The tkDRR Scheduling Algorithms for Multi-server Packet Switches

Mei Yang T, S. Q. Zheng * and Dominique Verchere*

* Department of Electrical Engineering Department of Computer Science
University of Texas at Dallas, Richardson, TX 75083-0688, USA
{sizheng, meiyang}@utdallas.edu
1 Research & Innovation, Alcatel USA, Plano, Texas 75075, USA
Dominique. Verchere@alcatel.com

Abstract— Tremendous increase of Internet traffic de-
mands high speed, large capacity IP switch routers. The
introduction of multi-server switch architectures not only
makes it possible to scale to larger switch capacities,
but also imposes special requirements on scheduling al-
gorithms running in the central scheduler. In this pa-
per, we model the multi-server switch scheduling prob-
lem as a maximum bipartite K-matching problem. We
generalize iSLIP and DRR to multi-server switch archi-
tectures and propose two distributed scheduling algo-
rithms kDRR_RGA and kDRR_RG for finding maximal
K-matchings. Through simulations, we show that both
algorithms achieve comparable performance with high
throughput under uniform traffic. Using programmable
k-selectors, kDRR_RGA and FkDRR_RG are ready to be
implemented at high speed.

Key words: Multi-server switch architectures, kDRR schedul-
ing algorithms, K-matching, programmable k-selectors.

1 Introduction

The exponential increase of Internet traffic demands high speed,
large capacity IP switch routers. As the key to the success of the
next generation Internet (NGI), terabit IP switch routers have re-
ceived attention from both research and commercial communities.
In [5], Chao etc. reviewed several gigabit IP switch routers, opti-
cal packet switch architectures and opto-electronic packet switches.
Combining the strength of both optical and electronic technologies,
opto-electronic packet switches are proposed to be a competitive
architecture for terabit IP switch routers [5].

In [3], [4], a new opto-electronic packet switch architecture with
terabit capacity was proposed. This switch architecture employs an
optical switching matrix (OSM) to interconnect multiple electronic
input/output modules. IP packets are decomposed into fixed-size
cells as they arrive at line cards (LCs), buffered at data concentra-
tor cards (DCCs), transferred through the optical switching ma-
trix, and then reassembled into IP packets before they depart from
LCs. Each DCC connects to multiple LCs. On each DCC, cells
are buffered into virtual output queues (VOQs) according to their
destination DCCs to avoid the problem of head-of-line (HoL) block-
ing [11]. Within a VOQ, cells are composed into larger, fixed-size
composite packets (CPs) to be transferred through the OSM in
one switch slot. Using WDM technology, the optical path between
a DCC and the OSM can carry multiple optical channels (wave-
lengths) simultaneously. The number of wavelengths available and
bandwidth of each wavelength decide the switch capacity. Taking
the example of a switch of 16 DCCs, assume each DCC connects
with the OSM with 16 wavelengths, each carrying 10Gbps. The
total switch capacity is 2.56Tbps.

We abstract each DCC as a port. Assume the number of wave-
lengths on each port is equal to the number of LCs connecting to
each port and the bandwidth of each wavelength is equal to the
aggregated bandwidth of one LC in one switch slot. A group of
wavelengths and their associated buffers are composed as a service

unit, named a server. Since the total switch capacity is fixed, dif-
ferent number of servers provide different granularity of services.
The more number of servers, the finer the granularity [9]. Figure
1 illustrates an abstracted N x NN switch model with each port
carrying K servers. A cell slot is the time unit during the arrivals
of two successive cells on one LC. A switch slot is the time unit
between two successive operations of the optical switching matrix.
One switch slot is equal to multiple cell slots. During each switch
slot, the central scheduler computes a conflict-free matching be-
tween input port servers and output port servers and configures
the switching matrix.

