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Abstract— In communication networks, multiple communica-
tion paths sharing minimum number of links or/and nodes may
be desirable for improved performance, resource utilization and
reliability. We introduce the notion of link sharability and node
sharability, and consider the problems of finding minimum-cost
k paths subject to minimum link/node sharability constraints.
We identify 65 different link/node sharability constraints, and
consider the fundamental problem of finding minimum-cost k
paths between a pair of nodes under these constraints. We present
a unified polynomial-time algorithm scheme for solving this
problem subject to 25 of these different sharability constraints.

Keywords: Network, graph, routing, network planning, pro-
tocol, algorithm, protection, reliability, survivability, disjoint
paths, multiple paths, network flow, complexity.

I. INTRODUCTION

In a communication network the connection between a
source node and a destinations node is a path between them.
Currently, most networks employ protocols based on shortest
path routing algorithms which determine a single path of
minimum cost. Finding multiple paths between a source and
a destination has been proposed. Potential benefits of multiple
paths include improved reliability (e.g. [7], [12], [15], [17],
[18], [19], [20], [21], [22]), load balancing (e.g. [6], [16]),
higher network throughput (e.g. [8], [16]), and alleviation of
congestion (e.g.[2], [7]).

It is desirable that multiple paths are link or/and node
disjoint. Assume that a network is modeled as a weighted
graph G = (V,E), where V is the set of nodes, E is the
set of links connecting nodes, and each link is associated
with a nonnegative cost. In the literature, the complexities of
various versions of the problem of finding optimal disjoint
paths between two nodes s, t ∈ G have been investigated.
Ford and Fulkerson proposed a polynomial-time algorithm for
finding two paths with minimum total cost (named the Min-
Sum 2-Path Problem) based on minimum-cost network flow
model [4]. Suurballe and Tarjan provided a different treatment,
and presented algorithms that are more efficient [13], [14]. Li
et al. proved that the problem of finding two disjoint paths
such that the cost of the longer path is minimized (named
the Min-Max 2-Path Problem) are strongly NP-complete [10].
They also considered a generalized min-sum problem (referred
as the G-Min-Sum k-Path Problem) assuming that each link
is associated with k different lengths. The objective of this
problem is to find k disjoint paths such that the total cost of
the paths is minimized, where the jth link-cost is associated

with the jth path. They showed that the G-Min-Sum k-Path
Problem are strongly NP-complete for k ≥ 2 [11]. In [18]-
[21], a set of optimal disjoint 2-path problems with different
objective functions, including the Min-Min 2-path problem, the
α-MIN-SUM 2-path problem, and the MinSum-MinMin 2-path
problem, are considered and proved to be NP-complete.

Given a pair of nodes, finding k, k > 1, disjoint paths,
though desirable, may not always be possible in practical
network applications for at least two reasons. First, if the
network is too sparse, such paths may not physically exist.
Second, if some links are overly saturated, additional traffic on
these links may be prohibited so that two disjoint paths without
using these prohibited links do not exist. When k disjoint
paths do not exist, alternatively k paths from the source to
the destination with minimum shared links/nodes should be
found. In the context of network reliability, these paths can
provide partial protection[22].

In the literature, limited work on multiple paths with mini-
mum number of shared links/nodes has been reported. In [3],
an algorithm based on minimum-cost network flow (MCNF) is
given for finding the k-best paths (i.e., k paths with minimum
node sharing). However, the algorithm can only be applied to
trellis graphs. In [12], an algorithm is provided to transform
an arbitrary graph to a trellis graph and then to obtain the k-
best paths by the algorithm shown in [3]. As analyzed in [9],
this solution is only a heuristic one and the complexity of the
transformation is quite high. In [9], an MCNF-based algorithm
is proposed for finding k-best paths in arbitrary networks.
However, only best link-disjoint paths are considered in [9].

In this paper, we introduce the notion of link sharability
and node sharability, which are a variation of the concept of
vulnerability defined in [15]. We use this notion to characterize
the degree of link/node sharing among different paths. Larger
link/node sharability implies more link/node sharing among
a set of paths. A set of paths are link-disjoint if the link
sharability of the paths is 0, and they are node-disjoint if
their node sharability is 0 (in this case, their link sharability
is also 0). We define five basic sharability constraints: min-
sum link sharability constraint, min-sum node sharability
constraint, min-max link sharability constraint, min-max node
sharability constraint, and empty constraint (no restriction on
sharabilities). Based on these basic sharability constraints,
we identify 65 composite sharability constraints, which are
obtained by selections and permutations of basic sharability
constraints. We investigate the problem finding minimum-cost
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paths subject to these sharability constraints by considering
the problem of finding minimum-cost k paths from node s to
node t in network G. This is a generalization of the classical
fundamental problem of finding minimum-cost k paths from
node s to node t which has received considerable attention in
the context of protecting a network against link/node failure.
By presenting a general algorithm scheme, we show that 25
versions of the problem finding minimum-cost k paths from
node s to node t in network G subject to link or/and node
sharability constraints are solvable in polynomial time.

The rest of the paper is organized as follows. In Section
II, we define link sharability and node sharability, introduce
65 different sharability constraints. We show that a subset of
25 sharability constraints are mutually inequivalent. Section
III presents a unified algorithm scheme that can be used
to generate different algorithms for solving the problem of
finding minimum-cost k paths from s to t subject to the 25
different sharability constraints in polynomial time. In Section
IV, we generalize our algorithm scheme to solve the problem
of finding minimum-cost k paths subject to constraints on al-
lowable individual link and node sharabilities, and the problem
of finding minimum-cost one-to-many and many-to-one paths
subject to various sharability constraints. Section V concludes
the paper.

II. LINK AND NODE SHARABILITY CONSTRAINTS

We restrict our discussions to directed graphs. All our
algorithms and claims are applicable to undirected graphs,
since undirected graphs can be converted to directed graphs
easily. In the rest of the paper, the terms graph and network
are used interchangeably. So are the terms of edge and link.

Let G = (V,E) be a directed graph with non-negative
cost l(e) or l(u, v) defined for link e = (u, v). Further,
we assume that G is simple; i.e. it has no self-loop and
parallel links. Given a source s and a destination t in G, let
P = {P1, P2, · · · , Pk} be a set of k paths (s-t paths) in graph
G = (V,E) from s to t.

We define

δ(e, Pi) =
{

1, e ∈ Pi

0, e /∈ Pi

and

δ(e, P ) =
k∑

i=1

δ(e, Pi).

