
Pipelined Maximal Size Matching Scheduling Algorithms for CIOQ Switches

Mei Yang and S. Q. Zheng

Department of Computer Science
University of Texas at Dallas, Richardson, TX 75083-0688, USA�

meiyang, sizheng � @utdallas.edu

Abstract

In this paper, we propose new pipelined request-grant-accept
(RGA) and request-grant (RG) maximal size matching (MSM) al-
gorithms to achieve speedup in combined input and output queue-
ing (CIOQ) switches. To achieve a speedup factor � , in the pro-
posed pipelined RGA/RG MSM algorithms, we pipeline operations
of finding � matchings in � scheduling cycles based on the obser-
vation that all matched inputs/outputs will not be used in later it-
erations in the same scheduling cycle. We show that our pipelined
RGA/RG MSM algorithms reduce the scheduling time constraint
by � �� � �
 � , where � is the number of iterations allowed in each
scheduling cycle. Taking the example of pipelined PIM, we eval-
uate the performance of the proposed algorithms by simulation.
Simulation results have shown that pipelined PIM achieves 100%
throughput and the same performance as non-pipelined PIM for
CIOQ switches with speedup of 2 under both Bernoulli and bursty
arrivals.

1. Introduction

Recently, combined input and output queueing (CIOQ)
switches have attracted interest from both academic and indus-
trial communities due to their ability of achieving
 � � � through-
put and emulating output queueing (OQ) switch performance with
a relatively small speedup factor � . For a CIOQ switch with
speedup of � , the switching matrix and the memory need to run

� times faster than the line rate. It has been shown that a CIOQ
switch can exactly emulate an OQ switch with speedup of 4 or 2
by employing stable-matching [1] based algorithms, such as the
MUCFA algorithm [2] and the CCF algorithm [3]. These re-
sults have significant implications: regardless of the switch size,
a small constant speedup is sufficient to implement a CIOQ switch
with behavior identical to an OQ switch which has a speedup pro-
portional to the switch size. Unfortunately, these algorithms are
highly impractical due to their high time complexity.

In [4], Dai and Prabhakar proved that for a CIOQ switch with
� � � , any maximal size matching algorithm can achieve 100%
throughput for arbitrarily distributed input patterns so long as in-
put arrivals satisfy the strong law of large numbers (SLLN) and no
inputs/outputs are oversubscribed. Since almost all real traffic pro-

cesses satisfy these properties, this result has high practical signifi-
cance for at least two reasons. First, achieving 100% throughput is
a necessary condition for a CIOQ switch to realize OQ-equivalent
QoS guarantees with carefully designed queuing discipline at each
VOQ and at each output queue. Second, maximal size matching
algorithms are easier to implement than maximum size matching
or stable matching algorithms.

Well-known maximal size matching algorithms include PIM
[5], iSLIP [6], etc. All these algorithms are iterative algorithms
with each iteration composed of either three steps (request, grant
and accept) or two steps (request and grant). It has been shown
by either proof or simulations that averagely PIM and � SLIP find
a maximal size matching in � � � � � " iterations [5, 6]. With the
fastest implementation, each iteration can be finished in � � � � � "
time [7]. However, these algorithms may not be fast enough for
CIOQ switches with � %
 and high line rate since each maximal
size matching needs to be found in
 ' � cell slot if they are found
sequentially.

To relax the stringent scheduling time constraint, Smiljanic et
al. proposed a pipeline-based scheduling algorithm called round-
robin greedy scheduling (RRGS) [8]. In RRGS, each input is as-
sociated with a schedule module (SM), and SMs are intercon-
nected as a ring. Each SM receives allocation requests from an
input, allocates an unreserved output, and transfers updated output
reservation information to the next adjacent SM. Round-robin se-
lection operations are assigned into different time slots in a simple
pre-determined cyclic manner so that RRGS can avoid output con-
tention. However, RRGS suffers from a fairness problem among
inputs competing for the same output. Another problem is that,
though operated in pipeline fashion, scheduling for a cell slot is
performed in previous cell slots, which is a rather slow pro-
cess. Other improvements of RRGS, such as COPRS [9] and GPS
[10], solve the unfairness problem of RRGS with the tradeoff of
performance degradation or more complicated implementation.