The multi-server switch architecture also imposes special re-
quirements on the scheduling algorithm running in the central
scheduler. Three scheduling algorithms have been proposed in
[9] for the multi-server switch architecture, including multiSLIP,
FR-DRR and PDRR. However, the difference between multi-server
switch scheduling and single-server scheduling is not clearly stud-
ied. And how to implement these algorithms at high speed is still
a problem. In [9], implementation schemes using programmable
priority encoders (PPE) [10] were discussed. Since PPE can only
make one selection each time, we need run PPE K times to select
K requests in each phase of the algorithm. Such an implementa-
tion is not desired for packet switches with high line rate and/or
large K’s.

Input port 0

Output port 0

OSM

Fig. 1. Abstraction of the multi-server switch architecture.

In this paper, we first define the scheduling problem on the
multi-server switch architecture as a maximum K-matching prob-
lem on a bipartite graph. Since maximum size K-matching al-
gorithms are hard to implement and can cause unfairness, we
generalize iSLIP and DRR to the multi-server switch architec-
ture and present two distributed iterative scheduling algorithms,
kDRR_RGA and kDRR_RG, for finding maximal K-matchings be-
tween inputs and outputs. Because these two algorithms are equiv-
alent statistically under unform traffic, we take the example of

kDRR_RGA and study its performance of with uniform Bernoulli
arrivals and uniform bursty arrivals. Simulation results of 16 x 16
switch show that kDRR_RGA achieves up to 100% throughput
with both Bernoulli arrivals and bursty arrivals. Compared to
multiSLIP, kDRR_-RGA performs better with one or two iterations
and it needs less average number of iterations to converge. We
show that the implementation of kDRR algorithms is much sim-
pler than multiSLIP. Using programmable k-selectors [15], both
kDRR_RGA and kDRR_RG are ready to be implemented at high
speed. The time and area complexity of such an implementation
is independent of K.

2 Problem Statement

Our study is focused on scheduling algorithms of an N X N multi-
server switch architecture as shown in Figure 1. In our study, we
assume each input/output port connects to N input/output LCs.
Each input port maintains N VOQs, denoted as Q; j, where i is
the input port no., j is the output port no.,, 0 < ¢,57 < N — 1.
Each output port maintains N output queues (OQs), each OQ is
associated with an output LC. Let T be the switch slot time and
T’ be the cell slot, we have T'= N'T’, where N’ > N. In each cell
slot, either one cell or none cell comes from one LC. Thus, during
one switch slot, at most NN cells enter in one input port. Assume
K is the number of servers on each input/output port, during each
switch slot, each server can transfer a CP, which consists of N/K
elementary composite packets (ECP). Each ECP is composed of
N’ cells. The composition of a CP is shown in Figure 2 [9]. Thus,
the total service capacity of an input port is NN cells while the
service rate of each server is given by N’ N/K cells per switch slot.

CP
ECP #0

=N

ECP #N/K-1

=N

Fig. 2. The structure of a CP

To fully utilize the switch capacity, it is desirable to transfer only
full CPs. The delay specification of a high speed packet switch
requires that the probability, of the transit time of all incoming
data exceeding a statistical delay bound, is limited to a small value
[3]. Thus, it may be necessary to sacrifice some switch capacity
to transfer packets that will grow stale. Under low traffic load,
non-full and non-stale packets should be served if there are still
available servers. As a result, the switch scheduling algorithm that
decides, in each switch slot, what requests should be generated and
what connections should be made between input port servers and
output port servers are extremely important for the performance
of the switch.

The scheduling problem on the multi-server switch architecture
can be modelled as a K-matching problem on the bipartite graph
G = (V, E), where
o V =V1UVs, Vi = {input ports},Vao = {output ports},
N=|Vi|=|Val.

e E = {connection requests from input ports to
output ports}, M =| E |.

