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Abstract—Modern networks-on-chip (NoC) systems are re-
quired to handle complex run-time traffic patterns and un-
precedented applications. Data traffics of these applications are
difficult to be fully comprehended at design-time so as to optimize
the network design. However, it has been discovered that the
majority data flows in a network are dominated by less than
10% of the specific pathways. In this paper, we introduce a
method that is capable of identifying critical pathways in a
network at run-time and, then, can dynamically reconfigure the
network to optimize for the network performance subjected to
the identified dominated flows. An online learning and analysis
scheme is employed to quickly discover the emerged dominated
traffic flows and provides a statistical traffic prediction using
regression analysis. The architecture of a self-tuning network
is also discussed which can be reconfigured by setting up the
identified point-to-point paths for the dominance data flows in
large traffic volumes. The merits of this new approach are
experimentally demonstrated using comprehensive NoC sim-
ulators. Compared to the conventional network architectures
over a range of realistic applications, the proposed self-tuning
network approach can effectively reduce the latency and power
consumption by as much as 25% and 24%, respectively. We also
evaluated the configuration time and additional hardware cost.
This new approach demonstrates the capability of an adaptive
NoC to handle more complex and dynamic applications.

Keywords—networks-on-chips, self-tuning, regression, reconfig-
urable

I. INTRODUCTION

A large number of on-chip many-core systems have been
designed for a wide range of applications, including scientific
computing, the Internet-based services, the newly emerging
applications of recognition, mining, and synthesis (RMS) [1],
among many others [2]. One of the key components of an
on-chip many-core system is its on-chip network (OCN) or
network-on-chip (NoC), which has to provide efficient commu-
nication bandwidths for the processor cores and other resources
with low latency and low power.

Modern architectural optimization techniques applied to
NoCs in many/multi-core systems [3]–[7] assume a general
purpose packet-switching fabric where packets are transmitted
through complex router pipelines in a hop-by-hop manner.
Such scheme, however, incurs high communication latency
and power consumption due to the contention for the shared

channels, buffering, and long pipeline stages [8] [9]. Some of
the existing approaches like the express virtual channel (EVC)
[8] and the duo [10] try to bypass part of or full router pipeline
stages so as to optimize data transmission.

Another big problem of most of the NoC architectural
designs is that they fail to exploit the applications’ traffic
behavior, although applications running in these systems ex-
hibit stable and predictable traffic behaviors [10]. A couple of
noticeable exceptions to this kind of NoC architectural designs
is the work in [11], which investigates the self-similarity of
traffic and the duo approach in [10], which analyzes the
spatiotemporal distribution of traffic flows.

A more subtle alternative to the conventional general
purpose packet-switching fabric rests on the on-line learning
of the applications’ traffic behavior and dynamically change
the network configuration. Thus, channel contention, excessive
buffering, and complex pipeline stages could be avoided. The
potential benefit of having such a self-tuning NoC is attributed
to the fact that a small percentage of the flows account for a
disproportionally large number of the packets transmitted; this
phenomenon is therein referred as flow dominance [10].

As an example, let us consider a 64-core system running
benchmarks through its NoC with 64 threads1. Here a flow is
defined as the data traffic flowing between a source-destination
pair. With the distribution function of the packets sent by the
flows, Fig. 1 shows the flow dominance observed in different
benchmarks. The Y-axis in Fig. 1 indicates the percentage of
the packets injected by the corresponding flow divided by the
sum of the total packets. We can see that flow dominance in
some applications is more apparent than that in the others. For
example, for barnes, the top 20 flows (only 7% of the total
flows) inject about half of the total packets. Here we define
the dominant flows as the ones with the highest data volume.
Optimizing the network for the dominant flows will obviously
bring in the biggest performance improvement.