In [11], Oki et al. has proposed PMM, a pipelined maximal
size matching scheduling approach to relax scheduling time and
improve fairness. It has been shown that, PMM dramatically re-
laxes the arbitration time constraint for arbitration of a maximal
size matching algorithm and achieves 100% throughput under uni-
form traffic. However, to relax the arbitration time (times, this
approach requires (sub-schedulers, each sub-scheduler is equiv-
alent to a scheduler in the non-pipelined version. Also PMM in-

1

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

troduces more average cell delay.
Nevertheless, all these pipelined schemes discussed above can

not provide speedup in one cell slot. In this paper, we propose
new pipelined request-grant-accept (RGA) and request-grant (RG)
maximal size matching (MSM) algorithms to achieve speedup of

� � � in CIOQ switches. We assume that each cell slot is
composed of � overlapped scheduling cycles. In our pipelined
RGA/RG MSM algorithms, we pipeline operations of finding �
matchings in � scheduling cycles based on the observation that
all matched inputs/outputs will not be considered for matchings in
later iterations in the same scheduling cycle. We show that our
pipelined RGA/RG MSM algorithms reduce the scheduling time
constraint by � �

� � � 	

times. Taking the example of pipelined PIM

[5], through simulations, we show that it achieves 100% through-
put and the same performance as non-pipelined PIM for CIOQ
switches with speedup of 2 under both Bernoulli and bursty ar-
rivals. Compared to RRGS and PMM, the advantage of the pro-
posed algorithms is that they do not require extra hardware re-
sources but achieve speedup of � � � .

The rest of the paper is organized as follows. Section 2 reviews
existing iterative maximal size matching algorithms. In Section
3, we present our pipelined RGA and RG MSM algorithms and
discusses the scheduling time relaxation they can achieve. Sec-
tion 4 demonstrates simulation results of pipelined PIM under both
Bernoulli arrivals and bursty arrivals. Section 5 concludes the pa-
per.

2. Existing Iterative Maximal Size Matching
Algorithms

Consider an � � � crossbar CIOQ switch shown in Figure
1. To remove HOL blocking [12], each input (port) maintains �
virtual output queues (VOQs) with

�

 � � � � buffering cells from

input � destined to output 	 . Likewise, each output (port) has a
queue for holding cells destined to it. Assume that time is slotted
into cell slots and one cell slot equals to the transmission time of
one cell on the input/output line. To realize a speedup factor � ,
each cell slot is composed of � scheduling cycles. A scheduling
cycle consists of two parts, matching part and switching part. In
the matching part, a scheduling algorithm selects a matching be-
tween inputs and outputs such that each input (resp. output) is
matched to at most one output (resp. input). In the switching part,
input � transfers a cell to output 	 if they are matched to each other
and

�

 � � � � is not empty. In our paper, we only consider the

matching part.
The cell scheduling problem for VOQ-based switches can be

abstracted as a maximum bipartite matching problem on the bipar-
tite graph composed of nodes of inputs and outputs and edges of
connection requests from inputs to outputs [6]. However, maxi-
mum size matching algorithms are not practical due to their high
time complexity (
 � � � � � � [13]) and unfairness problem. We in-
stead consider a group of practical iterative MSM algorithms. Ex-
isting iterative MSM algorithms can be classified into two cate-
gories: request-grant-accept (RGA) algorithms and request-grant
(RG) algorithms.

In these algorithms, initially, all inputs and outputs are marked
“unmatched”. In each iteration, a matching between “unmatched”

...
...

...

VOQ1,1

VOQ1,N

...

VOQN,1

VOQN,N

Output port 1

Input port 1

Input port N

Output port N

...
...

Scheduler...