A K-matching I C E such that no node of G is incident with
more than K edges in K. A maximum size K-matching is one with
the maximum number of edges, while a maximal size K-matching
is one that no more edges can be trivially added. A perfect K-
matching is one that each node is incident with K edges in K.
Figure 3 gives an example of a maximum 2-matching and a maxi-
mal 2-matching of a 4 X 4 switch. With this maximum 2-matching,
Qo,0, Qo,2, Q1,1, Q1,3 and Q2,1 will be served.

Input Output Input Output Input Output

0 0 o o 0 0
1 1 1 1 1 1
2 2 2 2 2@ []
3 3 3@ 3 3 3
(a) Request graph (b) Maximum 2-matching (c) Maximal 2-matching
graph graph

Fig. 3. A maximum and maximal 2-matching of a 4 x 4 switch.

The maximum size K-matching (MKM) problem can be taken
as a special case of the bipartite b-matching problem [8], [17]. The
MKM problem can be solved by the generalized augmenting path
algorithm with time complexity of O(KNM) [14]. It can also be
transformed to a maximum-flow problem in O(M) time. Since
the transformed flow network is a unit network [16], we can use
Dinic’s algorithm to solve the corresponding maximum-flow prob-
lem in O(v/NM) time [16]. However, these MKM algorithms are
too complex to be implemented in high speed packet switches. An-
other noticeable problem with maximum size K-matching is that
it may cause unfairness. For example, in Figure 3, if Qo,0, Qo,2,
Q1,1, Q1,3 and Q2,1 continue having requests and other VOQs con-
tinue having no requests in successive switch slots, then Qo,1 may
get starved since edge (0, 1) is not in any maximum 2-matchings.

For practical use, we desire scheduling algorithms with high
throughput, starvation free, fast speed and simple implementa-
tion [13]. A maximal K-matching is a good option other than a
maximum K-matching. Maximal matching scheduling algorithms
proposed for input-buffered switches include PIM [1], RRM, iSLIP
[13], DRR [6], and iterative ping-pong arbitration scheme [7], etc..
Among these scheduling algorithms, {SLIP and DRR can achieve
up to 100% throughput under uniform traffic and are readily im-
plemented in hardware at high speed. In the following, we gen-
eralize the idea of {SLIP and DRR and present the k-server dual-
round-robin (kDRR) scheduling algorithms for multi-server switch
architectures. These two scheduling algorithms use a distributed
approach to find a maximal K-matching between input ports and
output ports.

3 EkDRR Algorithms

As iSLIP and DRR, kDRR algorithms are iterative and use ro-
tating priority (”round-robin”) arbitration to schedule each active
input and output in turn. Both kDRR_RGA and kDRR_RG adopt
the conservative policy [4], in which requests are first generated for
full CPs and non-full CPs with time-limit approaching and then
for other non-full CPs if there are still available servers. Due to the
space limit, here we only present kDRR with request, grant and
accept (kDRR_-RGA). Another version, kDRR with request and
grant (kDRR_RG), can be constructed symmetrically.

We use the following notations. Let I; and O; be the abstraction
of N input ports N output ports respectively, where 0 < 4,5 <
N — 1. For each I;, let a; be its accept pointer, indicating its
accept starting point, where 0 < a; < N — 1. For output Oj, let
ga; be its issued grant pointer, indicating its issued grant starting
point, where 0 < ga; < N — 1. Let an N X N 0-1 matrix R be the
request matrix, where R; ; = 1 denotes @; ; has a request. Let
K1I; and KOj denote the number of available servers at I; and at
Oj respectively. For the first iteration, V0 <4, < N—-1, KI; = K,
and KO; = K. The three steps of ktDRR_RGA operate as follows.

Request: VI;,0 < ¢ < N — 1, if I; has available servers and
unresolved requests (requests to outputs with available servers), it
sends all unresolved requests to their corresponding O;s.

Grant: VO;,0 < j < N — 1, if O; has available servers and
receives requests from any inputs, it issues min{ KO;, number of
requests to O;} grants to requests, starting from ga;. The issued
grants are sent to their corresponding I/s. ga; is updated to one
beyond (modulo N) the last granted input (starting from ga; in
a circular manner) if and only if there are any grants accepted in
the Accept phase of the first iteration. KOj; is updated to the
number of available servers at O;.