Then δ(e, P ) represents the number of times e appears in P .
We define

∆(P ) =
∑
e∈P

(δ(e, P ) − 1),

and
δ(P ) = max

e∈P
(δ(e, P ) − 1).

∆(P ) is called total link sharability of P , and δ(P ) is called
the maximum link sharability of P . Clearly, ∆(P ) = 0 if and
only if δ(P ) = 0, and either ∆(P ) = 0 or δ(P ) = 0 indicates
that all paths in P are link-disjoint.

Similarly, we define

γ(v, Pi) =
{

1, v ∈ Pi

0, v /∈ Pi

and

γ(v, P ) =
k∑

i=1

γ(v, Pi).

Then γ(v, P ) represents the number of times node v is shared
among paths in P . We define

Γ(P ) =
∑

v∈P,v �=s,t

(γ(v, P ) − 1),

and
γ(P ) = max

v∈P,v �=s,t
(γ(v, P ) − 1).

Γ(P ) is called the total node sharability of P and γ(P ) is
called the maximum node sharability of P . Clearly, Γ(P ) = 0
if and only if γ(P ) = 0, and either Γ(P ) = 0 or γ(P ) = 0
indicates that all paths in P are node-disjoint.

The total cost of k paths in P is defined as

l(P ) =
k∑

i=1

l(Pi),

where l(Pi) =
∑

e∈Pi
l(e).

The problems studied in this paper have a common feature
of finding a set of paths P = {P1, P2, · · · , Pk} in G with
minimum l(P ), subject to various combinations of minimum
∆(P ), minimum Γ(P ), minimum δ(P ) and minimum γ(P )
as constraints.

Let 〈C〉 = 〈Cq, Cq−1, · · · , C1〉 be an ordered list of
constraints. An optimization problem Π subject to ordered
constraint list 〈C〉 is to find a solution S(I) for an instance I
of Π such that

(1) : S(I) satisfies C1;
(2) : S(I) satisfies C2 subject to condition (1);

· · ·
(q) : S(I) satisfies Cq subject to condition (q − 1); and
(q + 1): S(I) has the optimal solution value among all

solutions that satisfy Cq.

We call 〈C〉 an ordered composite constraint, and Ci’s the
component constraints of 〈C〉. Constraints are defined recur-
sively. An empty list is an ordered composite constraint; it is
also called empty constraint. A single constraint is an ordered
composite constraint. Then, an ordered composite constraint is
an ordered pair of two ordered composite constraints. Having
defined this recursive structure, we refer to ordered composite
constraints simply as constraints.

Define empty constraint, minimum ∆, minimum Γ, mini-
mum δ, and minimum γ (denoted by 〈 〉, 〈min ∆〉, 〈min Γ〉,
〈min δ〉, and 〈min γ〉, respectively) as basic sharability con-
straints. 〈min ∆〉 and 〈min Γ〉 are called min-sum constraints,
and 〈min δ〉 and 〈min γ〉 are called min-max constraints. In
general, we can have the following set of constraints: Z =
{〈Xi, · · · ,X1〉|〈X1〉, · · · , 〈Xi〉 ∈ {〈 〉, 〈min δ〉, 〈min γ〉,
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〈min ∆〉, 〈min Γ〉}, 1 ≤ i ≤ 4}. Clearly, 〈〈 〉, 〈 〉〉 = 〈 〉,
〈〈 〉, 〈X〉〉 = 〈X〉 and 〈〈X〉, 〈 〉〉 = 〈X〉. Let S(n, r) denote
the number of ordered r-tuples of distinct elements from an
n-element set. Then, we have

|Z| =
4∑

i=0

S(4, i) =
4∑

i=0

4!
i!

= 65

different constraints. We are able to show that all of these
65 versions of the problem of finding minimum-cost k paths
subject to sharability constraints are polynomial-time solvable.
In this paper, we focus on 25 constraints listed in Table
I, i.e. the composite constraints with min-max component
constraints (if any) having priority higher than min-sum
component constraints (if any). The version corresponding
to constraint 〈C0〉 can be reduced to a problem of finding
minimum-cost network flow (MCNF) of flow value k. Thus,
such a problem of finding minimum-cost k s-t paths can be
solved by an MCNF algorithm, such as the successive shortest
path algorithm [1], in O(k · (|E| + |V | log |V |)) time. Each
constraint 〈C〉 in the rest of Table I can be partitioned into two
component constraints 〈C ′〉 and 〈C ′′〉 such that C ′ contains
min-max constraints and C ′′ contains min-sum constraints.
Then, 〈C〉 can be considered as a constraint 〈C ′′, C ′〉 formed
by concatenating C ′′ and C ′. For easy reference, we call
〈C ′′, C ′〉 the normal form of C. Based on normal forms, we
divide the constraints 〈C1〉 to 〈C24〉 in Table I into five classes
as follows.

Class 1 : C ′′ is empty. This class contains 〈C1〉 to 〈C4〉.
Class 2 : C ′′ is 〈min ∆〉. This class contains 〈C5〉 to 〈C9〉.
Class 3: C ′′ is 〈min Γ〉. This class contains 〈C10〉 to 〈C14〉.
Class 4 : C ′′ is 〈min Γ,min ∆〉. This class contains 〈C15〉

to 〈C20〉.
Class 5 : C ′′ is 〈min ∆,min Γ〉. This class contains 〈C20〉

to 〈C24〉.
For example, the normal form of constraint 〈C22〉 =

〈min ∆,min Γ,min γ〉 is 〈〈C20〉, 〈C2〉〉, and it is in Class 5.
The version corresponding to constraint 〈C22〉 is to find a set
P ∗ of k paths from s to t such that (1) P ∗ has min-max node
sharability; (2) P ∗ has min-sum node sharability subject to
condition (1); (3) P ∗ has min-sum link sharability subject to
condition (2); and (4) l(P ∗) = min{P ′|P ′ is a solution that
satisfies (3)}. This classification is useful in the analysis of
our algorithm scheme.

Remark 1: The problem we are considering is a problem
with a prioritized hierarchy of optimization objectives (the to-
tal cost of the paths coming the last). The objective of a higher
priority narrows feasible solution space of the objectives of
lower priorities. According to this feature of hierarchical op-
timization objective “constraints”, we use ordered constraints
to refer to ordered optimization objectives only for the sake of
easy understanding. Readers should keep in mind that, strictly
speaking, this is not a constrained optimization problem in the
classical sense.

