
1436 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 5, OCTOBER 2010
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Abstract—In communication networks, multiple disjoint com-
munication paths are desirable for many applications. Such paths,
however, may not exist in a network. In such a situation, paths
with minimum link and/or node sharing may be considered. This
paper addresses the following two related fundamental questions.
First, in case of no solution of disjoint multiple paths for a given
application instance, what are the criteria for finding the best
solution in which paths share nodes and/or links? Second, if we
know the criteria, how do we find the best solution? We propose
a general framework for the answers to these two questions.
This framework can be configured in a way that is suitable for
a given application instance. We introduce the notion of link
shareability and node shareability and consider the problem of
finding minimum-cost multiple paths subject to minimum share-
abilities (MCMPMS problem). We identify 65 different link/node
shareability constraints, each leading to a specific version of the
MCMPMS problem. In a previously published technical report,
we prove that all the 65 versions are mutually inequivalent. In
this paper, we show that all these versions can be solved using
a unified algorithmic approach that consists of two algorithm
schemes, each of which can be used to generate polynomial-time
algorithms for a set of versions of MCMPMS. We also discuss
some extensions where our modeling framework and algorithm
schemes are applicable.

Index Terms—Algorithm, complexity, disjoint paths, graph,
multiple paths, network, network flow, network planning, protec-
tion, protocol, reliability, routing, survivability.

I. INTRODUCTION

I N A COMMUNICATION network, the connection be-
tween a source node and a destination node is a path

between them. Currently, most networks employ protocols
based on shortest-path routing algorithms that determine a
single path with the minimum cost. Finding multiple paths be-
tween a source and a destination has been proposed. Potential
benefits of multiple paths include improved reliability (e.g.,
[8], [13], [17], [18], and [20]–[24]), load balancing (e.g., [7]
and [16]), higher network throughput (e.g., [9] and [16]), and
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alleviation of congestion (e.g., [2] and [8]). It is desirable that
multiple paths are link- and/or node-disjoint.

In the literature, various versions of the problem of finding
optimal disjoint paths between two nodes in a network have
been investigated. Ford and Fulkerson proposed a polynomial-
time algorithm for finding two paths with minimum total cost
(the Min-Sum 2-Path Problem) based on minimum-cost net-
work flow model [5]. Suurballe and Tarjan provided a different
treatment and presented algorithms that are more efficient [14],
[15]. Li et al. proved that the problem of finding two disjoint
paths such that the cost of the longer path is minimized (the
Min-Max 2-Path Problem) is NP-complete [11]. They also con-
sidered a generalized min-sum problem (the G-Min-Sum -Path
Problem), assuming that each link is associated with different
lengths where the th link-cost is associated with the th path.
They showed that the G-Min-Sum -Path Problem is NP-com-
plete for [12]. In [19]–[23], a set of optimal disjoint
two-path problems with different objective functions, including
the Min-Min 2-path problem, the -MIN-SUM 2-path problem,
and the MinSum-MinMin 2-path problem, were considered and
proved to be NP-complete.

Given a pair of nodes, finding , , disjoint paths, though
desirable, may not always be possible in practical network ap-
plications for at least two reasons. First, if the network is too
sparse, such paths may not physically exist. Second, if some
links are overly saturated, additional traffic on these links may
be prohibited so that two disjoint paths without using these links
do not exist. When disjoint paths do not exist, alternatively

paths from the source to the destination subject to minimum
shared links/nodes should be found. In the context of network
reliability, these paths can provide partial protection [24].

In the literature, limited work on multiple paths subject to
minimum number of shared links/nodes has been reported.
In [3], an algorithm based on minimum-cost network flow
(MCNF) was given for finding the -best paths (i.e., paths
with minimum node sharing). However, the algorithm can
only be applied to trellis graphs. In [13], an algorithm was
provided to transform an arbitrary graph to a trellis graph and
then to obtain the -best paths by the algorithm given in [3].
As analyzed in [10], this solution is only a heuristic one, and
the complexity of the transformation is quite high. In [10], a
MCNF-based algorithm was proposed for finding the -best
paths in arbitrary networks. However, only best link-disjoint
paths were considered in [10].

This paper addresses the following two related fundamental
questions. First, in case of no solution of disjoint multiple
paths for a given application instance, what are the criteria for
finding the best solution in which paths share nodes and/or
links? Second, if we know the criteria, how do we find the best
solution? It is clear that the answers to these two questions
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are application-dependent, and they are not unique. Instead of
aiming at finding answers for a particular application, though
the aspect of network reliability and survivability is used as an
application example, we propose a general framework for the
answers to these two questions. This framework can be config-
ured in a way that is suitable for a given specific application
instance.

We first introduce the notion of link shareability and node
shareability, which are variations of the concept of vulnera-
bility defined in [17]. We use this notion to characterize the
degree of link/node sharing among different paths. Larger
link/node shareability implies more link/node sharing among
a set of paths. A set of paths are link-disjoint if the link share-
ability of the paths is 0, and they are node-disjoint if their
node shareability is 0 (in this case, their link shareability is
also 0). We define a collection of minimum-cost multiple paths
problems with prioritized minimization objectives. Shareability
minimization objectives are treated as constraints for finding
minimum-cost paths. We first define five basic shareability
constraints: minsum link shareability constraint, minsum node
shareability constraint, minmax link shareability constraint,
minmax node shareability constraint, and empty constraint
(no restriction on shareabilities). Based on these basic share-
ability constraints, we identify 65 shareability constraints,
which are obtained by selections and permutations of basic
shareability constraints. We investigate the problem of finding
minimum-cost paths subject to these shareability constraints.
For convenience, we use MCMPMS problem to refer to the
problem of finding Minimum Cost Multiple Paths between
a pair of nodes in a network subject to various Minimum
Sharability constraints. Unless otherwise specified, the number
of paths is assumed to be . The MCMPMS problem has
many versions, each corresponding to a particular shareability
constraint where we have proved that the 65 versions are
pair-wisely inequivalent in [25].

