the link on the vrv direction (i.e., +

rY for

vrv>0 or −
rY for vrv<0) is not faulty then

 send the packet to vrv direction
 else
 if vrh ≠ 0 and the link on the vrh direction is faulty then
 if vrv = 0 then send the packet to +

rY
 else send the packet to vrv direction
 else if the link on the vrv direction is faulty then
 send the packet to +

rX
 else if find p = r-1 to 0 that (vph, vpv) ≠ (0, 0) then
 r ← p, goto Step 2
 else goto end

 //Step 3: floating to a node nearest to node i on rank-r
 find the non-faulty node j(jx, jy) on rank-r torus with min{abs(ix – jx –

v0h) + abs(iy – jy–v0v)} by checking the table on node i
 set flag as “floating”
 if ix ≠ jx then send the packet to (jx – ix) direction
 else send the packet to (jy – iy) direction
end

Theorem 2 Consider a route from a source node S to a
destination node D on the RDT(2, 2, 1)/α structure. If there exists
a single link/node failure on the original route generated by the
floating vector routing algorithm, the number of routers on the
detoured route (also the shortest route) generated by the fault-
tolerant floating vector routing algorithm is at most 2 more than
the number of routers on the original route.
Proof: As discussed in the fault model, single link/node failure
only affects routing on one rank torus. Based on Corollary 1, we
can derive three possible cases of single link failure as shown in
Fig. 6, and the two possible cases of single node failure as shown
in Fig. 7. One can verify that, the fault-tolerant floating routing
algorithm, with the mbedded vector routing algorithm, computes
the shortest route (with the least number of routers) from Sr to Dr
on each rank-r, and further the shortest route from S to D. The
number of routers on the detoured route generated by the fault-
tolerant floating vector routing algorithm, compared with the
original route, is either equal to the number of routers on the
original route (as the case shown in Fig. 7 (a)) or 2 more than the
number of routers on the original route (as the case shown in Fig.
7(b) and the cases shown in Fig. 6). The increase of the number
of routers on the detoured route is minimized for all three cases.
Hence the theorem follows. ■
 The above theorem indicates that the extra queuing and
processing delays is minimized using the FVRSF algorithm.
Another advantage of the FVRSF algorithm is that each router
decides the best route based on the fault information of its four
links on one rank torus. No global fault information thus needs to
be maintained at each router. In this way, the overhead
introduced is very low.

Fig. 9 illustrates two examples of the FVRSF algorithm. The
original route from S1 (2, 1) to D1 (7, 6) generated by the floating
vector routing algorithm is (2, 1)-(3, 1)-(5, 3)-(7, 5)-(7, 6), which
travels through 5 routers. Assume that the link between (3, 1)-(5,
3) on rank-1 fails. The detoured route generated by the FVRSF
algorithm is (2, 1)-(3, 1)-(1, 3)-(3, 5)-(5, 7)-(7, 5)-(7, 6) with 7
routers, which is 2 more than the number of routers on the
original route.

12 12

21 21 21 21

12 12

12 12

21 21 21

12 12

21

12 12

21 21 21 21

12 12

12 12

21 21 21

12 12

21

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

1

2

1

2

1

2

1

2

21 21 21 21 1

8

8

2

1

2

1

2

1

2

1

2

9

S1

D1

S2

D2

12 12 12 12 29 1

Figure 9. Two examples of the FVRSF algorithm.
 As another example, the original route from S2 (0, 0) to D2 (8,

8) generated by the floating routing algorithm is (0, 0)-(1, 0)-(9,
0)-(9, 8)-(8, 8), which includes 5 routers. In the case of failure of
node (9, 0), the detoured route generated by the FVRSF
algorithm is (0, 0)-(1, 0)-(1, 8)-(9, 8)-(8, 8) with 5 routers.
Obviously, this is the best detoured route with the least number
of routers that a packet has to travel.
5. Fault-Tolerant Routing Algorithm under Multiple Failures

5.1 Multiple Link/Node Failures
Multiple link/node failures may exist on different rank tori of

the RDT(2,2,1)/α structure. As discussed in Section 4.1, a node
failure can be modeled as multiple link failures. As such, we
only consider link failures here. Based on the construction of the
RDT(2,2,1)/α structure, we can decompose multiple link failures
on different rank tori into sets of link failures on the same
independent torus on one rank torus. In the following, we discuss
the fault-tolerance routing scheme under multiple link failures on
the same independent torus on one rank-r torus.