Consider two versions Π1 and Π2 of the minimum-cost k-
path problem subject to ordered composite constraint 〈X〉 and

〈Y 〉, respectively. For the same graph G, their solutions can be
different if 〈X〉 and 〈Y 〉 are different. The following statement
is always true: if 〈Y 〉 is a sublist of 〈X〉, i.e. all constraints in
〈Y 〉 are in 〈X〉 and they are in the same order as they appear
in 〈X〉, then the cost of the solution subject to 〈Y 〉 is no larger
than the cost of the solution subject to 〈X〉. Clearly, satisfying
more sharability constraints tends to reduce link/node sharing
with increased cost. Thus, there is a tradeoff between cost and
sharability between choosing 〈X〉 and 〈Y 〉. The 25 different
versions of the minimum-cost k-path problem defined by the
constraints of Table I provide a wide spectrum of constraint
priorities and cost-sharability tradeoffs for the same network.

In the context of finding minimum-cost k s-t paths, we say
that two constraints 〈X〉 and 〈Y 〉 are equivalent if and only
if any optimal solution obtained under 〈X〉 is also an optimal
solution obtained under 〈Y 〉 for any network. One question
arises: are all the 25 composite constraints given in Table I
mutually inequivalent? The following theorem gives a definite
answer.

Theorem 1: Constraints of Table I are mutually inequiva-
lent.

Proof: See Appendix.

III. AN ALGORITHM SCHEME

In this section, we present a unified algorithm scheme for all
versions of the problem of finding optimal k s-t paths subject
to the constraints defined in Table I. This scheme, which is
used to generate slightly different algorithms by reducing the
problem of finding a set P ∗ of minimum-cost k paths in G
to finding a minimum-cost flow f∗ in G′′ using different cost
and capacity functions, has three steps.

Step 1 : Compute min-max link sharability kL or/and min-
max node sharability kN if needed, and construct
flow network G′′ = (V ′′, E′′) from G = (V,E)
according to sharability requirement.

Step 2 : Find a minimum-cost flow f∗ of flow value k from
s to t in G′′.

Step 3 : Construct a set P ∗ of k s-t paths in G from the
flow f∗ in G′′.

For Step 1, two transformations, TRANSFORM-1 and
TRANSFORM-2, are introduced.

TRANSFORM-1: Obtain G′ = (V ′, E′) from G = (V,E)
by node splitting as follows: replace each node v that is neither
s nor t by two nodes v and v′ such that all links ending at v
in G also end at v in G′ and all links originating from v in
G originate from v′, and then add a link (v, v′) (see Figure 1
and Figure 3).

TRANSFORM-2: Obtain graph G′′ = (V ′′, E′′) from G′ =
(V ′, E′) by link splitting as follows: replace each link e in G′

by two parallel links with the same direction of e. We denote
the two links generated from a link (u′, v) in G′ corresponding
to link (u, v) in G by (u′, v) and (u′, v), which are called the
primary link-generated u − v link (or simply, primary u − v
link) and the secondary link-generated u − v link (or simply,
secondary u−v link), respectively (note: u′ can be source node
s). We denote the two links generated from a link (v, v′) in
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constraints constraints
〈C0〉 〈 〉
〈C1〉 〈min δ〉 = 〈〈C0〉, 〈C1〉〉 = 〈C13〉 〈min Γ, min γ, min δ〉 = 〈〈C10〉, 〈C3〉〉 =

〈〈 〉, 〈min δ〉〉 〈〈min Γ〉, 〈min γ, min δ〉〉
〈C2〉 〈min γ = 〈〈C0〉, 〈C2〉〉 =〉 〈C14〉 〈min Γ, min δ, min γ〉 = 〈〈C10〉, 〈C4〉〉 =

〈〈 〉, 〈min γ〉〉 〈〈min Γ〉, 〈min δ, min γ〉〉
〈C3〉 〈min γ, min δ〉 = 〈〈C0〉, 〈C3〉〉 = 〈C15〉 〈min Γ, min ∆〉 = 〈〈C15〉, 〈C0〉〉 =

〈〈 〉, 〈min γ, min δ〉〉 〈〈min Γ, min ∆〉, 〈 〉〉
〈C4〉 〈min δ, min γ〉 = 〈〈C0〉, 〈C4〉〉 = 〈C16〉 〈min Γ, min ∆, min δ〉 = 〈〈C15〉, 〈C1〉〉 =

〈〈 〉, 〈min δ, min γ〉〉 〈〈min Γ, min ∆〉, 〈min δ〉〉
〈C5〉 〈min ∆〉 = 〈〈C5〉, 〈C0〉〉 = 〈C17〉 〈min Γ, min ∆, min γ〉 = 〈〈C15〉, 〈C2〉〉 =

〈〈min∆, 〈 〉〉 〈〈min Γ, min ∆〉, 〈min γ〉〉
〈C6〉 〈min ∆, min δ〉 = 〈〈C5〉, 〈C1〉〉 = 〈C18〉 〈min Γ, min ∆, min γ, min δ〉 = 〈〈C15〉, 〈C3〉〉 =

〈〈min∆〉, 〈min δ〉〉 〈〈min Γ, min ∆〉, 〈min γ, min δ〉〉
〈C7〉 〈min ∆, min γ〉 = 〈〈C5〉, 〈C2〉〉 = 〈C19〉 〈min Γ, min ∆, min δ, min γ〉 = 〈〈C15〉, 〈C4〉〉 =

〈〈min∆〉, 〈min γ〉〉 〈〈min Γ, min ∆〉, 〈min δ, min γ〉〉
〈C8〉 〈min ∆, min γ, min δ〉 = 〈〈C5〉, 〈C3〉〉 = 〈C20〉 〈min ∆, min Γ〉 = 〈〈C20〉, 〈C0〉〉 =

〈〈min∆〉, 〈min γ, min δ〉〉 〈〈min ∆, min Γ〉, 〈 〉〉
〈C9〉 〈min ∆, min δ, min γ〉 = 〈〈C5〉, 〈C4〉〉 = 〈C21〉 〈min ∆, min Γ, min δ〉 = 〈〈C20〉, 〈C1〉〉

〈〈min∆〉, 〈min δ, min γ〉〉 〈〈min ∆, min Γ〉, 〈min δ〉〉
〈C10〉 〈min Γ〉 = 〈〈C10〉, 〈C0〉〉 = 〈C22〉 〈min ∆, min Γ, min γ〉 = 〈〈C20, 〉〈C2〉〉 =

〈〈minΓ〉, 〈 〉〉 〈〈min ∆, min Γ〉, 〈min γ〉〉
〈C11〉 〈min Γ, min δ〉 = 〈〈C10〉, 〈C1〉〉 = 〈C23〉 〈min ∆, min Γ, min γ, min δ〉 = 〈〈C20〉, 〈C3〉〉