The above mentioned flow dominance feature shall be
explored to help build intelligent self-tuning NoC to optimize
both latency and power. In this paper, we propose a design
method to help building such application-aware intelligent

1The readers can refer to Section III.A for detailed configuration of the
experiments.
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Fig. 1. Dominant flow analysis. Flows are sorted according to their traffic
volume in the descending order. The X-axis represents the flow IDs (each flow
is associated with a source-destination pair), while the Y-axis represents the
ratio of the packet number injected by the corresponding flow over the total
number of the packets in the network. This figure is the distribution function
of the packets sent by the flows.

NoC (AIN) with online learning capability. AIN works in two
phases.

1) The dominant flow identification phase, in which identifies
the behavior of the flow traffic and exploit the flow dom-
inance with predictable patterns. Data regression models
will be used to predict the flows’ traffic and dominant flows
are also identified in this phase.

2) The reconfiguration phase, in which a reconfigurable NoC
structure is employed to customize point-to-point paths for
the identified dominant flows.

To the best of our knowledge, this work is the first to
introduce a framework in building intelligent self-tuning NoC
architectures. The rest of the paper is organized as follows.
Section II presents overall framework, including the dominant
flow identification and the description of the reconfigurable
NoC structure. Section III discusses the experimental results.
Section IV reviews related work. Section V concludes the
paper.

II. SELF-TUNING NOC FRAMEWORK

A. Overview of the self-tuning NoC framework

The framework of the self-tuning NoCs operates in two
phases. There is a master core performing the path setup.
During the dominant flow identification phase, data regression
models with their parameters are identified for prediction
purpose at each node. In the reconfiguration phase, the flows’
traffic can be predicted according to the regression models,
after which the dominant flows can be sorted out. Corre-
spondingly, the network can be reconfigured to optimize the
dominant flows.

The basic steps performed in each phase include:

• Phase I: dominant flow identification
1) Each source node records the flow’s traffic volume

at each time interval. At the end of this phase, the
regression model for each flow’s traffic volume is
built. The parameters of the models of each flow are
sent to the master core.

2) At the master core, the regression models of the flows
are collected.

• Phase II: reconfiguration
1) The master core2 predicts the flows’ traffic volume

based on the parameters of the regression models.
After sorting, the dominant flows are found.

2) Point-to-point connections are set up by reconfiguring
the network to optimize the dominant flows. In this
phase, only the master core is involved.

Algorithm 1 shows the overall flow of framework in an
algorithmic manner. The input is the flow traffic of the NoC
running applications, and the output is the point-to-point paths
set up for the identified dominant flows.

Algorithm 1: Self-tuning NoC
Input: F: NoC flow traffic of each node (Table I)
Output: Point-to-point paths for the predicted dominant

flows.
Function: Identify dominant flows & find point-to-point
paths for them.
begin

/* Phase I: dominant flow
identification (Section II.C) */

for each node i do
for each destination j do /* flow f<i,j> */

1) get the parameters of ARMA and
polynomial models;

2) select the model with min error (the
best model);

3) send the parameters of the best model to
the master core;

end
end
/* Phase II: reconfiguration

(Section II.D) */
sort and find the predict dominant flows DF in the
next time interval;
HeuristicBasedPathSetup (DF ) ;
/* point-to-point path setup
(Algorithm 2). */

end

B. System architecture and definitions

The reconfigurable NoC structure is composed of two parts,
(i). the basic NoC layer based on an existing (packet-switching)
NoC system, e.g., 2D mesh, 2D concentrated mesh, or even
3D NoC topologies, etc., and (ii). the reconfigurable layer
(Fig. 2 (a)) which offers low latency and low complexity.
The reconfigurable layer can be realized with the lightweight
configurable switches (CS). Each router in the packet switching
NoC has one additional port connecting to the corresponding
CS by the through-silicon vias (TSVs). This port only requires
data buffers, and no crossbar switching or arbitration logic
is needed. The switches in the reconfigurable layer can be
configured to provide point-to-point connections/paths for the
dominant flows. In a simple word, the dominant flows can

2Without losing generality, the master core is assumed to be the top-left
core in the mesh like topologies.



