OPTIMIZED SCHEDULING AND MAPPING OF LOGARITHM AND
ARCTANGENT FUNCTIONS ON TI TMS320C67X PROCESSOR

Mei Yang, Yuke Wang, Jinchu Wang and S.Q. Zheng

Department of Computer Science
Univ. of Texas at Dallas, Richardson, TX 75083
{meiyang, yuke, sizheng}@utdallas.edu

ABSTRACT

DSP processors have gained more importance and popularity in
implementing communication systems. Efficient implementation
of logarithm and arctangent functions on DSP processors is
necessary for applications such as digital receiver used in
modern radar systems and digital communication systems. This
paper presents a general scheduling and mapping optimization
method based on grain packing to implement the two functions
on TI TMS320C67X architecture with multiple parallel function
units, Experimental results of our optimized implementation on
TMS320C67x have achieved up to 79.5% performance
improvement over TI ‘C67x library functions. Our optimization
method and techniques can also be applied to other DSP
processors with parallel execution units.

1. INTRODUCTION

As a critical technology in modern radar systems and software
radio systems, digital receiver uses direct IF-sampling and digital
signal processing approach to obtain In-phase (I)/Quadrant (Q)
signal or Amplitude (A)/Phase (0) [1]. Figure 1 shows the block
diagram of a typical digital receiver. ADC converts the analog IF
signal into digital IF stream. The digital IF stream is fed into the
IF processor where I/Q values are synthesized. After base-band
processing, the A/0 values are obtained.

1

»
L Q.

| DA

IF | IF Base-band : !

ADC —>» b
rocessor Processor i 9
q | - :

Figure 1. Block diagram of a typical digital receiver

The logarithm and arctangent functions play an important
role in the base-band processing to get A/, which are computed
by equation (1) and (2). The base-band processing can be
implemented by a DSP processor.

A=20log,,JT' +Q? =10log,, (1 +Q7))
0 = arctg(%))
0-7803-7402-9/02/$17.00 ©2002 IEEE

III- 3156

With performance of up to 1GFLOPS and a complete set of
development tools, TI TMS320C67x (‘C67x) offers cost-
effective solutions to high-performance floating-point DSP
applications [3]. The high performance levels of the
TMS320C67x DSP chips are made possible by an innovative
architecture, as shown in Figure 2 [3], which is designed to meet
variety applications. The ‘C67x processor consists of three main
parts: CPU (or the core), memory, and peripherals. The CPU has
two data paths (A and B), each data path has four functional
units (L, .S, .M and .D) and a register file with 16 32-bit
registers. A cross data bus is used for exchanging data between
two register files. Each functional unit is controlled by a 32-bit
instruction. Thus, the VLIW structure of "C67x with 256-bit-
width instruction allows execution up to 8 32-bit instructions in
one clock cycle. ‘C67x also provides a large bank of on-chip
memory and has a powerful and diverse set of peripherals.

Program RAM/cache Data RAM
32-bit address 32-bit address JTAG test/
256-bit dats 8-, 18-, 32-blt data emuiation
512K bits RAM $12K bits RAM control
B S 13 L
A
Program/data buses
8
32
E Multichannel
K1 (TA/E1) buftered
‘Céx CPU core DMA seriat port
Frogram fetch Control
Instruction dispatch reglisters @ TIUE':'CHINH"
Instruction decode Control of @ Lo uteged
 Baih Data path logic enz]
SEassie=lic
Emuiation
T e] | | Uond] | KT v]
16 1 o PLL clock
o |
[Powar Mansgament]

Figure 2. TMS8320C67x block diagram

Each "C67x instruction has a functional unit latency of 1
clock cycle followed by variable delay slots, each delay slot
corresponding to 1 clock cycle [3]. If instructions are scheduled
and mapped in parallel properly, "C67x hardware resources and
delay slots can be fully utilized to speed up computations.

The C library of "C67x provides both single-precision and
double-precision floating-point functions of logarithm and
arctangent [4). Our discussion is focused on single-precision
floating-point functions. Table 1 lists the maximum running time
(plus the cost of pre-processing and post-processing) with C
overhead in clock cycles (CLKs) of base /10 logarithm
functions and one/two-argument arctangent functions on Code
Composer Studio 1.2 (CCS1.2). All optimization options are
opened in our testing.

logf(x) log10f(x) atanf{x) atan2f(y,x)
136 CLKs 154 CLKs | 266 CLKs | 424 CLKs
Table 1. The maximum running time of TI "'C67x library
. Sfunctions

The total running time of /og/0f and atan2f is 578 CLKs,
equivalent to 3.46 us when the CPU is working at 167 MHz. This
computation time is not good enough for some high-speed digital
receivers with 1M 1/Q input rate or up.