When multiple link/node failures exist on a rank-r torus, the
FVRSF algorithm cannot generate the detoured route with the
least number of routers since the decision made by each router is
not based on global view of other failures. In this case, we adopt
the method discussed in [6] to identify the best intermediate
router through which the detoured route uses the least number of
routers. Note that there may exist more than one such
intermediate routers. We use Iri to denote such intermediate
routers between Sr and Dr.
5.2 Fault-Tolerant Routing Algorithm under Multiple
Failures

When applying the method of identifying the best intermediate
router in combination with the vector routing algorithm, the
following requirements have to be satisfied for an intermediate
router Iri to ensure that the faulty links are avoided when routing
from Sr via Iri to Dr on rank-r torus.
1) All the faulty links shall not appear on all possible Sr-Iri

routes generated by the vector routing algorithm.
2) All the faulty links shall not appear on all possible Iri -Dr

routes generated by the vector routing algorithm.
3) There is no Iri΄giving a shorter route than Iri.

The first requirement guarantees that packets can be routed
from Sr to Iri, and the second requirement guarantees that packets
can be routed from Iri to Dr. Since the vector routing algorithm is
a deterministic routing scheme, these two requirements are
sufficient to ensure that packets can avoid the faulty links. The
third requirement guarantees that the final route is the shortest
possible route.

Let RS
d be the set of routers reachable through vector routing

from S, let RD
d be the set of routers that can reach D through

vector routing. Let n(i, j) be the number of routers on the
minimal delay route from router i to router j. We define Rk as
follows: a router I is in Rk if and only if n(S, I) + n(I, D) = n(S,
D) + k. Let k΄ be the smallest k for which Rk∩RS

d∩RD
d is non-

empty. Then we have:
Theorem 3 A router I satisfies all three requirements if and only
if I∈Rk∩RS

d∩RD
d.

 The fault-tolerant routing algorithm under multiple failures is
described as follows, where (Ivih, Iviv) represents the vector for
the intermediate router on the rank-r torus with link failures.
Correspondingly, in the packet header, a new field of the
intermediate node vector on the current rank will be inserted.

Algorithm Floating Vector Routing under Multiple Failures (FVRMF):
begin
 //Step 1: the source node computes the vectors, other nodes

//check the flag and decrement the vector value accordingly
 if i = S and S ≠ D then
 call Vector Routing to compute vectors from rank R to 0
 else if flag = “routing” then
 set r as the highest rank with (vrh, vrv) ≠ (0, 0)

 if (Ivih,Iviv) ≠ (0, 0) then
 if the packet is received from −

rX then Ivih ← Ivih -1
 else Ivih ← Ivih +1
 if the packet is received from −

rY then Iviv ← Iviv -1
 else Iviv ← Iviv +1
 if (vrh,vrv) ≠ (0, 0) then
 if the packet is received from −

rX then vrh ← vrh -1
 else vrh ← vrh +1
 if the packet is received from −

rY then vrv ← vrv -1
 else vrv ← vrv +1
 else if flag = “floating” then
 if the packet is received from −

0X then voh ← voh -1

 else voh ← voh +1
 if the packet is received from −

0Y then vov ← vov -1

 else vov ← vov +1
 //Step 2: if the router is the source node on rank-r, identify

//the intermediate router and update the vector list
 if i is on rank-r then
 if flag = “floating” then
 set flag as “routing”
 Sr ← i
 Dr ← (vrh, vrv)

 compute RSr
d as defined

 compute RDr
d as defined

 k ← 0
 compute Rk as defined
 while Rk∩RS

d∩RD
d = ∅ do

 k ← k + 1
 compute Rk as defined
 set I as one router in Rk∩RS

d∩RD
d

 insert I=(Ivih, Iviv) to the intermediate router list on rank-r
 if (Ivih, Iviv) ≠ (0, 0) then
 if Ivih ≠ 0 then send the packet to Ivih direction
 else send the packet to Iviv direction

 if (vrh, vrv) ≠ (0, 0) then
 if vrh ≠ 0 then send the packet to vrh direction
 else send the packet to vrv direction
 else if find p = r-1 to 0 that (vph, vpv) ≠ (0, 0) then
 r ← p, goto step 2
 else goto end
 //Step 3: floating to a node nearest to node i on rank-r
 find the non-faulty node j(jx, jy) on rank-r torus with min{abs(ix – jx

– v0h)+ abs(iy – jy-v0v)} by checking the table on node i
 set flag as “floating”
 if ix ≠ jx then send the packet to (jx – ix) direction
 else send the packet to (jy – iy) direction

end

12 12

21 21 21 21

12 12

12 12

21 21 21

12 12

21

12 12

21 21 21 21

12 12

12 12

21 21 21

12 12

21

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

1

2

1

2

1

2

1

2

21 21 21 21 1

8

8

2

1

2

1

2

1

2

1

2

9

S1

D1

I1

12 12 12 12 2 1

 Figure 10. An example of the FVRMF algorithm.