TABLE I. NOTATIONS USED IN THE PAPER

F = {Ft},where
Ft = {f<1,1>,t,
...,f<K,K>,t}

f<s,d>,t represents the traffic volume of the flow from
source node s to destination node d at interval t. K is the
network size after concentration. Ft is the set of the flows’
traffic volume at interval t. F is the set of the flows’ traffic
volume over the whole execution time.

DF={dfi} =
{(s, d) }, 0<i<S

The top S flows after ranking (dominant flows). dfi corre-
sponds to the i-th dominant flow.

MPi All of flow dfi’s minimal paths.
mpi,k ∈ MPi The k-th minimal path of flow dfi.
dfi,k A binary variable indicating if the k-th minimal path of flow

dfi is set up or not.
PATHi,j The set of reconfigurable layer links in the j-th minimal

path taken by flow dfi.
K The network size after concentration.

traverse in the reconfigurable layer as if it provides these
flows with dedicated wires. As a result, the router pipelines,
excessive buffering, and channel contention, are all avoided
for these dominant flows.

As shown in Fig. 2(b), each CS consists of 5 4-to-1
multiplexers (MUXs) for bidirectional transmission. A global
line connecting the master core and the CSs controls the
configuration of each CS. The master core sends the control
signals to the configurable switches via the global control line
after performing the path setup algorithm in Phase II. Each
control signal has the format of <CS ID, MUX ID, MUX
select>. For the concentrated mesh (CMesh) network where
a total of 16 configurable switches is used, the global control
line thus has a width of log216+log25+2 = 8 bits. The power
and area can be estimated based on this circuit. The latency
of the reconfigurable layer is assumed to be 1 cycle/hop.

Table I lists the notations used in this section. At each
source node, the traffic volume of the flows is recorded.
Assume the network size is K after concentration. At node
i, f<i,j>,t represents the traffic volume of flow from node i
to node j at time instance t, where 0 ≤ j < K. The set
of the flows’ traffic volume at interval t is represented as
Ft = {f<1,1>,t, ..., f<K,K>,t}.

C. Phase I: Dominant flow identification

In this phase, two data regression models, the autoregres-
sive moving averaging (ARMA) model [12] and the poly-
nomial model [13], are considered in predicting the flows’
traffic. These two models are popular for their simple structures
and high precision in prediction. Algorithm 1 summarizes the
major tasks performed by each node and the master core during
the two phases as described in the previous section.

1. The autoregressive moving averaging (ARMA) model

Variable f<s,d>,t is used to denote the traffic volume from
node s to d at time instance t. In the ARMA model, the
objective is to predict f<s,d>,t from a linear combination of
its past values (e.g., f<s,d>,t−1, f<s,d>,t−2, ...).

An ARMA(p, q) model can be written as

f̂<s,d>,t = φ1f<s,d>,t−1 + ...+ φpf<s,d>,t−p

+ωt + θ1ωt−1 + ...+ θqωt−q

(1)

where {φ1, ..., φp } and { θ1, ..., θq} are regression pa-
rameters and { ωt, ..., ωt−q } is a Gaussian white noise. The

predicted value of f<s,d>,t is denoted as f̂<s,d>,t. To estimate
the parameters {φn, θm|n = 1, ..., p,m = 1, ..., q} with a
given (p, q) pair, methods like the Yule-Walker estimator or
maximum likelihood estimator can be used, which are detailed
in [12].