Accept: VI;,0 < i < N — 1, if I; has available servers and
receives grants from any outputs, it accepts min{KI;, number of
grants to I;} issued grants starting from a;. a; is updated to one
beyond(modulo N) the last accepted output. KI; is updated to
the number of available servers at I;.

Figure 4 shows how kDRR_RGA works for a 4 x 4 switch with
saturated load. At the start of switch slot 0, assume V0 < i < 3,
ga; = 0, V0 < j <3, aj = 0. Then after the scheduling, we get
gag = 2,9a1 = 2,gas = 0,ga3 = 0, and a9 = 2,a1 = 2,a2 =
0,a3 = 0. Due to the desynchronization of issued grant pointers,
we get a perfect 2-matching at switch slot 1 and thereafter. Un-
der saturated load, kDRR_RGA actually adapts to a time-division
multiplexing scheme.

Input Output Input Output

0 0

»

a,

2

g

w
w

a %
5989
g ER

Slot 0 Slot 1

Input Output

o O

£
o

E

7S] am)
NEWISE
2

al

1
"‘3 3X3g a33 3 ’

Slot 2 Slot 3

Fig. 4. Illustration of desynchronization effect of request pointers
of kDRR_RGA.

kDRR_RGA has the following properties.

Property 1: At each output, due to the property of round-robin,
the lowest priority element is set as the last input that accepts its
issued grant in the first iteration.

Property 2: Under saturated load, all VOQs with a common
output have the same throughput. The issued grant pointer moves
to each input in a fixed order (every % switch slots), thus providing
each with the same throughput.

Property 3: kDRR_-RGA converges in at most N — K + 1 itera-
tions. Convergence means that either there is no more requests or
all input/output ports are matched, i.e., a maximal K-matching is
founded. The explanation is as follows. We use N(R) to denote the
total number of requests. There two cases: (1) If N(R) < K2, then
all requests will be accepted in one iteration. (2) If N(R) > K2,
the maximal K-matching size is at most NK. The first iteration
will accept at least K2 requests. The last iteration will accept at
least 1 request. In other iterations, at least K requests will be
accepted. Thus, the total number of iterations needed is at most
LNK%KZAJ + 2, which is given by N — K + 1.

Figure 5 shows an example for an 8 x 8 switch with 2 servers
at each input/output port with saturated load. In switch slot 0,
kDRR_RGA takes 4 iterations to converge. It takes 3 and 2 iter-

Switch slot 0
Input Output Input Output

©92,=2

ga,=0

Input Output Input Output
a,=2 ga,=2 a,=2 902,72
a4 g 92,=0 a,=4 9a,=0
a,=0, ga,=0 a,=6 9a,=0
a,=0, ga,=0 aE:SOX:Qas:O

ga,=0
ga,=0 a,=0@ 92,=0 a,=0 9a,=0
Iteration O Iteration 1 Iteration 2 Iteration 3
Switch slot 1
Input Output Input Output Input Output
ag=4 ga;=4 a,=4! ga,=4
a,=4 ga,=4 a,=4 ga,=4
a2 ga,=2 a,=2 ga,=2
a,=2 92,72 a ;=2 ga,=2
a,=6 ga,=0 a6 92,0
a;=6! ga;=0 a,=6@ ga;=0
a,=0@ 9a,=0 a,=0f 93,=0
a,=0@ 92,70 a,=0 ga,=0
Iteration 0 Iteration 1 Iteration 2
Switch slot 2 Switch slot 3 Switch slot 4
Input Output Input Output Input Output Input Output
= 93,76 a,=0 92,=0
9a,%6 a0 ga,=0
92,74 a6 9a,=6
93,74 a,=6 9a,=6
gaz=2 3,74 ga,=4
. 9872 a =4 ga,=4
92,0 a,=2 9a,=2
Iteration O Iteration 1 Iteration 0 Iteration 0

Fig. 5. Example of the number of iterations to converge for an
8 x 8 switch with saturated load

ations for kDRR_RGA to converge in switch slot 1 and 2 respec-
tively. After switch slot 3, all arbitration components have become
totally desynchronized and kDRR_RGA converges in a single iter-
ation.