The MCMPMS problem is a generalization of the classical
fundamental problem of finding minimum-cost paths from a
source node to a destination node that has received considerable
attention in the context of protecting a network against link/node
failure. This result leads to the following general framework for
a given application instance: Based on application requirement,
select a set of shareability constraints, and then compute optimal
solutions under these constraints. These optimal solutions form
a space of candidate solutions. One can evaluate the candidate
solutions in this space of manageable size by considering trade-
offs among cost, link shareability, and node shareability and se-
lect the best solution. To make this framework complete, we will
show that all the 65 versions of the MCMPMS problem can be
solved in polynomial time using a unified algorithmic approach.

II. PROBLEM DESCRIPTION

We restrict our discussions to directed graphs. All our al-
gorithms and claims are applicable to undirected graphs since
undirected graphs can be converted to directed graphs easily. In
the rest of the paper, the terms graph and network are used in-
terchangeably, as are the terms of edge and link.

Let be a directed graph with node set , link
set , and nonnegative cost associated with each link

. Furthermore, we assume that is simple; i.e., it has no

self-loop or parallel links. Given a source node and a destina-
tion node in , let be a set of paths
( - paths) in graph from to .

For a link , we define

and

Then, represents the number of times appears in .
Without causing too much ambiguity, we may slightly abuse the
notation to refer to the case , though is the
set of paths. We thus define

and

is called the total link shareability of , and is called
the maximum link shareability of . Clearly, if and
only if , and either or indicates
that all paths in are link-disjoint.

Similarly, for a node , we define

and

Then, represents the number of times node appears
in . We again abuse the notation to refer to the case

. We define

and

is called the total node shareability of , and is
called the maximum node shareability of . Clearly,
if and only if , and either or
indicates that all paths in are node-disjoint.

The total cost of paths in is defined as

where .
The MCMPMS problem studied in this paper is to find a set of

paths in with minimum , subject
to various combinations of minimum , minimum ,
minimum , and minimum as constraints.

Let be an ordered list of con-
straints. An optimization problem subject to ordered con-
straint list is to find a solution for an instance of

such that:
(1): satisfies ;
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(2): satisfies subject to condition (1);

satisfies subject to condition ; and
has the optimal solution value among all

solutions that satisfy .
We call an ordered composite constraint, and ’s are

the component constraints of . Constraints are defined re-
cursively. An empty list is an ordered composite constraint; it is
also called empty constraint. A single constraint is an ordered
composite constraint. Then, an ordered composite constraint is
an ordered pair of two ordered composite constraints. Having
defined this recursive structure, we refer to ordered composite
constraints simply as constraints.

Throughout this paper, we use the following notation:

empty constraint, i.e., no constraint on shareability.

minimum constraint, which is also called the
minmax link shareability constraint.

minimum constraint, which is also called the
minmax node shareability constraint.

minimum constraint, which is also called the
minsum link shareability constraint.

minimum constraint, which is also called the
minsum node shareability constraint.

These five constraints are called basic shareability con-
straints. and are called minmax constraints, and
and are called minsum constraints. Let

and

In general, we can have the following set of con-
straints:

. Clearly, ,
, and . Unless is itself

an empty constraint, all component (empty) constraints in
are redundant and can therefore be eliminated. Similarly,

if there is more than one occurrence of the same nonempty
basic constraint in a given constraint , all but the rightmost
are redundant and can therefore be eliminated from .
For example, can be simplified
as . In the rest of this paper, we will not
consider constraints with duplicated component constraints.
For simplicity, we will remove delimiters “ ” and “ ” of the
component constraints whenever possible. For example, for
convenience, we use to denote .

The MCMPMS problem we are considering is a problem with
a prioritized hierarchy of optimization objectives. According to
this feature of hierarchical optimization objective “constraints,”
we use ordered constraints to refer to ordered optimization ob-
jectives only for the sake of easy understanding. Readers should
keep in mind that, strictly speaking, this is not a constrained op-
timization problem in the classical sense.

Given a nonempty constraint
, we say that component constraint succeeds (pre-

cedes) component constraint in if . We

divide into two ordered composite constraints
and , which consist of minsum (component) con-
straints and minmax (component) constraints of , respec-
tively, in the order of their appearances in . In case of no
minsum (resp. minmax) constraint in , (resp.

) is , an empty constraint. Let

We call the reference normal form (RNF)
of . For example, for ,

. The notion of RNF is
useful for simplifying our algorithms and proofs.

Let denote the number of ordered -tuples of distinct
elements from an -element set. Then, we have

different constraints.

III. COMPARISON OF THE DIFFERENT CONSTRAINTS

Given the 65 different versions of the problem, one may
wonder which version to choose for a particular application.
Roughly speaking, people can develop some general guidance
to make the choice. For example, in the context of network
survivability, if the probability of link failure is higher than that
of node failure, either or both and constraints should be
satisfied first followed by either or both and constraints.
Otherwise, either or both and constraints should be
satisfied first. For the order of and , if the probability of
a single link failure is much higher than that of multiple (more
than one) simultaneous link failures, should be satisfied
before since a single link failure may cause the infeasibility
of multiple paths among those paths. Otherwise, should
be satisfied first. Similarly, if the probability of a single node
failure is much higher than that of multiple node failure,
constraint should be satisfied before constraint. Otherwise,

constraint should be satisfied first.
In the context of load balancing among links/nodes, we may

put the and/or constraints in front of the and/or
constraints if we care more about the extreme load of a single
link/node, and put the and/or constraints in front of the

and/or constraints if we care more about the average load
of a single link/node.