In this paper, we propose a general scheduling and mapping
optimization method based on grain packing to implement the
two functions on TI TMS320C67x with paraliel execution units.
Optimization techniques of pre-processing are also discussed in
this paper. Experimental results of our optimized implementation
on TMS320C67x have achieved up to 79.5% performance
improvement over TI 'C67x library functions.

The rest of the paper is organized as the following: section 2
gives analysis of the implementation of logarithm and arctangent
functions in TI "C67x library; section 3 presents our optimization
method and techniques; experimental results and comparisons
are discussed in section 4; section 5 concludes the paper.

2. ANALYSIS OF TI 'C67X LIBRARY FUNCTIONS

Generally math functions are implemented by polynomial
approximation. The following MacLaurin Series are used to
compute logarithm and arctangent functions [5].

¥ X xt X
In(l+x)=x-—+ 242X _<xsi
n(1+x)=x PRI x 3)
xJ x.’ x7
atan(x)=x- 3 + 37 +.. |« <1. @

To obtain the desired precision, TI ‘C67x library
approximate these functions by polynomials of certain sufficient
orders [2], {4]. The logarithm function, logf (natural or base e
logarithm) routine uses.)

Q)

In(1+x)= Zn:{a[i]x') +e(x), 0<x<l, lex)<3x107
il

where e(x) or e(x)/In(I+x) is the error function which has been
usually minimized in the min-max (equi-ripple) sense. The error
minimization is done by selecting appropriate coefficicents a[i)
(1<i<8). Values of In(I+x) for I+x outside the convergent range
are found as:

In(1+x)=In(f)*+nin(2), x>1, 1<f=17+,x-<2- (6)

log (x) is obtained by multiplication of In(x) and 1/In(10).

The arctangent function, atanf (arc or inverse tangent) routine
uses the following expansion [2]:
Q)

aIan(x):xi{a[Zi]x"}-!»xe(x), ~1<x<l and |xe(x)<2x107°.
=]

Values of atan(x) for x outside the convergent range are obtained
by noting the following identity:
atan(x)=atan((x-1)/(x +1))+ Pi/4, x> ®

The bilinear conversion y = (x-1)/(x+1) is needed for x>1. The
case for x<-I is handled by using |x| for all calculations before
the final result is adjusted. atan2f(y,x) calls atanf(x) by passing
y/x as the argument.

The implementation of of logf(x) and atanf{x) {4] is based on
expansions (9) and (10) respectively. The computation of both
equations involves iterations of multiplication-accumulation
calculations (MACs) of afi] and x'.

In(1+x)=kx+kx* +kx* +kx' +kx’ +kx* +k,x +kx° ©
=x(k, +x(k, + x(k, + x(k, +x(k; +x(k +x(k, +xk;))))))
atanfc)=x+kx’ +kfxJ +kox +k)’ +Hhx Akx" +kox” +kx (10)
=x(x*(k, +x* (ky +x (k, +x° (k, + 5 (k, +x* (k, + X2 (k, +x°k,),

Taking the example of atanf function, Figure 3 shows the C
code of equation calculation [4]. The main loop is very simple
for C implementation. However, the high -data dependency
between iterations (the (i+1)® iteration result depends on the i
iteration result) and long delay slots of instructions of TI "C67x
[6] make parallel scheduling very difficult. :

float x;
{inti;

float *p=a;

result=(x?)*(*p++);

for (i=8-1; i>0; i--)

result=(x*)*(((result)+(*p++)));

Figure 3. The main loop of atanf function in TI ‘C67x library

Figure 4 shows the compiled assembly code of each iteration
of the C main loop of atanf on Code Composer Studiol.2. The
latency of each iteration is 8 CLKs. The total number of clock
cycles of the equation calculation is 68. The maximum total
running time (plus the cost of pre-processing and post-
processing) with C overhead of atanf function is 266
CLKs. The maximum running time of logf, logl0f, and atan2fis
136, 154, and 424 CLKs respectively. All clock cycle numbers
are reported by CCS1.2.

1. LOW *p_to_coef++, coef_| ;delay 4 slots
2. MPYSP , sum, result ;delay 3 slots
3. NOP3

4. ADDSP result, coef_i, sum ;delay 3 slots
5. NOP 2

Figure 4. The assembly code for each iteration of atanf function
in TI 'C67x library

The efficiency of these functions cannot satisfy the
requirement of some high-speed digital receivers. Unfortunately,
the performance of these functions cannot be improved using all
the optimization options of the parallelizing compiler CCS1.2.
Although the compiler optimization techniques (such as software
pipelining [7], [8], [9]) are suitable for applications with a large
number of independent variables, such as FFT, FIR, IIR, etc.,
they do not work well for applications with dependent variables
such as logf and atanf. In the following, we will introduce our
optimization method and techniques for implementing logarithm
and arctangent functions.