Figure 1. A CIOQ switch.

inputs and outputs is found and all matched inputs and outputs
in this iteration are marked “matched” so that they will not be
considered in the next iteration. In what follows, we outline the
operations performed in each iteration of RGA and RG MSM
algorithms.

One iteration of RGA MSM algorithm:

Step 1: Request. Each “unmatched” input sends a request to ev-
ery “unmatched” output for which it has a queued cell.

Step 2: Grant. If an “unmatched” output receives any requests,
it selects one request to grant, and notifies each requesting
input whether or not its request is granted.

Step 3: Accept. If an “unmatched” input receives any grants, it
selects one grant to accept, and marks itself and its matched
output “matched”.

One iteration of RG MSM algorithm:

Step 1: Request. Each “unmatched” input selects one request to
an “unmatched” output, and sends the request to this “un-
matched” output.

Step 2: Grant. If an “unmatched” output receives any requests,
it selects one request to grant. The output notifies each re-
questing input whether or not its request is granted. It marks
itself and the matched input “matched”.

These algorithms terminate when a non-profitable iteration is
encountered, which indicates that a maximal size matching has
been found. In the worst case,
 � � � iterations are needed. In
average, it has shown that either by proof or simulations that

 � � � � � � iterations are adequate [5, 6]. Several iterative RGA and
RG MSM algorithms have been proposed, such as PIM [5], iSLIP
[6], DRRM [15], FIRM [16]. The differences between these algo-
rithms lie in the selection (arbitration) schemes used in Step 2 and
3 of RGA algorithms and Step 1 and 2 of RG algorithms. These
algorithms can be implemented by the scheduler architecture pro-
posed by Mckeown [6]. The scheduler consists of � � arbiters,
each one is associated with an input/output. With the fastest ar-
biter design, each iteration can be finished in
 � � � � � � time [7].

However, MSM algorithms mentioned above may not be fast
enough to be used for CIOQ switches with � � � . Let � � � be
the time for one cell slot, and � � � � be the total time for finding a

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

maximal size matching. In order to achieve speedup of � , � maxi-
mal size matchings must be found during one cell slot. If maximal
size matchings are found sequentially, it requires � � � � � � � � � � .
This is very difficult, if possible, to realize for a CIOQ switch with
high line rate and � � � .

3. Pipelined RGA/RG MSM Algorithms

To speed up the process of finding � maximal size matchings,
we propose a pipelined framework for a class of accelerated RGA
and RG algorithms, which are called pipelined RGA and pipelined
RG MSM algorithms. In each cell slot, these algorithms find a set
of � matchings in a pipelined fashion. We associate a label � with
each input and each output, � � � � � , indicating the scheduling
cycle that the input/output is involved. Initially, � � � for all inputs

� � ’s and outputs � � ’s, � � 	 � � �
 . During the execution of
pipelined RGA/RG MSM algorithms, when a matching between
input � � and output � � is found, the � labels of input � � and output

� � are updated one beyond the current value. All matched pairs of
inputs and outputs with the same � -label values form a matching� �

, � � � � � .
We associate two counters with each

	
� � �
 � : � �
 � , the length

of
	

� � �
 � (i.e. the number of cells queued in
	

� � �
 �), and	 �
 � � � � , the number of grants associated with
	

� � �
 � in the
� -th scheduling cycle, � � � � � . In each cell slot, � � �
 � � ’s
are initialized before scheduling,

	 �
 � � � � ’s are initialized to
be 0 before scheduling and updated after each iteration. We
also assume one scheduling cycle consists of fixed number of
iterations, represented by � . The pipelined RGA/RG MSM
algorithms are sketched below, where � represents the pipelined
iteration.

Pipelined RGA MSM algorithm:
for � � � to �
 � � � do

Step 1: Request. Each � -labelled input � � , � � � , sends
a request to each � -labelled output � � such that � �
 � �� �

� �� �
�

	 �
 � � � � � � .

Step 2: Grant. Upon receiving any requests, each � -labelled out-
put selects one request to grant, and notifies each � -labelled
input whether or not its request is granted.