〈〈minΓ〉, 〈min δ〉〉 〈〈min ∆, min Γ〉, 〈min γ, min δ〉〉
〈C12〉 〈min Γ, min γ〉 = 〈〈C10〉, 〈C2〉〉 = 〈C24〉 〈min ∆, min Γ, min δ, min γ〉 = 〈〈C20, 〉, 〈C4〉〉 =

〈〈minΓ〉, 〈min γ〉〉 〈〈min ∆, min Γ〉, 〈min δ, min γ〉〉
TABLE I

25 DIFFERENT CONSTRAINTS FOR THE MINIMUM-COST k-PATH PROBLEM.

cost and capacity ccost and capacity
〈C0〉 [(l(e), k), (×, 0)], [(0, k), (×, 0)]
〈C1〉 [(l(e), kL + 1), (×, 0)], [(0, k), (×, 0)] 〈C13〉 [(l(e), kL + 1), (×, 0)], [(0, 1), (M, kN )]
〈C2〉 [(l(e), k), (×, 0)], [(0, kN + 1), (×, 0)] 〈C14〉 [(l(e), kL + 1), (×, 0)], [(0, 1), (M, kN )]
〈C3〉 [(l(e), kL + 1), (×, 0)], [(0, kN + 1), (×, 0)] 〈C15〉 [(l(e), 1), (M ′ + l(e), k − 1)], [(0, 1), (M, k − 1)]
〈C4〉 [(l(e), kL + 1), (×, 0)], (0, kN + 1), (×, 0)] 〈C16〉 [(l(e), 1), (M ′ + l(e), kL)], [(0, 1), (M, k − 1)]
〈C5〉 [(l(e), 1), (M + l(e), k − 1)], [(0, k), (×, 0)] 〈C17〉 [(l(e), 1), (M ′ + l(e), k − 1)], [(0, 1), (M, kN )]
〈C6〉 [(l(e), 1), (M + l(e), kL)], [(0, k), (×, 0)] 〈C18〉 [(l(e), 1), (M ′ + l(e), kL)], [(0, 1), (M, kN )]
〈C7〉 [(l(e), 1), (M + l(e), k − 1)], [(0, kN + 1), (×, 0)] 〈C19〉 [(l(e), 1), (M ′ + l(e), kL)], [(0, 1), (M, kN )]
〈C8〉 [(l(e), 1), (M + l(e), kL)], [(0, kN + 1), (×, 0)] 〈C20〉 [(l(e), 1), (M + l(e), k − 1)], [(0, 1), (M ′, k − 1)]
〈C9〉 [(l(e), 1), (M + l(e), kL)], [(0, kN + 1), (×, 0)] 〈C21〉 [(l(e), 1), (M + l(e), kL)], [(0, 1), (M ′, k − 1)]
〈C10〉 [(l(e), k), (×, 0)], [(0, 1), (M, k − 1)] 〈C22〉 [(l(e), 1), (M + l(e), k − 1)], [(0, 1), (M ′, kN )]
〈C11〉 [(l(e), kL + 1), (×, 0)], [(0, 1), (M, k − 1)] 〈C23〉 [(l(e), 1), (M + l(e), kL)], [(0, 1), (M ′, kN )]
〈C12〉 [(l(e), k), (×, 0)], [(0, 1), (M, kN )] 〈C24〉 [(l(e), 1), (M + l(e), kL)], [(0, 1), (M ′, kN )]

TABLE II

(cost, capacity) ASSIGNMENTS IN G′′ FOR THE 25 VERSIONS OF THE k-PATH PROBLEM OF TABLE I.

v

v v’

(a) (b)

link (v, v’)

Fig. 1. Node splitting. (a) node v in G. (b) v is replaced by two nodes and
an edge (v, v′).

G′ corresponding to node v in G by (v, v′) and (v, v′), which
are called the primary node-generated v − v link (or simply,
primary v link) and the secondary node-generated v − v link
(or simply, secondary v link), respectively (see Figure 2 and
Figure 3).

v

(a) (b)

v
u’

u’

primary u-v link

(u’,v)

secondary u-v link

(u’,v)

Fig. 2. Link splitting. (a) Original link in G′. (b) Two links obtained for the
link of (a).

TRANSFORM-1 is used to construct G′ from G and com-
pute min-max link sharability kL or/and min-max node shara-
bility kN , which are useful in defining the capacities of links
in G′′. First, let us consider the versions of the minimum-cost
k-path problem corresponding to the constraints in Class 1
(i.e. {〈C1〉, 〈C2〉, 〈C3〉, 〈C4〉}). For these versions, we need to
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s t

u u’

v’v
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Fig. 3. An example. (a) Original graph. (b) Graph G′ constructed from G by
TRANSFORM-1. (c) Graph G′′ constructed from from G′ by TRANSFORM-2.
Capacities for links of (b), and (cost, capacity) pairs of (c) are not shown.

compute min-max link sharability kL or/and min-max node
sharability kN . The following procedure MinMax-Sharability
returns kL and kN with flag set to 0 and 1, respectively.

procedure MinMax-Sharability(G′, f lag, k, k′)
begin

E′
1 := the set of all edges in E′ that are resulted from node splitting

in the construction of G′ by TRANSFORM-1;
E′

2 := E′ − E′
1;

if flag = 0 then E∗ := E′
2 else E∗ := E′

1;
assign capacity k′ to all links in E′ − E∗;
low := 0; high := k; lim := �k/2�;
while low �= high do

for each edge e ∈ E∗ do assign e capacity lim end-for;
find the maximum flow f in G′ from s to t by running a
maximum flow algorithm;
if |f | < k then low := lim and lim := low + �(high − low)/2�;
else high := lim and lim := low + �(high − low)/2�;

end-while
return lim − 1;

end

The min-max sharabilities for the problems of Class 1 are
computed as follows:

〈C1〉: flag := 0; k′ := k;
kL := MinMax-Sharability(G′, f lag, k, k′);

〈C2〉: flag := 1; k′ := k;
kN := MinMax-Sharability(G′, f lag, k, k′);

〈C3〉: flag := 0; k′ := k;
kL := MinMax-Sharability(G′, f lag, k, k′);
flag := 1; k′ := kL;

kN := MinMax-Sharability(G′, f lag, k, k′);
〈C4〉: flag := 1; k′ := k;

kN := MinMax-Sharability(G′, f lag, k, k′);
flag := 0; k′ := kN ;

kL := MinMax-Sharability(G′, f lag, k, k′);

It is important to note that procedure MinMax-Sharability
is invoked twice for 〈C3〉 and 〈C4〉. For 〈C3〉 (resp. 〈C4〉),
kL (resp. kN ) is computed first, and the value of kL (resp.
kN ) affects the value of kN (resp. kL) that is computed by
the second call to MinMax-Sharability. Thus, the kL and kN

values computed for 〈C3〉 and 〈C4〉 for the same network
G may be different. For all constraints of Table I in the
normal form 〈C ′′, C ′〉 with nonempty min-max sharability
component constraint 〈C ′〉, procedure MinMax-Sharability is

used to compute min-max link sharability kL or/and min-max
node sharability kN for 〈C ′〉.