4 Performance Evaluation

In the following, we will evaluate the performance of kDRR al-
gorithms in terms of average transit time under uniform traffic.
Before we present simulation results, we first give an analysis of
the minimum average transit time on the given switch model.

4.1 Analysis

The minimum average transit time is obtained under such a situa-
tion that the service rate to each VOQ is proportional to its arrival
rate. Under uniform traffic, each VOQ has the same average ar-
rival rate. Thus, the minimum average transit time under uniform
traffic is achieved with a scheduling algorithm that could serve each
VOQ equally. An ideal case is that each VOQ is associated with
a deterministic server, which can transmit 1 ECP (or N’ cells) per
switch slot.

The average transit time through the switch is the sum of the
average response time at the input port and at the output port.
The average response time of a cell at the input port has three
components:

(1) The residual service time of cells to be transmitted, it is half
a switch slot for deterministic server in average.

(2) The waiting time of an incoming cell. It is computed as
follows.

The input sources to each input port are N independently, iden-
tically distributed (i.i.d.) Bernoulli sources. Let p denote the prob-
ability of each input source to generate a cell during each cell slot,

where 0 < p < 1. For uniform traffic, each cell has a probability %
to enter a particular VOQ. Each switch slot contains N’ cell slots.
The arrival process of N input sources in a switch slot is equivalent
to N'N sources generating cells in one cell slot. The prob. of n
arrivals to a particular VOQ during a switch slot is given by:

/! n N'N-—n
vnefo- NN, Py = (V) (%) (1*%) '
n

Then we have the average arrival rate as A = Ei{:: nP, =
N’'NZ£ = N'p. For large N'N and small £, we can use a poisson
process with arrival rate A to approximate this binomial distribu-
tion [12]. Since the average service rate to a VOQ u = N’, the
average load is determined as p = % =p.

This particular VOQ can be modelled as an M/D/1 queue in
which the average number of cells in queue is given by

B p2 B p2
PN =50 T

From Little’s law, we get the waiting time of a cell as

E(N) _ P
T X 2N'(1-p)’

(3) The service time for the incoming cell, which is another
switch slot.

Thus, the average response time of a cell at the input port is
given by

1 3
Tin =5 + B(T) + 1= BE(T) + 3.

The average response time at the output port is obtained with
the following assumptions. Under uniform traffic, the probability
of a cell going to all LCs is the same. Each OQ receives pN’ cells
during each switch slot and these cells are sent out with a constant
rate of one cell per cell slot, which is % switch slot. The average
response time at the output port is thus computed by:

pN/ ; ! ’
1 K 1 pN'(pN'+1) P n 1
pN' N’ pN’? 2 2 2N’

=1

Tout =

The average transit time through the switch (in switch slots)
under M/D/1 model is given by

D 3 p 1
Tin+Tout = —————— + > + = .
in + Tout ZN/(17P)+2+2+2N/

Measured by cell slots, the average transit time is N'(T;n 4 Tout),
ie.,
D 3N’ pN' 1
T =——+ + +=.
M/DIA =50 —p) 2 2 2

(1)

4.2 Simulated performance of kDRR algorithms

Simulations have been done for kDRR algorithms under uniform
traffic for switch size ranging in 4, 8, 16 and 32 with different
number of servers per port and iterations allowed set as 1, 2, 4 and
unlimited. Each switch slot equals to the switch size number of
cell slots, that is, N’ = N. Two traffic models are used in these
simulations: Bernoulli traffic and bursty traffic. In the following,
we present simulation results with the example of 16 x 16 switch.
Without loss of generality, in our simulations, all pointers in kDRR
algorithms are initialized randomly.