In fact, our modeling framework provides an alternative
and more flexible way to choose multiple paths than simply
choosing a single version of the problem for a specific appli-
cation. In a network, if the above general guidance cannot be
applied due to the lack of clear network statistic information or
an application is willing to make a tradeoff among cost, link
shareability, and node shareability, then we can compare and
choose among all possible solutions under the 65 cases. For
such a purpose, we develop a unified algorithmic approach that
can find optimal solutions for all 65 cases in polynomial time.
We believe that this approach will be more appreciated than
designing an algorithm for each individual case.
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Fig. 1. Example 1 with � � �. (a) The network. (b) Optimal solution under
�� �. (c) Optimal solution under �� �. (d) Optimal solution under �� �. (e) Op-
timal solution under �� �.

We now use one example to shed some light on the motiva-
tion of investigating minsum, minmax, and mixed minmax and
minsum constraints.

1) Example 1: Consider the network shown in Fig. 1, in
which the value associated with a link is the length of the link.
We want to find three – paths of minimum total cost (length).

Consider four different constraints and their corresponding
optimal solutions, as shown in Table I.

• Observation 1: The four solutions are different.
• Observation 2: In terms of network reliability, assuming all

links have identical failure probability and all nodes have
identical failure probability:

(2.1): The optimal solution [Fig. 1(c)] obtained under
constraint is better than the optimal solution

[Fig. 1(b)] obtained under constraint, even
though it has a larger cost (21.5 versus 19.5).
(2.2): The optimal solution obtained [Fig. 1(e)] under
minsum node shareability constraint is better than
the optimal solution [Fig. 1(d)] obtained under minmax
node shareability constraint , even though it has a
larger cost (21 versus18).

• Observation 3: For this example, no solution with minmax
node shareability smaller than 2 exists. Thus, in this case,
the optimal solution under constraint is the same as
the optimal solution under the empty constraint . This is
why the solution for has the minimum total cost.

• Observation 4: For this example, the optimal solution under
constraint is the same as the optimal solution under
constraint ; the optimal solution under constraint

is the same as the optimal solution under constraint
; and the optimal solution under constraint is

the same as the optimal solution under constraint .
Observation 2 of Example 1 is somewhat counterintuitive and

shows that, given a problem instance consisting of a network ,
nodes and in , and a value, it is not easy to find a -path
solution that is the best in terms of network reliability and sur-
vivability without comparing the solutions obtained under dif-
ferent shareability constraints. Observations 3 and 4 lead to a

TABLE I
SOLUTION COMPARISON FOR EXAMPLE 1

question: Are the optimal solutions under any two different or-
dered composite shareability constraints formed using five basic
shareability constraints the same for all valid problem instances?

For the MCMPMS problem, we say that two constraints
and are equivalent if and only if any optimal solution ob-
tained under is also an optimal solution obtained under
for any network. In [25], we show that these 65 constraints are
mutually (pair-wisely) inequivalent.

Example 1 and many cases in the inequivalence proof in [25]
illustrate that, for a given MCMPMS problem instance, the solu-
tions obtained under minsum shareability constraints are not al-
ways worse than solutions obtained under minmax shareability
constraints, and vice versa, for a given application. The feasible
solution space for the MCMPMS problem is very large. It is
not easy to find a -path solution that is the best for a partic-
ular application without comparing some alternative solutions.
The size of the space of alternative solutions is also too large.
Our result leads to the following general framework for a given
application instance: Based on application requirement, select a
set of shareability constraints. Compute optimal solutions under
these constraints. These optimal solutions form a space of can-
didate solutions. One can evaluate the candidate solutions in this
space of manageable size by considering tradeoffs among cost,
link shareability, and node shareability and select the best solu-
tion. This framework is consistent with the common approach
of restricting the size of solution space for many complicated
problems in network design, planning, and management.

IV. ALGORITHM SCHEME I

In this section, we focus on 25 constraints listed in Table II,
i.e., the composite constraints with minmax component con-
straints (if any) having priority higher than minsum component
constraints (if any). We present a unified algorithm scheme, Al-
gorithm Scheme I, for the versions of the MCMPMS problem
corresponding to the constraints of Table II.

The version corresponding to constraint can be reduced
to a problem of finding minimum-cost network flow (MCNF) of
flow value , which can be solved by a MCNF algorithm, such
as the successive shortest path algorithm [1], in

time. The minimum-cost flow algorithm also ter-
minates in case that no – path exists in , reporting this fact.
In this and next section, we assume that there is at least one –
path in .

Each constraint in the rest of Table II can be partitioned
into two component constraints and such that
contains minmax constraints and contains minsum con-
straints. Then, can be considered as a constraint
formed by concatenating and . By the definition of
RNF, we have
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TABLE II
25 DIFFERENT CONSTRAINTS FOR THE MINIMUM-COST �-PATH PROBLEM

That is, and are identical. Based on RNFs, we
divide the constraints to in Table II into five classes
as follows.

Class 1: is empty, which contains to .
Class 2: is , which contains to .
Class 3: is , which contains to .
Class 4: is , which contains to

.
Class 5: is , which contains to

.
For example,

, and it is in Class 5.
The version corresponding to constraint is to find a set

of paths from to such that:
(1) has minmax node shareability;
(2) has minsum node shareability subject to condition

(1);
(3) has minsum link shareability subject to condition (2);
(4) is a solution that satisfies (3) .

This classification is useful in the analysis of our algorithm
scheme.