Each link in G′′ is assigned a cost-capacity pair. More
specifically, for each link e = (u, v) in G, its correspond-
ing primary u − v link (u′, v) and secondary u − v link
(u′, v) in G′′ are assigned pair (cost(u′, v), capacity(u′, v))
and (cost(u′, v), capacity(u′, v)), respectively. Similarly, for
each node v in G, its corresponding primary v link (v, v′)
and secondary v link (v, v′) are assigned pair (cost(v, v′),
capacity(v, v′)) and (cost(v, v′), capacity(v, v′)), respec-
tively. We use an ordered pair of cost-capacity pairs

[(cost(u′, v), capacity(u′, v)), (cost(u′, v), capacity(u′, v))],

[(cost(v, v′), capacity(v, v′)), (cost(v, v′), capacity(v, v′))]

to represent the cost and capacity assignment for the links
of G′′. Let lmax = maxe∈E l(e). Without loss of generality,
assume that lmax > 1. If this is not true, we simply choose
a constant c to scale up the cost of each link e from l(e)
to c · l(e) so that lmax > 1. Define M = k · |V | · lmax

and M ′ = M2 = k2 · |V |2 · l2max. Then, all versions of
the minimum-cost k-path problem considered are reduced to
finding minimum-cost flows, and we present algorithms by
only presenting the costs and capacities assigned to the links
in G′′. We list (cost, capacity) assignments for all the 25
constraints of Table I in Table II. We use × to represent a
“don’t care” value.

In Step 2, an MCNF algorithm is applied to the flow network
G′′ constructed in Step 1 to find minimum-cost s-t flow f∗

of flow value k. Intuitively, for a constraint normal form
〈C ′′, C ′〉, the values of kL or/and kN found by MinMax-
Sharability and used in capacity functions guarantee that 〈C ′〉
is satisfied, the values M and M ′ used in cost functions are
used to satisfy 〈C ′′〉 subject to 〈C ′〉.

For Step 3, we introduce the following procedure PATH-
RECOVER.

procedure PATH-RECOVER(G′′ = (V ′′, E′′), s, t, f∗, k)
begin

P ∗ := ∅;
for each e ∈ E′′ do

if f∗(e) ≤ 0 then remove e from G′′;
end-for
for i = 1 to k do

find a shortest path P ′′
i from s to t in G′′;

obtain an s-t path Pi in G from P ′′
i by replacing (v, v′) and

(v, v′) by node v and replacing (u′, v) and (u′, v) by link (u, v);
P ∗ := P ∗ ∪ {Pi}
for each e in G′′ such that e ∈ P ′′

i do
f∗(e) := f∗(e) − 1;
if f∗(e) = 0 then remove e from G′′;

end-for
end-for
return P ∗;

end

Given a flow f∗ in G′′ such that |f∗| = k and f∗(e) is
an integer flow value for edge e in G′′, procedure PATH-
RECOVER constructs a unique set of k s-t paths corresponding
to f∗. Based on flow conservation property, these k paths exist
and can be enumerated iteratively by PATH-RECOVER.
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Theorem 2: For any graph G = (V,E) with non-negative
edge cost, source s and destination t in V , if there exists an
s-t path in G, then for each of the sharability constraints 〈C0〉
to 〈C24〉 our algorithm scheme computes a set of k s-t paths
P ∗ = {P ∗

1 , P ∗
2 , · · · , P ∗

k } such that l(P ∗) is minimum subject
to the sharability constraint.

Proof: See Appendix.

Both G′ and G′′ have O(|V |) nodes and O(|E|) links, where
V and E are the set of nodes and links of G, respectively.
Constructing G′ and G′′ takes O(|V |+ |E|) time. Computing
maximum flow on G′ can be done in O(k ·|E|) time by apply-
ing Breadth First Search on residual graphs. Thus, procedure
MinMax-Sharability for computing kL or/and kN has time
complexity O(k · log k · |E|). Finding a minimum-cost flow on
G′′ takes O(k · (|E|+ |V | log |V |)) time. Thus, the total time
for computing minimum-cost k s-t paths under any of the 25
constraints listed in Table I is O(k · (|E| log k + |V | log |V |)).
Summerizing above discussions, we have the following result.

Theorem 3: Our algorithm scheme takes O(k · (|E| log k +
|V | log |V |)). time for computing minimum-cost k s-t paths
in G subject to any sharability constraint of Table I.

In network applications, k < |V |, and the complexity of our
algorithm scheme is actually O(k|E| log |V |).

IV. GENERALIZATIONS

A. Nonuniform Maximum Allowable Sharability

In the problems we considered so far, we assumed that all
links and nodes (except s and t) have the same maximum
allowable sharability k − 1. For many applications, we may
want to assign different maximum allowable sharabilities to
individual links or/and nodes. For example, if we know that a
link is highly reliable (resp. unreliable), we may want to assign
maximum allowable sharability k − 1 (resp. 0) to the link.
For optical networks, the numbers of available wavelengths
on links may be different, and consequently we may assume
that the maximum allowable sharability of a link to be the
number of its available wavelengths less 1.