Step 3: Accept. Upon receiving any grants, each � -labelled input
selects one grant to accept, and increments the labels of itself
and its matched output by 1. If � � � � � � � , increment
labels of all unmatched � -labelled inputs and outputs by 1.

Pipelined RG MSM algorithm:
for � � � to �
 � � � do

Step 1: Request. Each � -labelled input � � , � � � , selects
one request to an � -labelled output � such that � �
 � �� �

� �� �
�

	 �
 � � � � � � .

Step 2: Grant. Upon receiving any requests, each � -labelled
output selects one request to grant, and increments the labels
of itself and its matched input by 1. If � � � � � � � ,
increment labels of all unmatched � -labelled inputs and
outputs by 1.

3 33 3

k=1 k=2 k=3 k=4 k=5 k=6 k=7

l=1

l=2

l=3

l=4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

3

4

3

4

2 2

1 1

3

4

3

4

2 2

1 1

4 4

3 3

2 2

1 1

4 4

3 3

2 2 3 3

4 4

2 2

3 3

4 4

2 2

4 4

3 3

4 4

3 3

Figure 2. Illustration of a pipelined scheduling algorithm.

Figure 2 illustrates how the pipelined scheduling algorithm
works using an example of a � � � CIOQ switch assuming � � �
and � � � . In the figure, each row shows the matching process
of scheduling cycle � � � � � ; each column shows the matching
process viewed in each pipelined iteration � � � � � ; each node
represents an input/output and each edge connects two nodes that
are matched in the current pipelined iteration. For � � � , all in-
puts and outputs are labelled 1 and join the matching process of

� � � . We assume that only � � and � � are matched, then they will
update their labels to 2 and join the matching process of � � � in

� � � while all the remaining inputs and outputs continue their
matching process of � � � in � � � . For � � � , assume � � and

� � are matched for � � � and � � and � � are matched for � � � ,
then � � and � � will update their labels to 3 and join the matching
process of � � ! in � � ! , and � � and � � will update their la-
bels to 2 and join the matching process of � � � in � � ! , while
other inputs and outputs continue their matching process of � � �
in � � ! . Similar process continues for � % ! . We observe that
all input and output pairs matched in � � � � �
 � � � but for
scheduling cycle � form matching

� �
(represented by edges of the

same type). In addition, inputs and outputs involved in matching
processes for different scheduling cycles but in the same pipelined
iteration do not conflict. Therefore the iterations of finding

� �
and the iterations of finding

� � ,
(� .� � 0) can overlap, and totally 7

pipelined iterations are needed to find � maximal size matchings.

In general, the number of pipelined iterations needed to find �
maximal size matchings in pipelined RGA/RG MSM algorithms
is given by �
 � � � , instead of � 3 � if a non-pipelined RGA/RG
MSM algorithm is executed � times. It is important to point out
that, our pipelined RGA/RG MSM algorithms do not require any
additional hardware. The reason is that all arbiters associated with
inputs/outputs of

� �
are immediately released for use in finding� �

� � . Thus all arbiters are fully utilized.

In the following, we will study how much the scheduling time
relaxation the proposed algorithms can achieve. Assume that � is
the size of a cell, 4 is the line rate, then one cell slot � � � � � � 4 .
Since only two steps of RGA/GA MSM algorithms (Step 2 and
3 of RGA and Step 1 and 2 of RG) involve selection, we may
use the scheduling time of each step to approximate the time for
each iteration. Thus, the allowable scheduling time per step of
a non-pipelined RGA/RG MSM algorithm is � � 7 8 : � < > ?