3. OPTIMIZED IMPLEMENTATION OF LOGARITHM
AND ARCTANGENT FUNCTIONS

3.1. Algorithm Optimization

For the same computational problem, different algorithms result
in different data dependency structures. When mapped to a

IIT - 3157

particular architecture, different algorithms may lead to different
performance. Our goal of optimization is to improve the
parallelism of computations by finding an algorithm suitable for
TMS320C67x architecture. To achieve this goal, we need to
reduce data dependency and utilize delay slots of instructions.
Our approach consists of the following steps: (1) Find a
computing process that is equivalent to the polynomial expansion
and with minimum data dependency, (2) Construct fine-grained
program graph, (3) Grain packing to produce coarse-grained
program graph, (4) Scheduling and mapping coarse-grained
nodes to appropriate function units of "C67x so that delay slots
can be fully utilized.

Taking the example of atanf, equation (10) can be derived as
the following equation:
atan(x)=x+kx' +kx' + k" + ko +kx' +kox" +kx” + kyx
=x+x'(k, +k))+ X (k, +Ex)+ x"(ky +kx?)+ x"(k, +kox?).

an

The fine-grain data dependency graph [11] is thus obtained in
Figure 5, which is different from traditional fine-grain program
graph [10]. Here each node denotes an instruction, L, M and +
represents the instruction for load, multiplication and addition
respectively. Inside each node is the destination operand. Each
edge represents the data dependency of next node (edge head) to
previous node (edge tail). The number on each edge gives the
instruction delay slots. There are 31 nodes in this graph.

Figure 5. The fine-grain data dependency graph of equation (11)

Then we use grain packing [10] to optimize parallel
scheduling. Instead of improving performance by reducing inter-
processor communications in [10], grain packing technique is
used here to fully utilize functional units of TI "C67x and delay
slots of its instructions. Figure 6 presents the grain packing graph
which groups 31 small nodes into 16 larger nodes (named as
Aj...Ag, By...B;). We observe that operations of the nodes at the
same level can be executed in parallel; nodes on different levels
should be scheduled according to data dependency; and
computation in each node should be done sequentially and at the
same side of functional units. Computation of x**¥ in node Ag
can be scheduled in the delay slots of other nodes.

TI "C67x has eight functional units operate in parallel, but
each floating-point instruction can only use 2 functional units,
such as LDW (D1 and .D2), MPYSP (M1 and .M2), and
ADDSP (.L1 and .L2). Due to this limitation, the maximum
paralleled operations of loads, multiplications, or additions in
one clock cycle are 2. Therefore we get the optimized parallel
scheduling of atanf in Figure 7. Each column represents the

I - 3158

specified functional unit, each cell shows what computation is
assigned to the functional unit at each clock cycle, the shaded
cells are delay slots of the previous instruction. The total number
of clock cycles of equation calculation is only 29, which reduces
57.4% compared to 68.

Figure 6. The grain-packing graph of equation (11)

01 .D2 M M2 ALt L 81 .52
0 0 [0] 0 0 0 0

L L M

K Ko X!
1 k‘ 1 ||<‘ 1 1 1 1 1 1

3
idle

22—/ 2 2| W 2 2 2 2

K K
3 k' 3 'I(.1 3 3 3 3 3 3
4 4 4 m 4 m 4 4 4 4

*» X idte Idle
5 5 5 M 5 7] 5 5 5 5
prod, prod,
-] 6 8 ™ 6 [6 8 6
prod,
7 7 7
8 8 8
9 [9
10 10 10
1" 1" 11
2 12 12
13 13 13
14 14 14
tdie idle

15 15 15
16 18 18
17 17 17
18 18 18
19 19 19
20 20 2
2 2 21
22 22 2
23 23 23
2% 2 2
25 25 25 25 235
28 26 26 28 %
27 27 27 27 27
28 28 28 28 28
29 29 28 23 28

Figure 7. Parallel scheduling of calculation of equation (11)
Notes: proda;., represents (k;,~+2x2), prodai+1y (2is2) TEpresents
x4'+3(]€2,-+1+k2,+2x2), 0<i<3; SUIM2i+1) (2i+2) represents
(kzivstkais zxz), and so on, 0<i<3.

Similarly, equation (9) can be transformed as equation (12).
The total number of clock cycles of equation calculation of logf
is 25.

In(l+x)=lclx+k2x2 +l¢3x3 +k4x4 +k5x5 +kox +k7x7 +k8):8

= x(ky +kyx) + ' (ky +logx) + " (kg + kgx) + ¥ (ky + kgx) (12)

6

This general optimization method is also applicable to other
polynomial approximation math functions.