We generalize the minimum-cost k s-t path problem with
sharability constraints by adding two more constraints: each
link e (resp. node v �= s, t), is allowed to be shared by at
most s(e) + 1 (resp. s(v) + 1) paths, where s(e) (resp. s(v))
is the maximum allowable link (resp. node) sharability of
e (resp. v). Clearly, the problems (with uniform maximum
allowable sharability constraints) considered in the previous
sections are special cases of the problem (with nonuniform
maximum allowable sharability constraints) we are discussing.
The algorithm scheme for the constraints listed in Table I in
Section III can be easily modified to solve the problem with
extra nonuniform maximum allowable sharability constraints.
For finding the minimum δ (resp. γ), binary search of pro-
cedure MinMax-Sharability can be slightly modified to find
minimum kL (or kN ) such that a flow f of value k exists
without violating the capacity s(e)+1 (resp. s(v)+1) of each
link (resp. node). Then, with respect to Table II, the capacity
of a (cost, capacity) pair for a link in G′′ for finding optimal

t2 t2 t2

t3 t3 t3

t1t1

t2,3

t1

t1,2s s s

t t

(a) (b) (c)

Fig. 4. Transformation used to solve related problems. (a) A given graph
G. (b) Graph G∗ for finding optimal paths from s to destinations in T =
{t1, t2, t3}. (b) Graph G∗ for finding optimal paths from s to destination-
pairs (t1, t2) and (t2, t3).

k paths under a specific composite constraint is modified as
follows: value k is replaced by s(e) + 1 (resp. s(v) + 1),
and value kL (resp. kN ) is replaced by min{s(e), kL} (resp.
min{s(v), kN}). It is easy to see that minimum-cost k s-t
paths that satisfy the given (composite) constraint of Table
I and nonuniform maximum allowable individual link/node
sharabilities can be computed by finding a minimum-cost flow
f∗ of flow value k from s to t in G′′. Hence, all 25 versions
of the problem of finding minimum-cost k s-t paths with
nonuniform maximum allowable sharabilities can be solved
in the same amount of time as their counterparts with uniform
maximum allowable sharabilities. It is possible that a feasible
solution does not exist. But such a situation can be detected
easily.

B. Minimum Cost One-to-Many Paths with Minimum Shara-
bility

Our algorithm scheme can be easily generalized to solve
other problems. We mention two problems.

The first is to find minimum-cost paths P = {P1, P2,
· · · , Pk} from s to a set of destinations T = {t1, · · · , tk}
in a graph G = (V,E) subject to minimum sharability
constraint 〈C〉. Clearly, the paths in P are useful for multicast
communications. Assuming that all nodes of T are reachable
from s, we can reduce this problem to finding k s-t paths
as follows: We construct a graph G∗ = (V ∗, E∗) from G by
introducing a new node t, and introducing a link from each
node ti to the new node t with cost 0 and maximum allowable
link sharability 0 (see Figure 4(b) for an example). Then, we
apply our algorithm scheme to find minimum-cost k s-t paths
from s to t in G∗ satisfying 〈C〉. By reversing the directions of
links in G, this method can also be used to compute minimum-
cost k paths with various sharability constraints for many-to-
one communications.

The second related problem is defined as follows: given a
graph G = (V,E) with |V | = n, |E| = m, a source node s, a
set T of k pairs (ti, tj) with t1, t2 ∈ V −{s}, and sharability
constraint 〈C〉, find two paths from s to every pair (ti, tj) of
nodes in T such that 〈C〉 is satisfied and the total cost of the
paths is minimum. This is the problem of finding minimum-
cost protection of dual homing architecture considered in [15],
[17], [22]. This problem can be reduced to finding k s-t paths
as follows: We construct a graph G∗ = (V ∗, E∗) from G by
introducing a new node ti,j for each pair (ti, tj), two links
from nodes ti and tj to the new node ti,j with cost 0 and
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maximum allowable link sharability 0, a new node t, and a
link from each ti,j to t with cost 0 and maximum allowable
link sharability 2 (see Figure 4(c) for an example). Then, all
we need to do is to find minimum-cost 2k paths from s to
t satisfying 〈C〉 in G∗. Clearly, 25 versions of each of these
two problems can be solved in polynomial time.

V. CONCLUDING REMARKS

In this paper, we characterized the degree of link sharing
and node sharing by the notion of link sharability and node
sharability. We identified 65 different sharability constraints
for the problem of finding minimum-cost k s-t paths in a
directed or undirected graph G, and showed that 25 of them
are not mutually equivalent. We showed that these 25 versions
of the problem finding minimum-cost k paths are polynomial-
time solvable by reducing it to the minimum-cost network
flow problem. We also showed that finding minimum-cost one-
to-many paths subeject to various sharability constraints are
polynomial-time solvable. Our algorithms can be used to find
link-disjoint and node-disjoint paths if they exist by checking
the min-max link sharability and min-max node sharability in
the resulting solution. The algorithms presented in this paper
are very useful for many network applications.

For all 65 versions of the problem of finding minimum-
cost k paths with minimum sharability, we have shown that
they are pair-wise inequivalent and developed a new algorithm
scheme with slightly higher time complexity. We will report
these new results in a subsequent paper.
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APPENDIX

Proof of Theorem 1:

Given graph G, nodes s and t, constant k, and constraints
〈X〉 and 〈Y 〉, let S〈X〉 and S〈Y 〉 denote the feasible solution
space, the set of sets of k s-t paths, for 〈X〉 and 〈Y 〉,
respectively. To show that 〈X〉 and 〈Y 〉 are not equivalent,
i.e. 〈X〉 �≡ 〈Y 〉, we only need to find a graph G and a k value
for which S〈X〉 �= S〈Y 〉. For a given graph G and a given
constraint 〈X〉, we use δ|〈X〉 to denote the δ value of feasible
s-t k-path solutions under 〈X〉. Since there can be multiple
possible δ values for different feasible solutions under 〈X〉,
we use range(δ|〈X〉) = [δ1, δ2] to denote the closed integer
interval of these δ values, where δ1 and δ2 are minimum and
maximum possible value with respect to 〈X〉, respectively.
A closed integer interval of a single value δ is denoted by
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constraint 〈C〉 range(Γ|〈C〉) range(∆|〈C〉)
〈 〉 [k − 1, 6k − 6] [2k − 5, 7k − 7]

〈min ∆〉 [k, k + 1] [2k − 5]
〈min Γ〉 [k − 1] [2k − 4, 2k − 2]

〈min Γ, min ∆〉 [k] [2k − 5]
〈min ∆, min Γ〉 [k − 1] [2k − 4]

TABLE IV

POSSIBLE Γ AND ∆ VALUES FOR FEASIBLE k-PATH SOLUTIONS UNDER

DIFFERENT MIN-SUM CONSTRAINTS FOR NETWORK OF FIGURE 6.