Figure 6 shows the performance of one iteration kDRR algo-
rithms with uniform bernoulli arrivals in terms of average tran-
sit time measured by the number of cell slots. We observe that
kDRR_-RGA and kDRR_RG perform almost the same under uni-
form traffic. The average transit time of both kDRR_-RGA and
kDRR-RG improves with the number of servers at each port in-
creasing. And we find that both kDRR_RGA and kDRR_RG with
16 servers per port perform close to Ts,p /1 given in Equation (1).

Since kDRR_-RGA and kDRR_RG perform equivalently under
uniform traffic, in the following we evaluate their performance with
the example of kDRR_RGA. Figure 7 shows the average transit
time vs. load of iterative kDRR_RGA algorithm with K = 2,4
and 8 and 1, 2 and 4 iterations. For K = 16, one iteration is
enough to find the maximal K-matching. For other cases, iterative
kDRR_RGA does reduce the average transit time and improve the
throughput for all server settings under heavy load. With 2 and 4
iterations, kDRR_-RGA achieves 100% throughput with all server
settings.

We then study the performance of kDRR_RGA under bursty
traffic using 2-state modulated Markov-chain sources [13]. Figure
8 illustrates the performance of iterative ktDRR_-RGA under bursty
arrival with average burst length ranging from 16, 32, and 64 for a
16 x 16 switch with K = 8 and 1, 2, and 4 iterations. As we can see,
the increased number of iterations leads to higher throughput and
lower average transit time at high load while the increased average
burst length increases the average transit time.

Notice that kDRR_-RGA is different from the multiSLIP algo-
rithm presented in [9]. In multiSLIP, each output port server em-
ploys a round-robin arbiter, each one keeps its own pointer. While
in kDRR_RGA, each outport port uses one round-robin arbitration
component. Due to the property of round-robin, kDRR_RGA elim-
inates the problem of output server pointer synchronization that
multiSLIP might encounter, especially when the number of servers
is large. Here server pointer synchronization means that more than
one server’s arbiter pointers pointing to the same position. Figure
9 compares the performance of kDRR_-RGA and multiSLIP with 1
iteration for 2, 4, 8 and 16 servers per port. As we can see from the
figure, kDRR_RGA performs better than multiSLIP at low loads
for all server settings and high loads for K = 8 and 16. It can be
shown that with more iterations, multiSLIP performs more close
to kDRR_RGA. However, as shown in Figure 10, multiSLIP needs
more number of iterations to converge than kDRR_RGA. Averagely
kDRR_RGA converges in less than logy N iterations for K # N.
For K = N, it converges in one iteration.

10000

—a——kdrr_rga-2
——e—— kdrr_rga-4
—a——kdrr_rga-8
————kdrr_rga-16
- - - kdrr_rg-2

1000 4

100 #

Average transit time (cell slots)

10
01 02 03 04 05 06 07 08 09 1

Load

Fig. 6. Average transit time vs. load of one iteration kDRR
algorithms with uniform Bernoulli arrivals for a 16 x 16 switch.

Average transit time (cell slots)

Fig. 7. Average transit time vs. load of kDRR_-RGA with multiple
iterations with uniform Bernoulli arrivals.

10000

——a— burst-16-1
——e—— burst-32-1
——a— burst-64-1
- - - burst-16-2
- - - burst-32-2
- - - burst-64-2
- - burst-16-4
- - burst-32-4
- - burst-64-4

>

0

1000 o

|
P

100

Average transit time (cell slots)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Load

Fig. 8. Average transit time vs. load of \DRR_RGA with multiple
iterations with bursty arrivals.