� � �
. For

pipelined RGA/RG MSM algorithms, the allowable scheduling
time per step is given by � 0� 7 8 : � < > ?� A � � � � � B . The scheduling time

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

S N=16 N=32 N=64 N=128
1 1 1 1 1
2 1.6 1.67 1.7 1.75
3 2 2.14 2.25 2.33
4 2.29 2.5 2.67 2.8

Table 1. Scheduling time relaxation factor pipelined
RGA/RG MSM algorithms can achieve.

relaxation factor � is defined as

� �
� �� � � �
� � � � � �

� �
� � � � � � (1)

For an � � � CIOQ switch, we set � � � 	 �
�

� for most
RGA/RG MSM algorithms. The scheduling time relaxation factor
is thus given by � � � � � � 	 �� � � 	 �
 � � �

. Table 1 shows the scheduling
time relaxation factor vs. various � and � . The larger � or �
is, the larger the scheduling time relaxation factor is. For example,
assume � � � � , 	 � �
 � � bits, � � � �

� � � �
, � � � 	 � � � �
 ,

� � � , we have � � � � � � � � � � �
while � �� � � � � � � � � � �

.
Combining our pipelined RGA/RG MSM algorithms with the

pipelined technique proposed in [7], named pipelined step here,
we can improve the scheduling time relaxation factor further. As
illustrated in Figure 3, a combined pipelined RGA MSM algo-
rithm works as follows, in the iterations of each scheduling cycle,
the Grant step of the next iteration is done parallelly with the Ac-
cept step of the previous iteration. Similarly, one can derive how a
combined pipelined RG scheduling algorithm works. The schedul-
ing time of one step is thus relaxed to � � �� � � � � � � �� � �
 � � � � . The
scheduling time relaxation factor of combined pipelined RGA/RG
MSM algorithms is given by,

� � �
� � �� � � �
� � � � � �

� � �
� � � � � � � �

� (2)

which is larger than � defined in Equation (1) for all � � � . The
pipelined step approach is an implementation technique, it has no
impact on the performance of the scheduling algorithm. Thus we
could implement a pipelined RGA/RG MSM algorithm combined
with the pipelined step technique to achieve better scheduling time
relaxation factor.

4. Performance Evaluation

The proposed pipelined MSM scheduling approach is applica-
ble to all RGA and RG MSM algorithms, such as PIM [5], iSLIP
[6], DRR [15], FIRM [16], etc. In the following, we will evalu-
ate the performance of pipelined scheduling approach taking the
example of pipelined PIM with fixed � for all scheduling cycles.

Performance evaluation of pipelined PIM is based on simula-
tions of both Bernoulli traffic and bursty traffic. For Bernoulli traf-
fic, we will consider both uniform arrivals and polarized arrivals.
Polarized traffic is such a non-uniform traffic pattern that locally
unbalanced but globally balanced. It is defined as follows [17].

G

k = 2 k = 3 k = 4 k = 5

1/1

2/1

3/1

Iteartion/
Scheduling cycle

. . .

A

G A

G A

k = 1

1/2 AG

AG

AG

AG

4/1 G A

2/2

3/2

4/2

1/3 AG

AG

AG

AG

2/3

3/3

4/3

Figure 3. Timing diagram of a combined pipelined RGA
scheduling algorithm.

We define � � � � � � as the polarization factor and � � � � as the pro-
portion of the traffic received by input port � with

� � � � �
� � �
 � � � � ! � � � � � � �

� � � �

such that,

"
� $ & � � � �) �

�*
� �

�

� � � � � � and

"
	 $ & � � � �) �

�*
� �

�

� � � � � � �
Polarized traffic with � � � � � � is unform traffic. It is easy to verify
that both uniform traffic and polarized traffic satisfy SLLN condi-
tion and no input/output is oversubscribed. According to [4], any
maximal size matching scheduling algorithms with speedup 2 can
achieve 100% throughput for any non oversubscribed SLLN traf-
fic. Can pipelined PIM with � � � also achieve 100% throughput
under such kind of traffic?

In the following, we present the performance of pipelined PIM
with � � � in terms of average cell delay on a � � � � � switch. The
cell delay is measured by the cell’s waiting time at input queues
plus the transmission time through the switching matrix. In the
following figures, we use “pp” to represent pipelined PIM and “sp”
to represent non-pipelined PIM.