2. The polynomial regression model

In the polynomial regression, the traffic volume of a flow
f<s,d>,t should be modeled by a polynomial function of time
t given below [13]

f̂<s,d>,t(w) = ω0+ω1t+ω2t
2+ ...+ωM tM =

M∑
j=1

ωjt
j (2)

where M is the order of the polynomial and the coefficients
ω0, ..., ωM are collectively denoted as a vector w. The value
of the coefficients can be determined by fitting the polynomial
to the training data. This can be done by minimizing an
error function that measures the misfit between f̂<s,d>,t(w)
and the training set data points. Methods like maximum
likelihood could be used to estimate the coefficient vector
w for a given order of M [13]. The regression coefficients
(e.g., {φn, θm|n = 1, ..., p,m = 1, ..., q} or {ω0, ..., ωM}) are
obtained such that they could be used to predict the flows’
traffic volume.

D. Phase II: Reconfiguration

After discovering the dominant flows in Phase I, point-
to-point paths could be created in the reconfigurable layer to
expedite the dominant flows. As this layer is made of simple
switches only, they don’t have any flow control and routing
computation capabilities. Thus, the key issue in path setup in
this layer is to avoid path overlap. To facilitate this request,
the reconfigurable layer itself could be expanded to increase
the path diversity (i.e., to increase the number of minimal
paths from the same source to the same destination) with
additionally added switches. Expansion of the reconfigurable
layer is regulated by a parameter, E. For example, if initially
the reconfigurable layer has a size of N×N , then the expanded
layer can eventually be as large as (2N − 1)× (2N − 1) with
E = 2.

The path setup problem could be described as follows:

Set up the paths for the dominant flows such that, the paths
have the minimum overlap and the total distance of all the
involved paths is minimized.

This problem can be formally formulated as follows.
Suppose the dominant flows are sorted in DF (see Table I).
For a given dominant flow dfi, all of its minimal paths are
enclosed in set MPi with |MPi| representing the total number
of minimal paths of flow dfi. mpi,k ∈ MPi represents the k-th
minimal path of flow dfi. A binary variable dfi,k is used to
indicate if the k-th minimal path of flow dfi is set up or not. Let
PATHi,j be the set of links on the j-th minimal path taken by
flow dfi in the reconfigurable layer. Let V be the maximum
number of flows sharing one link. Each configurable switch
p has a set of binary variables, {Cp

XY }. Cp
XY represents the

connection from the input port X to the output port Y , where
X and Y correspond to elements in E,W,S,N, and L. In each
configurable switch, one port can only be connected to one of
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the other ports. These two connected ports are called a pair of
ports. Let Q be the number of pairs of ports that are connected
within one configurable switch. Fig. 3 shows examples of
connected pairs of input/output ports with different values of
Q. The maximum value of Q is 5 as in this figure.

The problem could be formulated as follows.

Min(V +Q), Subject to:∑
k∈|MPi|

dfi,k = 1 (3)

∑
i

∑
l∈PATHi,j ,k∈|MPi|

dfi,k ≤ V, ∀ link l (4)

∑
Y ̸=X

Cp
XY ≤ Q, ∀p,∀ X,Y ∈ {E,W,S,N, and L} (5)

Cp
XY ≥ dfi,j , ∀p, if mpi,j makes an X to Y turn in p (6)

Eqn. (3) ensures exactly one path is established for each
dominant flow. Eqn. (4) tries to minimize the overlap among
the links in the reconfigurable layer. Eqn. (5) tries to minimize
the overlap inside each configurable switch, e.g., an input
should not be connected to more than one output. Eqn. (6)
ensures that if a flow’s path makes a turn from direction X to
Y inside a configurable switch p, Cp

XY will be set.

Different from the work in [14] which only sets the
constraint of the link bandwidth capacity, the key idea of
phase II is to minimize both V and Q, corresponding to the

overlap of links and switches. When solving the problem, V is
typically larger than 1, i.e., more than one flows share a single
link. This will cause the paths in the reconfigurable layer to
overlap, which should be avoided as only simple point-to-point
connections are allowed in this layer.

To deal with the overlapping problem, a simple solution
is to increase the number of channels/links between two
configurable switches; that is, if a link is shared by V flows,
it is extended to include V links between the two configurable
switches. However, this approach demands a lot hardware
resource which varies from application to application.