Algorithm Scheme I, which is used to generate different al-
gorithms by reducing the problem of finding a set of min-
imum-cost – paths in to finding a minimum-cost – flow

of value in where the construction of is introduced
shortly. We use to denote the flow value of . An – flow

of value is called a -flow if . Algorithm Scheme I
has three steps.
Step 1: Compute minmax link shareability and/or

minmax node shareability if needed, and
construct flow network from

according to shareability requirement.
Step 2: Find a minimum-cost -flow from to in .
Step 3: Construct a set of – paths in from the flow

in .
For Step 1, two transformations, TRANSFORM-1 and

TRANSFORM-2, are needed.
TRANSFORM-1: Obtain from

by node splitting (or node doubling) as follows: Replace each
node that is neither nor by two nodes and such that
all links ending at in end at in and all links originating
from in originate from , and then add a link (see
Figs. 2 and 4).

TRANSFORM-2: Obtain graph from
by link splitting (or link doubling) as follows: Replace

each link in by two parallel links with the same direction

Fig. 2. Node splitting. (a) Node � in �. (b) � is replaced by two nodes and a
link ��� � �.

Fig. 3. Link splitting. (a) Original link in � . (b) Two links obtained for the
link of (a).

of . We denote the two links generated from a link in
corresponding to link in by and , which
are called the primary link-generated – link (or simply, pri-
mary – link) and the secondary link-generated – link (or
simply, secondary – link), respectively (note: can be source
node ). We denote the two links generated from a link in

corresponding to node in by and , which are
called the primary node-generated – link (or simply, primary

link) and the secondary node-generated – link (or simply,
secondary link), respectively (see Figs. 3 and 4).

The purpose of node splitting is to reduce node sharing to
link sharing, and the purpose of introducing link splitting is to
exclude sharing as much as possible by assigning secondary –
link and link considerable large length.

Minmax link shareability value and minmax node share-
ability value, which are useful in defining the capacities of
links in , are computed by applying the following procedure
MinMax-Search to with set to 0 and 1, respectively.

procedure MinMax-Search
begin

the set of all links in that are resulted from
node splitting in the construction of by
TRANSFORM-1;

;
if then else ;
assign capacity to all links in ;
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Fig. 4. An example. (a) Original graph. (b) Graph � constructed from � by
TRANSFORM-1. (c) Graph � constructed from � by TRANSFORM-2. Ca-
pacities for links of (b) and (cost, capacity) pairs of (c) are not shown.

; ; ;
while do

for each link do assign capacity
end-for;
find the maximum flow in from to ;
if then and

;
else and ;

end-while
return ;

end

For a nonempty , either
or

depending on the number of basic minmax constraints in
. and

are similarly defined.
For all constraints in Table II with

nonempty , the minmax shareability values with
respect to of are computed by the following
procedure MinMax-Compute.

procedure MinMax-Compute
begin

case
:

;
:

;
:

;
;

:
;

;
end-case

end

It is important to note that procedure MinMax-Search is in-
voked twice for and . For (resp. ), (resp.

) is computed first, and the value of (resp. ) affects
the value of (resp. ) that is computed by the second call

to MinMax-Search. Thus, the and values computed for
and for the same network may be different. The

subscript of and is used to signify that the value is
for . Similarly, MinMax-Search is invoked twice for

, , , , , , , and .
In order for Step 2 to compute a minimum-cost -flow

in , each link in is assigned a pair.
More specifically, for each link in , its corre-
sponding primary – link and secondary – link

in are assigned pair
and , respectively. We call the
ordered pair of pairs

the cost-capacity assignment for link shareability.
Similarly, for each node in , its corresponding
primary link and secondary link
are assigned pair and

, respectively. We have the
cost-capacity assignment for node shareability

For each constraint in Table II, we have a pair of cost-capacity
assignments

Since and are link-generated and and
are node-generated, we simply use

to denote this pair of assignments.
Let . Assume that . If this

is not true, we simply choose a constant to scale up the cost
of each link from to so that . Define

and . Then,
all versions of the MCMPMS problem considered are reduced to
finding minimum-cost flows, and we present algorithms by only
presenting the costs and capacities assigned to the links in .
We provide cost-capacity assignments for all the 25 constraints
of Table II in Table III.

The following general rules are used to assign cost and ca-
pacity of each link in . Any primary – link is assigned
cost and capacity 1, and any primary link is assigned
cost 1 and capacity 1. Any secondary – link is assigned cost

and capacity , and any secondary link is assigned
cost 1 and capacity . This cost/capacity assignment is for
the empty constraint. In this case, the cost of a unit flow in the
primary – link (resp. link) and the cost of a unit flow in the
secondary – link (resp. link) in corresponding to link

(resp. ) in are the same. The total capacity of the
primary and secondary – links (resp. links) corresponding
to link (resp. ) in is . For the remaining 24
constraints, we make changes in the cost of secondary – links
(resp. links) to enforce minsum link (resp. node) shareability
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TABLE III
������ �������	� ASSIGNMENTS IN 
 FOR THE 25 VERSIONS OF THE �-PATH PROBLEM OF TABLE II

by introducing additional cost , where or ,
and/or make changes in the capacity of secondary – links
(resp. links) to enforce minmax link (resp. node) shareability
by replacing by (resp. ). Specifically, for a con-
straint :

• if , then any secondary – link is as-
signed cost ;

• if , then any secondary – link is
assigned cost ;

• if , then any secondary link is assigned
cost ;

• if , then any secondary – link
is assigned cost and any secondary link is
assigned cost ;

• if , then any secondary – link
is assigned cost and any secondary link is
assigned cost .

• if , then any secondary – link is as-
signed capacity ;

• if , then any secondary – link is as-
signed capacity ;

• if , then any secondary link is assigned
capacity ;

• if , then any secondary – link is
assigned capacity and any secondary link is assigned
capacity ;

• if , then any secondary – link is
assigned capacity and any secondary link is assigned
capacity .

is selected to be larger than the total cost (length) of any
– (loop-free) paths, and is selected to be larger than

times of . The cost of each secondary link, with
and possibly included, determines the “power” of the link
to “push away” or “attract” flow (paths), and the capacity of the
secondary link restricts the maximum amount (number) of flow
(paths) that can use the link. Smaller and values can
be used. Our selection of and values also takes easy
correctness proof into consideration.