1000

——a—— Kdrr_rga-2
——o&—— Kdrr_rga-4
——&—— Kdrr_rga-8
— e Kdrr_rga-16

- --a--.mslip-2
---0--.mslp-4
---@---mslip-8
Srgnges,

100 4

Average transit time (cell slots)

10

01 02 03 04 05 06 07 08 0.9 1
Load

Fig. 9. Average transit time vs. load of kDRR_-RGA and multi-
SLIP with one iteration under uniform Bernoulli arrivals.

—a— kdi_rga-2
— e kd_rga-8

< -a---mslip-2

<--o---mslp8

———— kdi_rga-4
———— kdi_rga-16
- -0 --.mslip-4

<o .mslip-16

Average number of iterations to converge

0.1 0.2 0.3 0.4 05 0.6 0.7 08 0.9 1

Fig. 10. Average number of iterations for convergence vs. load of
kDRR_RGA and multiSLIP with uniform Bernoulli arrivals.

5 Hardware Implementation of iDRR algo-
rithms

An important property of an efficient scheduling algorithm is sim-
ple to implement. In this section, we consider the complexity of im-
plementing kDRR algorithms in hardware. For both kDRR_RGA
and kDRR_RG, we need assign a round-robin arbitration com-
ponent for each input/output port. Since the implementation of
kDRR-RGA and kDRR_RG is symmetric, in the following we will
illustrate the hardware implementation scheme using the example
of kDRR_RGA.

One possible design of a round-robin port arbitration component
is employing the programmable priority encoder(PPE) proposed in
[10]. Since the PPE can only make one selection each time, we have
to run up to K times to pick up K requests. The time complexity
of one iteration scheduling is 2K times delay of the PPE. This is
not fast enough for high speed packet switches.

We propose our design of a round-robin port arbitration com-
ponent, which could select K requests in one time. The basic
building block of a port arbitration component is a programmable
k-selector, which was discussed in [15] in detail. Figure 11 shows
how 2N port arbitration components and a state update logic to-
gether with a 2(N?2 4 N)-bit state memory are interconnected to
construct a kDRR_RGA scheduler for an N X N switch. At the
start of each switch slot, the scheduler receives an N-bit 0-1 re-
quest vector(0 as no requests, 1 as non-zero requests) from each
input port. The one iteration kDRR_RGA scheduler operates as
follows.

Step 1: Each grant arbitration component selects up to K un-
resolved requests from the transposed request vector. The issued
grants are sent to N accept arbitration components.

Step 2: Each accept arbitration component selects up to K
issued grants. These grants are saved into a decision register and
passed to the state memory and update logic, where the issued
grant pointers are updated.

For an iterative kDRR_RGA scheduler, the arbitration compo-
nents used are almost identical to those used for a one iteration
EDRR_RGA scheduler except the following differences: (1) The re-
quest matrix should be updated after each iteration. (2) The num-
ber of available servers at each arbitration component should be
updated after each iteration. (3) Once an input/output is matched,
its arbitration component should be disabled in subsequent itera-
tions of the same switch slot. These three modifications make an

Grant Accept
arbitration arbitration

1

N2

Decision
Registers

State memory and update logic

N

~ Requests from VoQs

Fig. 11. Block diagram of a one iteration kDRR scheduler for an
N x N switch.
Design N=8 N=16 N=32 N=64
multiSLIP (k=1) 13.8 17.5 30.0 39.9
kDRR_RGA 20.6 33.5 49.0 66.6
Improvement of 62.7% 76.1% 89.8% 94.8%
kEDRR-RGA over
multiSLIP when
k=N/2

TABLE 1

Timing improvement of kDRR_-RGA arbitration component over
multiSLIP arbiter.

iterative kDRR_RGA scheduler a little bit complex than a one it-
eration kDRR_RGA scheduler.

Table I compares the latency of the multiSLIP arbiter (us-
ing PPE logic) and kDRR_-RGA arbitration component (using
SHIFT_PS logic) with K = N/2 simulated on Altera’s CPLD se-
ries ACEX1K [15], [2]. We can see that the timing improvement
of kDRR_RGA arbitration component over multiSLIP arbiter is
more than 60%. And the time and area complexity of k\DRR_-RGA
arbitration component is independent of K.