[δ]. With respect to a given constraint 〈X〉, range(∆|〈X〉),
range(γ|〈X〉), and range(Γ|〈X〉) are similarly defined for a
graph G. Then, finding G and k for which S〈X〉 �= S〈Y 〉 is
equivalent to finding G and k for which

range(λ|〈X〉) �= range(λ|〈Y 〉)
or

range(Λ|〈X〉) �= range(Λ|〈Y 〉),
where λ ∈ {δ, γ} and Λ ∈ {∆,Γ}. We assume that all rational
numbers x

y used are integers; i.e. x is a multiple of y for
x
y . We compare two constraints 〈X〉 and 〈Y 〉 in Table I by
comparing their normal froms 〈X〉 = 〈〈X ′′〉, 〈X ′〉〉 and 〈Y 〉 =
〈〈Y ′′〉, 〈Y ′〉〉. For any two distinct constraints 〈X〉 and 〈Y 〉,
we have three cases.
Case (1): 〈X ′′〉 = 〈Y ′′〉 = 〈 〉 and 〈X ′〉 �= 〈Y ′〉. Con-
sider the graphs shown in Figure 5(a) and Figure 5(b). We
list δ|〈C〉 and γ|〈C〉 values of Figure 5(a) in the top part
of Table III. Clearly, for some k either range(δ|〈X ′〉) �=
range(δ|〈Y ′〉) or range(γ|〈X ′〉) �= range(γ|〈Y ′〉) if
{〈X ′〉, 〈Y ′〉} �= {C2, C4} = {〈min γ〉), 〈δ, min γ〉}. For
Figure 5(b), range(〈min γ〉) �= range(〈min δ,min γ〉), as
indicated in the bottom part of Table III.
Case (2): 〈X ′〉 = 〈Y ′〉 = 〈 〉 and 〈X ′′〉 �= 〈Y ′′〉. Consider
the graph shown in Figure 6(a). We list ∆|〈C〉 and Γ|〈C〉
values for this graph in Table IV. For any two distinct
〈X〉 = 〈X ′′〉 and 〈Y 〉 = 〈Y ′′〉 of the five constraints, either
range(∆|〈X ′′〉) �= range(∆|〈Y ′′〉) or range(Γ|〈X ′′〉) �=
range(Γ|〈Y ′′〉) for some k .
Case (3): {〈X ′〉, 〈Y ′〉} �= {〈 〉} and {〈X ′′〉, 〈Y ′′〉} �= {〈 〉}.
If 〈X ′′〉 = 〈Y ′′〉, then by Table III range(∆| 〈X〉) �=
range(∆| 〈Y 〉) or range(Γ|〈X〉) �= range(Γ| 〈Y 〉). If
〈X ′′〉 �= 〈Y ′′〉, then consider the graph shown in Figure 6(b).
For this graph, range(δ| 〈X ′〉) = range(γ| 〈X ′〉) = range(δ|
〈Y ′′〉) = range(γ| 〈Y ′′〉) = k − 1. By Case (2), we know
that either range(∆| 〈X ′′〉) �= range(∆|〈Y ′′〉) or range(Γ|
〈X ′′〉) �= range(Γ|〈Y ′′〉) for some k. Proof is completed.

Proof of Theorem 2:

For constraint C0, the theorem obviously holds. We prove
the theorem by considering four remaining classes. For con-
straints in Class 1, our algorithm first finds min-max link
sharability kL or/and min-max node sharability kN , which
are used to restrict the feasible solution space. The MCNF
algorithm finds an optimal solution within this restricted space.

For Class 2, the solutions have to satisfy min-max con-
straints, which are enforced by kL or/and kN . Suppose for the
sake of contradiction the claim is not true, then there exists a
different set of k paths from s to t, P ′ = {P ′

1, P
′
2, · · · , P ′

k} in
G, such that one of the following conditions holds:

(1) ∆(P ′) < ∆(P ∗);
(2) ∆(P ′) = ∆(P ∗), and l(P ′) < l(P ∗).

We create the unique network flow f ′ in G′′ according to P ′

as follows:
for every e ∈ E′ do f ′(e) := 0 end-for
for i = 1 to k do

for each link (u, v) in P ′
i do

case
:f ′(u′, v) = 0: f ′(u′, v) := 1;
:f ′(u′, v) = 1: f ′(u′, v) := f ′(u′, v) + 1;

end-case
end-for

end-for

Let f∗ denote the flow corresponding to P ∗ in G′′. Note
that δ(e, P ∗)− 1 is exactly the value of f∗ on e = (u, v). Let
c(f∗) denote the cost of flow f∗ in G′′. We have

c(f∗) =
∑

e∈P∗
l(e) +

∑
e∈P∗

(δ(e, P ∗) − 1) · (M + l(e))

=
∑

e∈P∗
δ(e, P ∗)l(e) + M ·

∑
e∈P∗

(δ(e, P ∗) − 1)

=
∑

e∈P∗
δ(e, P ∗)l(e) + M · ∆(P ∗)

Similarly, we have ∆(P ′) =
∑

e∈P ′(δ(e, P ′)−1), and c(f ′) =∑
e∈P ′ δ(e, P ′)l(e) + M · ∆(P ′). Then,

c(f∗) − c(f ′)

= (
∑

e∈P∗
δ(e, P ∗)l(e) −

∑
e∈P ′

δ(e, P ′)l(e))

+M · (∆(P ∗) − ∆(P ′)).

Since 0 ≤ ∑
e∈P∗ δ(e, P ∗)l(e) < M and 0 ≤∑

e∈P ′ δ(e, P ′)l(e) < M ,
∑

e∈P∗ δ(e, P ∗)l(e)−∑
e∈P ′ δ(e, P ′)l(e) > −M . Now we consider the two

possibilities.
Case (1): ∆(P ′) < ∆(P ∗). Then ∆(P ∗)−∆(P ′) ≥ 1. Thus,
c(f∗)−c(f ′) = (

∑
e∈P∗ δ(e, P ∗)l(e)−∑

e∈P ′ δ(e, P ′)l(e))+
M · (∆(P ∗)−∆(P ′)) > 0, which contradicts the assumption
that f∗ is a minimum-cost flow.
Case (2): ∆(P ′) = ∆(P ∗) and l(P ′) < l(P ∗). Then, we have
c(f∗) − c(f ′) = l(P ∗) − l(P ′) > 0, which contradicts the
assumption that f∗ is a minimum-cost flow. This completes
the proof for Class 2.

The proof for Class 3 is about the same as that for Class 2,
except that c(f∗) =

∑
e∈P∗ l(e) +

∑
v∈P∗,v �=s,t(γ(e, P ∗) −

1) =
∑

e∈P∗ l(e) + Γ(P ∗) and c(f ′) =
∑

e∈P∗ l(e) +∑
v∈P ′,v �=s,t(γ(v, P ′) − 1) =

∑
e∈P ′ l(e) + Γ(P ′).