In Step 2, a MCNF algorithm is applied to the flow network
constructed in Step 1 to find minimum-cost – -flow .

In Step 3, the integral flow of value in guaranteed by in-
tegrality of the link capacities is decomposed into – paths,
and this decomposition is a simple procedure that utilizes the
flow conservation property.

Theorem 1: For any graph with nonnegative
link cost, source and destination in , if there exists an –
path in , then for each of the shareability constraints to

in Table II, an algorithm corresponding to the constraint
can be generated from Algorithm Scheme I, and this algorithm
computes a set of – paths such
that is minimum subject to the shareability constraint.

Proof: For constraint , the theorem obviously holds.
We prove the theorem by considering all five classes. For con-
straints in Class 1, our Algorithm Scheme I first finds minmax
link shareability and/or minmax node shareability , which
are used to restrict the feasible solution space. The MCNF algo-
rithm finds an optimal solution within this restricted space, and
the solution found is certainly optimal.

For Class 2, the solutions have to satisfy minmax constraints,
which are enforced by and/or . Suppose for the sake of
contradiction the theorem is not true, then there exists a different
set of paths in , such that one of the
following conditions holds:

(1) ;
(2) , and .

We create the unique network flow in according to as
follows. Initially let for every link in . Then, for
each link , let and

, where is the number of times link is
used in paths of (see Section II for its formal definition).

Let denote the flow corresponding to in . Note that
is exactly the value of on . Let

denote the cost of flow in . We have

Similarly, we have , and
. Then
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Since and
,

. We have two possibilities.
• Case (1): . Then, .

Thus,
, which

contradicts the assumption that is a minimum-cost
flow.

• Case (2): and . Then, we
have , which contradicts
the assumption that is a minimum-cost flow.

This completes the proof for Class 2.
The proof for Class 3 is about the same as that for Class 2,

except that and
.

For Class 4, the solutions have to satisfy minmax constraints,
which are enforced by and/or . Suppose for the sake of
contradiction the theorem is not true, then there exists a different
set of paths from to , such that one
of the following conditions must hold:

(1) ;
(2) , and ;
(3) , and .
We have

We create the unique network flow in according to as
follows. Initially, let for every link in . Then, for
each link , let and

, where is the number of times link is
used in paths of . For each node such that is neither

nor , let and , where
is the number of times node is used in paths of

(see Section II for its formal definition). We have

Then

For any set of – paths with minimum total cost, there
is no loop of positive cost in any path. Then,

and , and
and

. Since
and , we have

. We have
three possibilities.

Case (1): . Then, ,
and

which contradicts the assumption that is a minimum-
cost flow.
Case (2): , and . Then

which contradicts the assumption that is a minimum-
cost flow.
Case (3): , and

. Then

which contradicts the assumption that is a minimum-
cost flow. This completes the proof for Class 4.

The proof for constraints in Class 5 is about the same as
that for Class 4, except that

and
are used. The proof of the theorem

is complete.
Both and have nodes and links, where
and are the set of nodes and links of , respectively.

Constructing and takes time. Computing
maximum flow on can be done in time by ap-
plying Breadth First Search on residual graphs. Thus, procedure
MinMax-Search for computing and/or has time com-
plexity . Finding a minimum-cost flow on
takes time. Therefore, the total time
for computing minimum-cost – paths under any of the 25
constraints listed in Table II is .
Summarizing above discussions, we have the following result.

Theorem 2: Any algorithm generated by Algorithm Scheme I
takes time for computing min-
imum-cost – paths in subject to its corresponding share-
ability constraint of Table II.

In network applications, , and the complexity of our
algorithm scheme is actually .
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V. ALGORITHM SCHEME II

Algorithm Scheme I presented in the previous section solves
the MCMPMS problem with shareability constraints satisfying
a specific hierarchy, i.e., minmax constraints are of higher pri-
ority than minsum constraints. In this section, we provide a gen-
eralized algorithm scheme, Algorithm Scheme II, that can be
used to solve the MCMPMS problem with all 65 possible share-
ability constraints, including the 25 constraints considered in the
previous section.

Given a nonempty constraint
, we obtain constraints for

. For each , we obtain the RNF with respect to
as

Clearly, is one of the constraints in Table II.
For example, consider . We
have , ,

, ,
, ,

,
.

Similar to Algorithm Scheme I, Algorithm Scheme II re-
duces the MCMPMS problem with shareability constraint

to finding a minimum-cost flow
in such that . For links in , the
parameters are assigned according to the assignment for

in Table III. The difference is that the basic compo-
nent constraints in are successively satisfied in multiple
phases using different cost-capacity assignments in such a
way that enforcing the current basic component constraint

does not violate the previously satisfied basic component
constraints.

Same as before, we use , , , and to
denote the shareability values of , a set of – paths in

, with respect to constraint , , , and , re-
spectively. For any problem instance of the MCMPMS with
nonempty constraint ,
let be the minimum shareability value of any solution with
respect to subject to shareability value , where

is the null (i.e., immaterial) shareability value. Let de-
note a minimum-cost -flow whose corresponding paths satisfy
minimum shareability values , and let denote
a -flow satisfying minimum shareability values .
Note that (resp. ) if (resp.

). If the current constraint is a minmax con-
straint (i.e., or ) such that none of its preceding con-
straints (if any) is a minsum constraint, then the minmax con-
straint value ( or ) is computed by binary search on
the maximum flow of . If the current constraint is a
minmax constraint that succeeds any minsum constraint (i.e.,

and/or ), then ( or ) is computed according to
the minimum shareability values computed under
its preceding constraints, including minsum constraint(s), by a
generalized binary search against known minimum shareability
values and/or values. If the current constraint

is a minsum constraint, then the cost-capacity assignment
of is used to compute a minimum-cost -flow in

such that its corresponding satisfies . More
specifically, our Algorithm Scheme II is described as follows.