As an alternative, if we reformulate the problem by setting
V less than 2, we shall be completely free from the overlapping
concerns. Under this condition, the problem objective becomes

Min(Q),

The following two additional constraints are included be-
sides the ones given in Eqn. (3)∼(6).

V < 2 (7)

Q < 6 (8)

Eqn. (7) ensures non-overlapping paths among the flows.
Eqn. (8) set limit on the maximum value of Q as in Fig. 3. This
new problem formulation implies lower hardware resource
required. However, in most cases, we fail to find such solutions.
The reason is that, due to minimal route overlapping, some
flows may end up using the same links/configuration switches
no matter which minimal paths are actually selected. For
example, consider two flows f<0,1> and f<0,2> in a 4 × 4
reconfigurable layer, i.e. flows from node 0 to 1 and from 0
to 2 (Fig. 4). The paths of the two flows will always overlap
if minimal routing is assumed. To overcome this problem, a
heuristic search algorithm is used to find out the solutions with
relaxed constraints. In the example, only one path actually will
be selected for one flow (e.g., f<0,1>) in the reconfigurable
layer, leaving the other flow (e.g., f<0,2>) to be routed in the
packet-switching NoC.

Heuristic search based path setup (Algorithm 2)
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Fig. 4. The search tree example in the heuristic based path setup optimization.

In this algorithm, a search tree is built where each tree
node keeps a record of some of the flows passing through
it. Each flow record has two fields: <flow ID, the minimal
path taken by the flow>, as shown in Fig. 4. Each flow in
the sorted dominant flow list DF is scanned and checked to
find all its minimal paths. A new node is inserted if one of
the minimal paths does not overlap any of the flows recorded
in the parent node. Note that, if all of the minimal paths of a
new flow are found to conflict with at least one of the flows
in the parent node, the new flow is skipped and the next flow
will be checked. This process continues until all of the flows
in DF are checked. For example, in Fig. 4, only two dominant
flows are considered, f<0,5> and f<0,6>. Two tree nodes A
and B are created with two minimal paths (i.e. paths (0, 1,
5) and (0, 4, 5)) for the first flow f<0,5>. These two tree
nodes are attached to the root. For the second flow f<0,6>,
the first tree node C in the last level with the path (0, 4, 5, 6)
does not conflict with the path of f<0,5> in node A. However,
the second tree node D contains the path (0, 1, 5, 6) which
conflicts with f<0,5>’s path (0, 1, 5) in node A, in that they
both use the links (0, 1) and (1, 5). Thus, the second tree node
D of f<0,6> will not be attached to node A.

Algorithm 2: HeuristicBasedPathSetup
Input: Dominant flow list DF = {df1, ..., dfS}, where

S is the number of dominant flows (Table I)
Output: Non-overlapping point-to-point paths for the

dominant flows.
Function: Find point-to-point paths for dominant flows
begin

1) sort the dominant flows in descending order
according to their traffic volumes;

2) set the root of tree as empty set;
for each flow dfi in the sorted list do

find all the minimal paths MPi between the
source and destination;
for each minimal path mpi,k of this flow do

if no conflict with parent tree nodes then
add the < dfi,mpi,k > as a new node to
the tree;

end
end

end

TABLE II. PARAMETERS USED IN THE SIMULATION

Number of processors 64 (MIPS ISA 32 compatible)
Fetch/Decode/Commit
size

4 / 4 / 4

ROB size 64
L1 D cache (private) 16KB, 2-way, 32B line, 2 cycles, 2 ports, dual

tags
L1 I cache (private) 32KB, 2-way, 64B line, 2 cycle
L2 cache (shared)
MESI protocol

64KB slice/node, 64B line, 15 cycles, 2 ports

Main memory size 2GB
On-chip network parameters

NoC flit size 72 bits
Data packet size 5 flits
Meta packet size 1 flit
NoC latency latency: router 2 cycles, link 1 cycle
NoC VC number 4
NoC buffer 5 × 12 flits