Fig. 10 shows an example of the FVRMF algorithm under
multiple failures on the same rank torus. There are three link
failures on rank-1 torus shown in dotted lines. According to the
FVRMF algorithm, I1 will be selected as the best intermediate
router between S1 D1 with the minimized number of routers.

If there exists a possible route between a source node to a
destination node, we can find a best detoured route with the least
number of routers using the FVRMF algorithm. However, due to
the complexness of multiple failures, there is no bound on the
number of routers that will be used on the detoured route.
6. Conclusion
 In this paper, we investigate fault-tolerant routing schemes on
NoC systems featuring a RDT-based interconnection network.
We proposed the FVRSF and FVRMF algorithms for fault-
tolerant routing under single link/node failure or multiple
link/node failures respectively. Both algorithms are based on
deterministic routing, and hence, no virtual channel is needed.
We showed that using FVRSF algorithm, the number of routers
on the detoured route is at most 2 more than the number of
routers on the original route. The FVRMF algorithm guarantees
that an alternative route is always found by identifying the best
intermediate router. Future work includes the study of the delay
performance under real traffic patterns and the study of fault-
tolerant routing schemes under different delay and fault models.

References
[1] L. Benini and G.D. Micheli, “Networks on chips: a new SoC

paradigm,” IEEE Computer, pp. 70-78, Jan. 2002.
[2] R. Casado et al., “A protocol for deadlock-free dynamic

reconfiguration in high speed local area networks,” IEEE Trans.
Parallel & Distributed Systems, vol. 12, no. 2, pp. 115-132, 2001.

[3] W. J. Dally and H. Aoki, “Deadlock-free adaptive routing in
multicomputers networks using virtual channels,” IEEE Trans.
Parallel & Distributed Systems, vol. 4, no. 4, pp. 466-475, 1993.

[4] Dally W. J. and B. Towles, “Route Packets, Not Wires: On-Chip
Interconnection Networks,” in Proc. Design Automation Conf., 2001,
pp. 684-689.

[5] T. Dumitras, S. Kerner, and S. Marculescu, “Towards on-chip fault-
tolerant communication,” in Proc. ASP-DAC, 2003, pp. 225-232.

[6] M.E. G´omez, J. Duato, J. Flich, P. L´opez, A. Robles, N.A.
Nordbotten, O. Lysne, and T. Skeie, “An efficient fault-tolerant
routing methodology for meshes and tori,” Computer Architecture
Letters, vol. 3, pp. 10-13, Jul. 2004.

[7] J. Hu and R. Marculescu, “Energy- and performance-aware mapping
for regular NoC architectures,” IEEE Trans. Computer-Aided Design,
vol. 24, no. 4, Apr. 2005.

[8] ITRS, International Technology Roadmap for Semiconductors,
Update 2002.

[9] T. Li, Y. Yu, P. Li, J. Xu, X. Ma and Y. Yang, “Practical routing and
torus assignment for RDT,” in Proc. ISPAN, 2004, pp. 30-35.

[10] J. Liu, M. Shen, L. Zheng, and H. Tenhunen, “System level
interconnect design for network-on-chip using interconnect IPs,” in
Proc. Int’l Workshop System-Level Interconnect, 2003, pp. 117-124.

[11] L.M. Ni and P.K. McKinley, “A survey of wormhole routing
techniques in direct networks,” Computer, vol. 26, no. 2, pp. 62-76,
1993.

[12] Y. Yang, A. Funahashi, A. Jouraku, H. Nishi, H. Amano, and T.
Sueyoshi, “Recursive diagonal torus: an interconnection network for
massively parallel computers,” IEEE Trans. Parallel & Distributed
Systems, vol. 12, no. 7, pp. 701-715, Jul. 2001.

[13] Y. Yu, M. Yang, Y. Yang, and Y. Jiang, “A RDT-based
interconnection network for scalable NoC designs,” in Proc. IEEE
ITCC, 2005, pp. 729-734.