Algorithm Scheme II

begin
construct as in Algorithm Scheme I;
find the minimum-cost flow in using cost-capacity
assignment for the empty constraint in Table III;
if then compute from , output and
stop;
let have an arbitrary value;
for to do

case
and is in :

find minimum-cost flow in using
cost-capacity assignment of in
Table III with minimum , while maintaining

;
;

and is in :
find minimum-cost flow in using
cost-capacity assignment of in
Table III with minimum , while maintaining

;
;

and is in :
find minimum-cost flow in using
cost-capacity assignment of in
Table III with minimum , while maintaining

;
;

and is in :
find minimum-cost flow in using
cost-capacity assignment of in
Table III with minimum , while maintaining

;
;

is a minsum constraint:
find minimum-cost flow in using
cost-capacity assignment of in
Table III while maintaining ;

;
if is in then
else

end-case
end-for
compute from flow , and output ;

end

We will show how to compute , , , and shortly.
Lemma 1: For any graph with nonnegative link

cost, source , and destination in , if there exists an – path
in , then for each of the 65 shareability constraints

, Algorithm Scheme II computes a set of –
paths such that is minimum
subject to shareability constraint , assuming that and/or

are known.
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TABLE IV
CAPACITY CHANGE FROM CAPACITY ASSIGNMENT FOR �� �

TO CAPACITY ASSIGNMENT FOR �� � WITH RESPECT TO �� �.
NC STANDS FOR “NO CHANGE”. COST ASSIGNMENTS OF �� �
AND �� � ARE THE SAME IF �� � IS A ������ CONSTRAINT

Proof: If , the lemma obviously holds.
Consider . We say that

a -flow in is feasible with respect to if its corre-
sponding set of paths in satisfy . We say that a -flow

in is optimal with respect to if it is feasible with re-
spect to and is minimum. We prove the lemma by
inductively proving the claim that is optimal with respect
to . Obviously, is optimal with respect to

. Suppose the claim is true for , where . We want
to show that the claim is true for the -flow computed in the
th iteration of Algorithm Scheme II with the cost-capacity as-

signment of respecting is optimal with
respect to . We have two cases.

Case 1: is a minmax constraint. For this case,
the differences between the cost-capacity assign-
ments corresponding to and the cost-ca-
pacity assignments corresponding to

in Table III are shown in
Table IV. We have four subcases: and
is , and is ,

and is , and
and is .
For the subcase of and being

, is reduced from to ,
which is the minimum shareability value subjected
to . Hence, the minimum-cost flow com-
puted using the cost-capacity assignment for
respects and, in addition, has , and it
is an optimal flow with respect to . The proofs for
other three subcases are almost the same, except that ,

and are used, respectively.
Case 2: is a minsum constraint. The differences
between the cost-capacity assignments corresponding to

and the cost-capacity
assignments corresponding to are shown in
Table V. We have four subcases.

(i) and is in .
(ii) and is in .

(iii) , is in and
is in for some

.
(iv) , is in and

is in for some
.

TABLE V
COST CHANGE FROM COST ASSIGNMENT FOR �� � TO COST

ASSIGNMENT FOR �� � WITH RESPECT TO �� �. NC STANDS

FOR “NO CHANGE”. CAPACITY ASSIGNMENTS FOR �� �
AND �� � ARE THE SAME IF �� � IS A ������ CONSTRAINT

From the proof of Theorem 1, we know the following.
(a) for (i).
(b) for (ii).
(c) for (iii).
(d) for (iv).

Since
, ,

, and ,
we have the following.

(a ) for (i).

(b ) for (ii).

(c ) and

for (iii).

(d ) and

for (iv).
For (i) and (ii), only minmax shareability constraint(s) can

precede in , and the computation of preserves
and/or . Hence, is optimal with respect to .

For (iii), compare ac-
cording to (a) and
according to (c). Clearly,

, which leads to . By (a ) and
(c ), . Furthermore, is min-
imized while maintaining . Hence, is optimal
with respect to .

Since the induction for (iv) is similar to that of (iii), we omit
it for brevity. This completes the induction and the proof of the
theorem.

In Algorithm Scheme II and Lemma 1, minmax shareability
values and , , are assumed to be known. Now
we show how to compute them. Assume that is a minmax
constraint. If there is no minsum constraint preceding in

, then the procedure MinMax-Search given in the previous
section can be used to find the minimum value. Complica-
tion arises if there exists a minsum constraint that precedes
in . We need to find (resp. ) value if
(resp. ) subject to satisfying . The fol-
lowing two lemmas provide a basis for finding and ,

using a generalized binary search.
Lemma 2: Assume that (resp. )

and (resp. ), , is the only
minsum constraint preceding in , let be the
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shareability values computed for in the first iterations
of Algorithm Scheme II, let be any -flow obtained from

using the cost-capacity assignment for with an
arbitrary nonnegative integer value between 0 and for
(resp. ), and let be the set of paths in that correspond
to . The following statements hold.

(a) (resp. ), where is
the set of paths in corresponding to .

(b) If (resp. ), then the minimum
(resp. ) with respect to is greater than .

(c) If (resp. ), then the minimum
(resp. ) with respect to is smaller than or

equal to .
Proof: (a) directly follows from the proofs of Theorem 1

and Lemma 1. By Algorithm Scheme II, is , which
is the minimum value computed in the th iteration with

(resp. ). Then, for
(resp. ), which implies (b) and (c).

Note that (resp. ) for the minimum
(resp. ).