For Class 4, the solutions have to satisfy min-max con-
straints, which are enforced by kL or/and kN . Suppose for the
sake of contradiction the claim is not true, then there exists
a different set of k paths from s to t, P = {P ′

1, P
′
2, · · · , P ′

k}
such that one of the following conditions must hold:
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constraint 〈C〉 range(γ|〈C〉) range(δ|〈C〉) range(Γ|〈C〉) range(∆|〈C〉) graph
〈 〉 [ k

2
− 1, k − 1] [ k

3
− 1, k − 1] [3k − 7, 6k − 6] [4k − 12, 7k − 7] Fig. 5(a)

〈min δ〉 [ 2k
3

− 1, k − 1] [ k
3
− 1] [3k − 7, 4k − 11] [4k − 12, 19k

3
− 19] Fig. 5(a)

〈min γ〉 [ k
2
− 1] [ k

2
− 1] [ 9k

2
− 11] [ 11k

2
− 15] Fig. 5(a)

〈min γ, min δ〉 [ 2k
3

− 1] [ k
3
− 1] [4k − 11] [5k − 15] Fig. 5(a)

〈min δ, min γ [ k
2
− 1] [ k

2
− 1] [ 9k

2
− 11] [ 11k

2
− 15] Fig. 5(a)

〈min γ〉 [ k
2
− 1] [ k

4
− 1, k

2
− 1] [k − 2, 3k − 10] [2k − 8, 4k − 16] Fig. 5(b)

〈min δ, min γ〉 [ k
2
− 1] [ k

4
− 1] [2k − 6] [3k − 12] Fig. 5(b)

TABLE III

POSSIBLE γ AND δ VALUES FOR FEASIBLE k-PATH SOLUTIONS UNDER DIFFERENT MIN-MAX CONSTRAINTS FOR NETWORK OF FIGURE 5.

(1) ∆(P ′) < ∆(P ∗);
(2) ∆(P ′) = ∆(P ∗), and Γ(P ′) < Γ(P ∗);
(3) ∆(P ′) = ∆(P ∗),Γ(P ′) = Γ(P ∗), and l(P ′) <

l(P ∗).
We create a network flow f ′ in G′′ according to P ′ as follows:

for every e ∈ E′′ do f ′(e) := 0 end-for
for i = 1 to k do

for each node v that is either s nor t in P ′
i do

case
:f ′(v, v′) = 0: f ′(v, v′) := 1;
:f ′(v, v′) = 1: f ′(v, v′) := f ′(v, v′) + 1;

end-case
end-for

for each link (u, v) in P ′
i do

case
:f ′(u′, v) = 0: f ′(u′, v) := 1;
:f ′(u′, v) = 1: f ′(u′, v) := f ′(u′, v) + 1;

end-case
end-for

end-for

We have

c(f∗) =
∑

v∈P∗,v �=s,t

(γ(v, P ∗) − 1) · M +
∑

e∈P∗
l(e)

+
∑

e∈P∗
(δ(e, P ∗) − 1) · (M ′ + l(e))

= Γ(P ∗) · M +
∑

e∈P∗
δ(e, P ∗)l(e) +

∑
e∈P∗

(δ(e, P ∗) − 1) · M ′

= M · Γ(P ∗) + M ′ · ∆(P ∗) +
∑

e∈P∗
δ(e, P ∗)l(e).

Similarly, we have

c(f ′) = M · Γ(P ′) + M ′ · ∆(P ′) +
∑
e∈P ′

δ(e, P ′)l(e).

Then,

c(f∗) − c(f ′)
= M · (Γ(P ∗) − Γ(P ′)) + M ′ · (∆(P ∗) − ∆(P ′)) +

(
∑

e∈P∗
δ(e, P ∗)l(e) −

∑
e∈P ′

δ(e, P ′)l(e)).

For any set of k s-t paths with minimum total cost, there
is no loop of positive cost in any path. Then, 0 ≤ Γ(P ∗) ≤

k · (|V | − 2) and 0 ≤ Γ(P ′) ≤ k · (|V | − 2), and Γ(P ∗) −
Γ(P ′) > −k · (|V | − 2) and M · (Γ(P ∗)− Γ(P ′)) > −M ′ +
2kM . Since

∑
e∈P∗ δ(e, P ∗)l(e) ≤ k · (|V | − 1)lmax < M

and
∑

e∈P ′ δ(e, P ′)l(e) ≤ k · (|V | − 1)lmax < M , we have∑
e∈P∗ δ(e, P ∗)l(e) − ∑

e∈P ′ δ(e, P ′)l(e) > −M . Now we
consider the three possibilities.
Case (1): ∆(P ′) < ∆(P ∗). Then ∆(P ∗) − ∆(P ′) ≥ 1, and

c(f∗) − c(f ′)
= M · (Γ(P ∗) − Γ(P ′)) + M ′ · (∆(P ∗) − ∆(P ′)) +

(
∑

e∈P∗
δ(e, P ∗)l(e) −

∑
e∈P ′

δ(e, P ′)l(e))

≥ M · (Γ(P ∗) − Γ(P ′)) + M ′ + (
∑

e∈P∗
δ(e, P ∗)l(e) −

∑
e∈P ′

δ(e, P ′)l(e))

> (−M ′ + 2kM) + M ′ − M

= (2k − 1)M > 0,

which contradicts the assumption that f∗ is a minimum-cost
flow.
Case (2): ∆(P ′) = ∆(P ∗), and Γ(P ′) < Γ(P ∗). Then

c(f∗) − c(f ′)

= M · (Γ(P ∗) − Γ(P ′)) + (
∑

e∈P∗
δ(e, P ∗)l(e) −

∑
e∈P ′

δ(e, P ′)l(e)) > 0,

which contradicts the assumption that f∗ is a minimum-cost
flow.
Case (3): ∆(P ′) = ∆(P ∗),Γ(P ′) = Γ(P ∗), and l(P ′) <
l(P ∗). Then,

c(f∗) − c(f ′) =
∑

e∈P∗
δ(e, P ∗)l(e) −

∑
e∈P ′

δ(e, P ′)l(e) > 0,

which contradicts the assumption that f∗ is a minimum-cost
flow. This completes the proof for Class 4.

The proof for constraints in Class 5 is about the same as that
for Class 4, except that c(f∗) = M ′ · Γ(P ∗) + M · ∆(P ∗) +∑

e∈P∗ δ(e, P ∗)l(e) and c(f ′) = M ′ · Γ(P ′) + M · ∆(P ′) +∑
e∈P ′ δ(e, P ′)l(e) are used. Proof is completed.
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