Figure 4 shows the average cell delay of pipelined PIM with
� � � under Bernoulli arrivals with the number of iterations al-
lowed ranging from 1 to 4 and polarization factor varying from
1.00 to 2.00. As we can see from the figure, the average cell delay
of pipelined PIM is improved when the number of iterations al-
lowed in each scheduling cycle increases. With only one iteration,

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (

ce
ll

sl
ot

s)

1.00−1
1.00−2
1.00−4
1.50−1
1.50−2
1.50−4
2.00−1
2.00−2
2.00−4

Figure 4. Delay performance of pipelined PIM with � �
� under Bernoulli arrivals with different � ’s.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (

ce
ll

sl
ot

s)

pp−1.50−1
pp−1.50−2
pp−1.50−4
sp−1.50−1
sp−1.50−2
sp−1.50−4

Figure 5. Delay performance of pipelined PIM (repre-
sented as pp) with � � � and non-pipelined PIM (rep-
resented as sp) with � � � under Bernoulli arrivals with

� � �
�

� � .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (

ce
ll

sl
ot

s)

16−1
16−2
16−4
32−1
32−2
32−4
64−1
64−2
64−4

Figure 6. Delay performance of pipelined PIM with � �
� under uniform bursty arrivals.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (

ce
ll

sl
ot

s)

pp−32−1
pp−32−2
pp−32−4
sp−32−1
sp−32−2
sp−32−4

Figure 7. Delay performance of pipelined PIM (repre-
sented as pp) with � � � and non-pipelined PIM (repre-
sented as sp) with � � � under uniform bursty arrivals with�

� � � � � � .

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

pipelined PIM with � � � can achieve 100% throughput for both
uniform and polarized Bernoulli traffic.Figure 5 compares the av-
erage cell delay of pipelined PIM with � � � and non-pipelined
PIM with � � � under Bernoulli arrivals with polarization fac-
tor set as 1.50. Pipelined PIM performs almost the same as non-
pipelined PIM with � � � . Both pipelined PIM with � � � and
non-pipelined PIM with � � � achieve 100% throughput under
both uniform traffic and polarized traffic.

We then study the performance of pipelined PIM under bursty
traffic using 2-state modulated Markov-chain sources [6]. Each
source alternately generates a burst of full cells (all with the same
destination) followed by an idle period of empty cells. The number
of cells in each burst or idle period is geometrically distributed. Let�

� � � be the average burst length in terms of number of cells, and�
� � � be the average idle length in term of number of cells. Then,�
� � � �

�
� � � � � � � � 	 � , where � is the load of each input source.

We assume the destination of each burst is uniformly distributed.
Figure 6 illustrates the performance of pipelined PIM under

bursty arrival with average burst length ranging between 16, 32,
and 64 and the number of iterations allowed set as 1, 2, and 4. As
we can see, the increased number of iterations allowed leads to
higher throughput and lower average cell delay at high load while
the increased average burst length increases the average cell de-
lay. Figure 7 compares the average cell delay of pipelined PIM
with � � � and non-pipelined PIM with � � � under uniform
bursty arrivals and average burst length set as 32. Pipelined PIM
performs almost the same as non-pipelined PIM with � � � .
Although not shown here, both pipelined PIM and non-pipelined
PIM with � � � achieve 100% throughput with all other average
burst length settings.

5. Concluding Remarks

In this paper, we have proposed new pipelined RGA and
RG maximum size matching algorithms to achieve speedup in
CIOQ switches without using extra hardware. We derive that our
pipelined scheduling approach reduces the scheduling time sig-
nificantly compared to the non-pipelined approach with the same
speedup factor. Combined with the pipelined step technique, we
can further improve the scheduling time relaxation factor. Through
simulations, we show that pipelined PIM achieves the same perfor-
mance as non-pipelined PIM under both Bernoulli arrivals (both
uniform and polarized) and bursty arrivals. In conclusion, the pro-
posed pipelined RGA/RG MSM algorithms are practical and effi-
cient solutions to achieve speedup on CIOQ switches. We believe
that for large � it is possible to obtain faster scheduling algorithm
by combining our approach with PMM [11].