6 Conclusion

The major contributions of this paper include: (1) We pre-
sented a theoretical model for the scheduling problem of the multi-
server switch architecture. (2) We generalized iSLIP and DRR
to the multi-server switch architecture and proposed two practi-
cal distributed scheduling algorithms, kDRR_RGA and kDRR_RG.
Simulations have shown that the kKDRR algorithms achieve high
throughput for both Bernoulli arrivals and bursty arrivals un-
der uniform traffic. (3) We proposed a hardware implementation
scheme for kDRR algorithms. Using our programmable k-selectors,
both kDRR_RGA and kDRR_RG can be implemented in hardware
at high speed. Possible extension of this work are variations of
kDRR algorithms, such as prioritized kDRR algorithms, weighted
kDRR algorithms and other schemes with QoS support. We expect
the implementation of these variations to be more complex than
kDRR algorithms.

References

[1] T. Anderson, S. Owicki, J. Saxie, and C. Thacker, “High speed
switch scheduling for local area networks”, ACM Trans. Com-
put. Syst., vol. 11, no. 4, pp. 319-352, Nov. 1993.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Altera, ACEX 1K Programmable Logic Device Family Data
Sheet, Sept. 2001.

J. Blanton, H. Badt, G. Damm, and P. Golla, “Iterative
scheduling algorithms for optical packet switches”, ICC 2001
Workshop, Helsinki, June 2001.

J. Blanton, H. Badt, G. Damm, and P. Golla, “Impact of
Polarized Traffic on Scheduling Algorithms for High Speed
Optical Switches”, ITCom2001, Denver, August 2001.

H. J. Chao, “A terabit IP switch router using optoelectronic
technology”, IEEE Communications Magazine, pp. 78-84,
Dec. 2000.

J. Chao, “Saturn: a terabit packet switch using dual round-
robin”, IEEE Communications Magazine, Dec. 2000.

H. J. Chao, C. H. Lam, and X. L. Guo, “A fast arbitration
scheme for terabit packet switches”, Globecom’99, pp. 1236~
1243, 1999.

C. H. Paradimitriou and K. Steiglitz, Combinatorial Op-
timization: Algorithms and Complexity, Prentice-hall Inc.,
1985.

G. Damm, J. Blanton, P. Golla, D. Verchere, and M. Yang,
“Fast, scheduler solutions to the problem of priorities for po-
larized data traffic”, IST 2001, Tehran, Iran, September 2001.
P. Gupta, N. Mckeown, “Designing and Implementing a Fast
Crossbar Scheduler”, IEEE Microelectronics, Vol. 19, No. 1,
1999, pp. 20-29.

M. J. Karol, M. G. Hluchyj and S. P. Morgan, “Input vs.
output queueing on a space-division packet switch”, IEEE
Transaction on Communications, Vol. 35, No. 12, 1987, pp.
1347-1356.

T. G. Robertazzi, Computer Networks and Systems: Queue-
ing Theory and Performance FEwvaluation, 3rd edition,
Springer-Verlag, 2000.

N. McKeown, “The ¢SLIP scheduling algorithm for input-
queued switches”, IEEE/ACM Transactions on Networking,
Vol. 7, No. 2, pp. 188-201, April 1999.

M. Yang and S. Q. Zheng, “Sequential and parallel algorithms
for bipartite K-matching problems,”, manuscript.

S. Q. Zheng, M. Yang and F. Masetti, “Hardware switch
scheduling for high speed, high capacity IP routers”, submit-
ted to Globecom 2002.

R. E. Tarjan, Data structures and network algorithms, Bell
laboratories, 1983.

W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, A. Schri-
jver, Combinatorial Optimization, John Wiley and Sons Inc.,
1997.