Lemma 3: Assume that there are two minsum constraints
and preceding in and ,

let be the shareability values computed for in
the first iterations of Algorithm Scheme II, and let be
any -flow obtained from using the cost-capacity assign-
ment for with an arbitrary nonnegative integer value

between 0 and for (resp. ), and let be the
paths in that correspond to . The following statements hold.

(a) If and (resp.
and ), then and

(resp. and

).
(b) If and (resp.

and ), and or
(resp. or ), then the

minimum (resp. ) with respect to is greater
than .

(c) If and (resp.
and ), and

and (resp. and
), then the minimum (resp. )

with respect to is smaller than or equal to .
Proof: (a) is implied by the proofs of Theorem 1 and

Lemma 1. For , is obtained by satisfying
, . Since satisfies ,

and (resp. and );
otherwise we reach a contradiction. This implies (b) and (c).

Remark: Lemmas 2 and 3 imply that if a minmax constraint
succeeds one or two minsum constraints, minimum or
value can always be found while maintaining previously com-
puted cost and shareability values.

We now describe a specific algorithm, which is generated
from Algorithm Scheme II, for finding minimum-cost –
paths with shareability constraint .

• Iteration : Find minimum-cost -flow in
under constraint using cost-capacity assignments

, for
RNF in Table III. Clearly,

.

• Iteration : Compute under constraint using
generalized binary search as follows:

; ; ;
while do

apply MCNF algorithm to find minimum-cost -flow
in using cost-capacity assignments

, for
RNF ;
if
then and
else and

end-while
return as ;

Clearly, and
.

• Iteration : Find minimum-cost -flow in under
constraint using cost-capacity assignments

, for RNF
of Table III. Clearly,

, ,

and
.

• Iteration : Find minimum-cost -flow in
under constraint using cost-capacity as-
signments ,
for RNF and gen-
eralized binary search as follows:

; ; ;
while do

apply MCNF algorithm to find minimum-cost -flow
in using cost-capacity assignments

, for ;
; ;

if or
then and
else and

end-while
return as ;

Clearly, ,

, ,

and
.

• Finally, the set of – paths is computed according to
flow as the final solution of minimum-cost paths satis-
fying .

Theorem 3: For any graph with nonnegative link
cost, source , and destination in , if there exists an – path
in , then for any of the 65 shareability constraints the algo-
rithm generated from Algorithm Scheme II computes a set of

– paths such that is min-
imum subject to the shareability constraint in

time.
Proof: By Lemmas 1 to 3, we conclude such an

algorithm is correct. Constructing and takes
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time. Finding a minimum-cost -flow in
takes time. Generalized binary

search for or , , invokes executions
of the minimum-cost -flow algorithm. Hence, the total time
for any algorithm generated from Algorithm Scheme II is

In network applications, , and the complexity of our
algorithm scheme is actually .

VI. GENERALIZATIONS

Generalizations of the results of the previous sections are pos-
sible. In this section, we discuss two such generalizations.

A. Nonuniform Maximum Allowable Shareabilities

So far, we have assumed that all links and nodes (except
and ) have the same maximum allowable shareability .
For many applications, we may want to assign different max-
imum allowable shareabilities to individual links and/or nodes.
For example, in WDM optical networks, the number of avail-
able wavelengths on links may be different, and consequently
we may assume that the maximum allowable shareability of
a link to be the number of its available wavelengths less 1.
In reliable network communication, if we know a link (resp.
node) has smaller (larger) failure probability, we may assign a
larger (smaller) maximum allowable shareability value to the
link (resp. node), thereby restricting the number of paths that
use the link (resp. node).

We generalize the minimum-cost path problem with share-
ability constraints by adding two more constraints:

and

where and are the link set and node set of a given network
. Each link (resp. node ) is allowed to be

shared by at most (resp. ) paths, where
(resp. ) is the maximum allowable link (resp.

node) shareability of (resp. ). Clearly, the problems (with
uniform maximum allowable shareability constraints) consid-
ered in the previous sections are special cases of the problem
(with nonuniform maximum allowable shareability constraints)
we are discussing.

Our Algorithm Schemes I and II can be easily modified to
solve the problem with extra nonuniform maximum allowable
shareability constraints.

Let us consider Algorithm Scheme I. It is possible that paths
from to in satisfying maximum allowable shareability con-
straints do not exist even is reachable from . Thus, before
trying to find desired paths, it is necessary to check whether
or not there exist – paths in by running a maximum flow
algorithm on with the following capacity assignment: Assign
capacity to link in corresponding to link

in , and assign capacity to link in
corresponding to node in . If a -flow exists in , then

there is a feasible solution. Otherwise, – paths in do not
exist.

For finding the minimum (resp. ), binary search of
procedure MinMax-Search-Modified, a modified version of
MinMax-Search, can be used to find minimum (or )
such that a -flow exists without violating the capacity limit

(resp. ) of secondary (resp. ) link in
. For the aim of simplicity, we only list the modifications

that are needed in MinMax-Search-Modified.
• Before the while loop, MinMax-Search initializes all links

in with capacity . In MinMax-Search-Mod-
ified, such an initialization should be changed to

if , or
if .

• In the while loop, MinMax-Search assigns each link in
the capacity . In MinMax-Search-Modified, the capacity
assignment should be changed to
if , or if .

Then, for the 25 constraints given in Table II, and
are computed using procedure MinMax-Compute by calling
MinMax-Search-Modified instead of MinMax-Search.

With respect to Table III, the of a
pair for a link in for finding optimal paths under a
specific composite constraint is modified as follows: Value

in (resp. ) is replaced by (resp.
), and value (resp. ), , in

(resp. ) is replaced by (resp.
). It is easy to see that minimum-cost –

paths that satisfy any (composite) constraint of Table II and
nonuniform maximum allowable individual link/node share-
abilities can be computed by finding a minimum-cost -flow

in . Hence, using this generalized Algorithm Scheme I,
the corresponding 25 versions of the MCMPMS problem with
nonuniform maximum allowable shareabilities can be solved
in the same amount of time as solving their counterparts with
uniform maximum allowable shareabilities.