3.2 Optimization of Pre-processing

The pre-processing (processing must be done before equation
calculation) is also important for the code efficiency. Our pre-

processing optimization techniques include the implementation '

of division using RCPSP instruction and efficient separation of
the exponent and the mantissa.

Here we will introduce the implementation of division using
RCPSP. Taking the example of atan2f(y,x), it calls atanf{x) by
passing Y as the argument. In atanf(x), if |x] >1, a bilinear

X
conversion must be done as ||x|| -1 [21, [4]. Totally two divisions
xj+1

are involved in the pre-processing of atan2f. In TI 'Cé67x,
division is implemented by multiplying the numerator to the
reciprocal of the denominator [4]. The reciprocal is approximated
by Newton-Raphson algorithm [6]to extend the precision of the
mantissa. Equation (13) gives the principle of Newton-Raphson
algorithm, ¢ is the input variable, an initial estimate x/0] is
needed. After each iteration, the precision is doubled.

x[i+11= x[i)2 - ex{i]) (13)

In our implementation, we first examine |y| and |x|, if [y]| >
|x|, do |y 1~1x| directly. Thus only one division is needed in the

[yi+lx]
pre-processing of atan2f. We use instruction RCPSP [6] to get
the reciprocal with 8-bit precision. A 2-iteration Newton-
Raphson approximations can guarantee 23-bit precision. In this
way the clock cycles needed for pre-processing of atanlf is
reduced from 201 to 38. The pre-processing of atanf (|x|>1) can
also be optimized similarly.

4. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our proposed optimization
method, experiments of logf, loglQf atanf, and atanf are
conducted on TMS320C67x. All assembly programs are written
and debugged on Code Composer Studiol.2. Test programs of
our optimized functions and TI "C67x library functions are
profiled and number of clock cycles for these functions with C
overhead are measured by CCS1.2. The maximum running time
(all pre-processing and post-processing is counted) in CLKs of
our optimized implementation of the four functions vs. TI "C67x
library functions are given in Table 2.

Noticeably, the improvement of the optimized assembly code
is over 67% and up to 79.5%. The total number of clock cycles
for the Jog10f and atan2f now is 134, which is only 0.80 ps when
CPU works at 167 MHz.

Function |Optimized TI "C67x Library |Improvement
Function (CLKs) |function (CLKs) |[Percent

logf 44 136 67.6%

logl0f |47 154 69.5%

atanf |79 266 70.3%

atan2f |87 424 79.5%

Table 2. Comparison of our optimized implementation vs. TI
‘C67x library function in terms of total clock cycles

5. CONCLUSIONS

DSP processors have gained more importance and popularity in
recent years for a wide variety of applications. Real-time
applications such as digital receivers require efficient
implementation of Jogarithm and arctangent functions. This
paper presents a general scheduling and mapping optimization
method based on grain packing to implement the two functions
on TI TMS320C67x architecture with multiple parallel function
units. Optimization techniques of pre-processing are also
discussed in this paper. Experimental results of our optimized
implementation have achieved significant performance
improvement over TI "C67x library functions. Our optimization
method and techniques are applicable to other polynomial
approximation math functions and other DSP processors with
parailel execution units.

REFERENCES

[1] Fakatselis, J., Chester,D.B., “Subsampling digital IF receiver
implementations”, Southcon/96. Conference Record, 1996,
pp. 92-97. .

[2] Texas Instruments, 4 Collection of Functions for the
TMS320C30, 1990.

[3] Texas Instruments, TMS320C62x/C67x Technical Brief,
1998.

[4] Texas Instruments, rts.src, TMS320C62x/C67x library
functions package with Code Composer Studiol.2.

[5] Engineering Fundamentals website,
http://www.efunda.com/math/taylor_series/taylor_series.cfm

[6] Texas Instruments, TMS320C62x/C67x CPU and Instruction
Set Reference Guide, 1998.

[7] Ray Simar Jr., “DSP Architectures, Algorithms, and Code-
generation: Fission or Fussion?”, Proc. IEEE Workshop on
Signal Processing Systems, 1997, pp. 50-59.

[8] Yin-Tsung Hwang, Ying-Chou Chuang, “High Performance
Code Generation For VLIW Digital Signal Processors”,
Signal Processing Systems, 2000. SiPS 2000. 2000 IEEE
Workshop on, 2000, pp. 683 -692

[9] Yin-Tsung Hwang and Jer-sho Hwang, “Simulated Evolution
Based Parallel Code Generation for Programmable DSP
Processors”, Journal of Information Science & Engineering,
vol. 14, No. 1, 1998, pp. 138-165.

[10] Kai Hwang, Advanced Computer Architectures, McGraw-
Hill, 1993.

[11] Texas Instruments, TMS320C62x/C67x Programmer's
Guide, 1998.

I - 3159

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