Benchmarks
PARSEC streamcluster, swaptions, ferret, fluidanimate,

blackscholes, freqmine, dedup, canneal
SPLASH-2 barnes, raytrace

III. EXPERIMENTAL EVALUATIONS

A. Experimental setup

We use an event-driven many-core simulator to model
the NoC architecture that is designed following the self-
tuning framework described in previous section. Table II lists
the NoC parameters that were plugged into the many-core
simulator. The ORION 2.0 power library [15] is integrated
with our simulator. Evaluation is performed over a suite of
benchmarks adopted from SPLASH-2 [16] and PARSEC [17].
The benchmarks are cross-compiled into MIPS-compatible
binaries. In our experiment, 8 benchmarks in PARSEC were
cross-complied. All the benchmarks in SPLASH-2 could be
compiled, and all of them were included into our experiments.
Of these compiled benchmarks, we deliberately picked two
benchmarks from SPLASH-2, (i) barnes, whose data traffic
shows a clear flow dominance feature, and (ii) raytrace with
less flow dominance, for reporting and analysis.

In the experiments, we select the 2D concentrated mesh
(denoted as CMesh) as the basic topology which can be aug-
mented following the proposed AIN. In this paper, we assume
that each node or tile has a processor, an L1 cache, an L2 bank
with directory (or just a memory controller), and an NI/router.
In the concentrated mesh, four such nodes are considered to
be a “meta-node”. In the experiments, the sampling interval is
set to be 5M cycles, which balance between the computation
time and precision of the regression models.

We compare the performance improvement of architectures
augmented with AIN, EVC and duo [10]. The baseline router
is assumed to have two pipeline stages. We also compare the
result with that obtained from an ideal router with only one
pipeline stage.

B. Expansion factor of the reconfigurable layer

In Section II, we see that the reconfigurable layer can be
expanded by inserting more switches to help increase path
diversity that is needed for accommodating more flows in the
reconfigurable layer. It is interesting to see how the size of
the reconfigurable layer affects the number of non-overlapping
paths built by Algorithm 2. Fig. 5 shows the sensitivity of the



Fig. 5. The packet coverage with different expansion factors. E is the
expansion factor (Section II.D). The packet coverage is defined as the packet
number of the flows whose paths could be setup by Algorithm 2 over the total
packet number.

expansion factor with respect to the size of the reconfigurable
layer for benchmarks. The flow packet coverage is defined as
the packet number of the flows whose paths could be setup by
Algorithm 2 over the total packet number.

For streamcluster, we can setup non-overlapping point-
to-point paths for 16 flows (accounting for 18% of total
packets) without exercising network expansion (i.e., expansion
rate = 1). The path setup algorithm runs very fast without
expansion, with cycles much less than 105 cycles. Consider the
sampling interval of 5M cycles, the run time without expansion
is negligible. Together 22 flows can find their point-to-point
paths (accounting for 23% of total packets) with an expansion
rate of 2 within one sampling interval. We can setup 24 flows
(accounting for 24% of total packets) with expansion = 3, but
this comes with longer run time. We can see that, expansion
rate of 1 is sufficient for most of the applications with run time
neglectably smaller than the sampling interval.

C. Performance comparison of AIN against the original NoC,
EVC and duo

1. Comparison of AIN against the original CMesh

Fig. 6 shows the reductions of latency and network power
with (1) AIN proposed in this paper, (2) EVC and (3) duo
over the original CMesh. If CMesh is augmented with AIN,
on average, the reductions in latency and network power are
14% and 13 %, respectively. For benchmarks like barnes, the
reductions could be as much as 25% and 24%.