References

[1] D. Gale, and L. S. Shapley, “College admissions and the sta-
bility of marriage,” American Mathematical Monthly, vol.
69, pp. 9-15, 1962.

[2] B. Prabhakar, N. Mckeown, “On the speedup required for
combined input and output queued switching”, Automata,
vol. 35, 1999.

[3] S. T. Chuang, A. Goel, N. Mckeown, B. Prabhakar, “Match-
ing output queueing with a combined input output queued
switch”, IEEE Journal on Selected Areas in Communica-
tions, vol. 17, No. 6, Jun. 1999, pp. 1030-1039.

[4] J. Dai and B. Prabhakar, “The throughput of data switches
with and without speedup”, Proc. IEEE Infocom2000, 2000,
pp. 556-564.

[5] T. Anderson, S. Owicki, J. Saxie, and C. Thacker, “High
speed switch scheduling for local area networks”, ACM
Trans. Comput. Syst., vol. 11, no. 4, pp. 319-352, Nov. 1993.

[6] N. Mckeown, “The iSLIP scheduling algorithm for input-
queued switches”, IEEE/ACM Transactions on Networking,
vol. 7., no. 2, pp. 188-201, Apr. 1999.

[7] P. Gupta, N. Mckeown, “Designing and implementing a fast
crossbar scheduler”, IEEE Micro. Magazine, vol. 19, no. 1,
pp. 20-28, Jan.-Feb. 1999.

[8] A. Smiljanic, R. Fan and G. Ramamurthy, “RRGS-
round-robin greedy scheduling for electronic/optical terabit
switches”, Proc. Globecom 1999, 1999, pp. 1244-1250.

[9] D. Cavendish, “CORPS: A pipelined fair packet scheduler
for high speed input queued switches”, in Proc. IEEE Con-
ference on High Perforamnce Switching and Routing, 2000,
pp. 55-64.

[10] A. Motoki, S. Kamiya, R. Ikematsu, and H. Ozaki, “Group-
pipeline scheduler for input buffer switch”, Proc. Joint 4th
IEEE International Conference on ATM (ICATM 2001) and
High Speed Intelligent Internet Symposium, 2001, pp. 158-
162.

[11] E. Oki, R. Rojas-Cessa, and H. J. Chao, “PMM: a pipelined
maximal-sized matching scheduling approach for input-
buffered switches”, Proc. of Globalcom 2001, 2001, pp. 35-
39.

[12] M. J. Karol, M. G. Hluchyj and S. P. Morgan, “Input vs.
output queueing on a space-division packet switch”, IEEE
Transaction on Communications, vol. 35, no. 12, pp. 1347-
1356, 1987.

[13] J. E. Hopcroft and R. M. Karp, “An � � � � algorithm for maxi-
mum matching in bipartite graphs”, Soc. Ind. Appl. Math. J.,
vol. 2, pp. 225-231, 1973.

[14] N. Mckeown, A. Mekkittikul, V. Anantharam, and J. Wal-
rand, “Achieving 100% throughput in an input-queued
switch”, IEEE Transactions on Communications, vol. 47, pp.
1260-1267, 1999.

[15] H. J. Chao and J. S. Park, “Centralized contention resolution
schemes for a large-capacity optical ATM switch”, in Proc.
IEEE ATM Workshop, 1998, pp. 11-16.

[16] D. N. Serpanos and P. I. Antoniadis, “FIRM: A class of dis-
tributed scheduling algorithms for high-speed ATM switches
with multiple input queues”, Proc. of IEEE Infocom 2000,
2000, pp. 548-555.

[17] J. Blanton, H. Badt, G. Damm, and P. Golla, “Impact of
Polarized Traffic on Scheduling Algorithms for High Speed
Optical Switches”, presented at ITCom2001, Denver, Aug.
2001.

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03)
1530-1346/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