Algorithm Scheme II can also be generalized to cope with
nonuniform maximum allowable shareability. The key to this
generalization is to compute a minimum-cost -flow in
with constraint using the above modified cost-capacity
assignment that satisfies . If is a minsum
constraint, this computation is trivial. However, if is a
minmax constraint, a generalized binary search is needed.
Procedure MinMax-Search-Modified provides sufficient details
for deriving a generalized binary search procedure for finding
minimum minmax shareability values; for brevity, we omit fur-
ther discussions. In summary, using this generalized Algorithm
Scheme II, all 65 versions of the MCMPMS problem with
nonuniform maximum allowable shareabilities can be solved
in the same amount of time as solving their counterparts with
uniform maximum allowable shareabilities.

B. Minimum-Cost One-to-Many and Many-to-One Paths
Subject to Minimum Shareability

Consider the following one-to-many communication
problem. Given a weighted directed graph , a node
in , and a subset of . Our objec-
tive is to find minimum-cost paths ,
where is a path from to , subject to minimum shareability
constraint . Finding many-to-one paths can be carried out
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Fig. 5. Multiple paths for multicasting. Multiple paths of (a) have minimum
vulnerability as shown in (a ). Multiple paths of (b), which form a tree, have
larger vulnerability as shown in (b ).

by reversing the directions of all links in , and then finding
paths to nodes in .

This problem has applications in reliable multicasting, with
being the source node and being the set of destination nodes.
Node can multicast information to all nodes in using paths
of without each destination receiving the same information
(such as a packet) twice. With such set of paths, the number
of affected nodes in can be expected minimum when a link/
node fails. Consider the example shown in Fig. 5. It is easy to
see that the structure of Fig. 5(a) and the structure of Fig. 5(b)
have the same minmax link and node shareability values, but
the minsum link and node shareability values of Fig. 5(a) are
smaller than that of Fig. 5(b). In case of the two indicated link
failures, the structure of Fig. 5(a) guarantees that all destinations
to be still connected to the source by reconfiguring intermediate
switches (routers) as shown in Fig. 5(a ), while all destinations
are disconnected from the source in the structure of Fig. 5(b), as
shown in Fig. 5(b ).

This problem also has applications in reliable client–server
communication. The source node can be considered as a server,
and all destinations are clients. In this case, one-to- paths sub-
ject to minimum shareability can be used to ensure the least
number of clients are affected in case of link/node failure or
hotspot congestion. Another possibility is that the source is a
client that wishes to receive reliable service from one of ge-
ographically distributed server nodes that provide the same ser-
vice. When one path is not usable, due to either link/node failure
or hotspot congestion, the client can quickly switch to another
path. If the servers provide different services, such one-to-
paths can be used to maximize the service functionality in case
of link/node failure.

We can reduce this problem of finding one-to- paths
to finding – paths as follows: We construct a graph

from by introducing a new node , and
introducing a link from each node to the new node (see
Fig. 6(b) for an example). We assign cost 0 to the link from to
, and a maximum allowable link shareability 0 to its secondary

Fig. 6. Transformation used to solve related problems. (a) A given graph
�. (b) Graph � for finding optimal paths from � to destinations in
� � �� � � � � �. (c) Graph � for finding optimal paths from � to destina-
tion-pairs �� � � � and �� � � �.

link in . Then, we apply our algorithm schemes to find
minimum-cost – paths from to in satisfying .

Another related problem is finding minimum-cost protection
of dual homing architecture considered in [17], [18], and [24].
Given a weighted graph with , , a
source node , a set of pairs with ,
and shareability constraint , find two paths from to every
pair of nodes in such that is satisfied and the
total cost of the paths is minimum. This problem can be re-
duced to finding – paths as follows: We construct a graph

from by introducing a new node for
each pair , two links from nodes and to the new
node with cost 0 and maximum allowable link shareability
0, a new node , and a link from each to with cost 0 and
maximum allowable link shareability 1 (see Fig. 6(c) for an ex-
ample). Then, all we need to do is to find minimum-cost paths
from to satisfying in . Using the generalized Algo-
rithm Scheme I (resp. Algorithm Scheme II), all 25 versions
(resp. 65) of this problem of finding minimum-cost one-to-
paths with uniform or nonuniform maximum allowable share-
abilities can be solved in the same amount of time as solving
their counterparts of finding – paths.

VII. CONCLUSION

We characterized the degree of link sharing and node sharing
by the notion of link shareability and node shareability. We
defined a collection of minimum-cost multiple paths prob-
lems with prioritized minimization objectives. All shareability
minimization objectives are treated as constraints for finding
minimum-cost paths. We identified 65 mutually inequivalent
shareability constraints based on selections and permutations
of minmax link and node shareabilities and minsum link and
node shareabilities. In addition, we also considered uniform
allowable link and node shareability constraint, and nonuniform
allowable link and node shareability constraints.

We presented two algorithm schemes, Scheme I and
Scheme II, each of which is used to generate a set of efficient
polynomial-time algorithms according to the constraints. These
algorithms can be used to find link-disjoint and node-disjoint
paths if they exist by checking the minmax link shareability and
minmax node shareability in the resulting solution. Our results
constitute a general framework for finding multiple paths with
minimum link and/or node sharing.

An outstanding open problem is to design algorithms for
finding paths between source–destination pairs, one path
per pair, so that the cost of these paths are minimum subject
to shareability constraints. This problem is NP-complete, since
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the known NP-complete 2DP problem [6] can be reduced to this
multiple-source, multiple-destination problem. We refer to [4]
for a latest review on this topic. It is also important to generalize
the MCMPMS modeling framework to such multicommodity
problems.
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