Among the benchmarks, barnes, swaptions, freqmine, and
blackscholes, latency/network power are reduced by more than
10% with AIN, e.g., the latency of barnes is reduced by
25% compared against the original CMesh. To investigate the
difference in the latency/network power reduction among the
benchmarks, a recall to Fig. 1 is necessary. From Fig. 1,
we can find that the above applications have “narrow” peaks,
which means the flow dominance is more obvious, i.e., a small
percentage of the flows account for a very large number of the
packets. For the remaining applications, their curves in Fig.
1 are more “flat”, indicating that flow dominance is not so
obvious, i.e., the traffic is more evenly distributed, instead of
centered on a few flows.

Thus, we define the kurtosis of the flow distribution curve
(see Fig. 1) as a metric of the flow dominance, which is
the fourth moment about the mean divided by the standard
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Fig. 6. The (a) latency improvement and (b) network power saving of
CMesh+AIN, CMesh+EVC, and CMesh+duo against the original CMesh with
2-stage pipeline routers.

Fig. 7. The kurtosis of the flow distribution of the benchmarks as the metric
of flow dominance.

deviation. Fig. 7 plots the kurtosis of the benchmarks in
the descending order. As we can see that, the kurtosis of
swaptions, blackscholes, freqmine, and barnes are larger than
those of the remaining ones. Correspondingly, the reductions
in terms of the latency/network power are more obvious for
these applications.

Fig. 8 further compares the reductions in terms of latency
and network power of AIN against the CMesh assuming the
routers have only one pipeline stage, i.e., the ideal routers.
We can see from Fig. 8 that, the average reductions in terms
of latency and power of AIN over the ideal CMesh are 8%
and 7%, respectively. For the benchmarks with larger kurtosis
values, the reduction in each metric is greater, e.g., for barnes,
swaptions, and freqmine, the reductions in term of latency and
network power of AIN against the ideal CMesh are over 10%,
respectively.

2. Comparison of AIN against EVC

Fig. 6 also shows the performance of EVC in terms of
latency and network power. In all the cases, AIN achieves
lower latency/network power than the EVC schemes. The
performance difference between AIN and EVC is also obvious
in the benchmarks with larger kurtosis values, i.e. whose flow
dominance is more obvious. We can see that AIN reduces more
than 10% latency/network power against EVC in the cases of
barnes, swaptions, and freqmine, which have large kurtosis
values. On average, AIN reduces 8% latency and 7% network
power against EVC. As EVC uses a heuristic way to setup
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Fig. 8. The latency improvement and network power saving of AIN against
the ideal CMesh with only one pipeline stage.
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Fig. 9. Packet coverage of AIN and duo.

non-overlapping point-to-point paths for the flits, AIN learns
from the global information before setting up point-to-point
paths. Thus, the more flow dominance, the better AIN can
optimize the flows.

3. Comparison of AIN against duo

Finally, the performance of AIN and duo is compared,
which in also shown in Fig. 6. On average, AIN reduces 7%
latency and 7% network power against duo. For benchmarks
with larger kurtosis values, e.g., barnes, swaptions, freqmine,
AIN reduces more than 10% latency, network power against
duo. Fig. 9 plots the packet coverage of AIN and duo.
This figure shows the percentage of the total packets being
optimized by customized circuits, e.g. the reconfigurable layer
in this paper and the S-channel in the duo case. We can see
that the packet coverage of AIN is higher than that of duo
which means more packet transmissions are optimized in the
reconfigurable layer. Thus, AIN achieves lower latency and
network power than duo.

D. Cost of AIN

The cost of AIN includes three parts: memory to store
model parameters, run time of the dominant flow identification
/reconfigurable phases, and hardware cost of the reconfigurable
layer. For the first part, an ARMA (p, q) in a K-sized network
after concentration requires 2K2 × (p + q) parameters in the
master core and 2p + 2q parameters in each of the other
cores. These include the parameters{φn, θm|n = 1, ..., p,m =
1, ..., q} and the p past values of the flow variable. For a 64×64
concentrated mesh, assume an ARMA(11, 0), the master core
has to store 5280 parameters, corresponding to about 10KB
memory. For a polynomial model with order M,M parameters
need to be stored.

The total run time for regression model calculation, path
setup is in the order of 105 cycles. Compared with the sampling

interval, which is 5M cycles, this time penalty is fairly small
because the learning ends after the training phase, i.e., no
regression model building in Phase II, Phase I only takes once.
In Phase II, only path setup occurs whose run time is less than
105 cycles. Thus the path setup takes negligible time compared
to the time interval. During the path setup process, only the
packet switching NoC will operate. This process takes 105

cycles, which happens in every 5M cycles (reconfiguration
happens every 5M cycles).

The hardware cost of the reconfigurable layer is related
to the design of configurable switches and wires. Assume the
working frequency is 1GHz and the size of each tile in the
packet-switching NoC is 1 × 1mm2. The length of a link
(assumed to be the same width as the links in the packet-
switching NoC shown in Table I ) in the reconfigurable layer
is 2mm as four tiles are connected to be a “meta-node” in the
concentrated mesh. Each of the configurable switches (CS) has
an area of 1075 um2 and consumes 6.25uW dynamic power
(switching activity is 0.5) using Synopsys Design Compiler
under 45nm TSMC library. The area and dynamic power of a
link are about 86606 um2 and 0.09 W (switching activity is
0.5) respectively with the 45nm technology available from the
ORION 2.0 simulator [15].

From the above analyses, we can draw some insights.

• For applications whose flow dominance is more obvious,
more performance benefit can be achieved from the
intelligent framework.

• The major cost of this learning/analysis framework comes
from the memory to record the parameters of the models.

IV. RELATED WORK

Studies of traffic modeling and prediction have been fo-
cused on the Internet. For example, neural network [18] is
used to predict traffic flows. However, the behavior of Internet
traffic is substantially different from the on-chip case. In
[11], the Hurst parameter is estimated to exploit the self-
similarity in NoC traffic running MPEG-2 video applications.
However, this work cannot be used to model and predict online
traffic dynamically. In [10], the spatiotemporal distribution
of NoC flows is analyzed, but this work does not include
prediction models for the flow. Machine learning methods,
like reinforcement learning, are used in NoC routing algorithm
to choose less congested channels. For example in [6], an
adaptive routing algorithm augmented by the reinforcement
learning is proposed to selected output channels based on
global congestion information. This approach could be com-
plementary to our approach proposed in this paper which
optimizes the end-to-end flows.

In the literature, several NoC topologies are proposed
including concentrated mesh, flattened butterfly, and multi-
drop express cube structure [19], where express channels can
be used to optimize communication. However, these topolo-
gies add substantial complexity to the router architecture.
In addition, these are fixed topologies without the capability
of being reconfigured online. An application-aware topology
reconfiguration [14] is proposed which sets up paths for
the communications depending on the applications traffic. As
demonstrated in their experiments, this approach is only suit-
able for multiprocessor system-on-chip (MPSoC) applications



which have less frequent traffic. For communication-intensive
CMP applications, not all the communications can find a path
using the approach in [14]. Besides, [14] only has constraints
on the link bandwidth capacity, while our approach tries to
minimize the overlap of links as stated in Section II.D.

Work has also been proposed to make the NoC more
flexible, which enables dynamic configuration. For example,
express virtual channels (EVC) [8] are used to bypass router
pipeline stages utilizing communication locality as in [8] [20].
Another scheme, virtual point to point connection in [9]
sets up virtual point-to-point connection between senders and
receivers. Both of the two methods optimize communication
by bypassing router pipeline stages. However, neither of the
two schemes includes a learning process which could adjust
the NoC structure with global traffic info, i.e., only heuristics
are used without the knowledge of application traffic. In
the experiments, our framework reduces 8% latency and 7%
network power against EVC, on average. For applications
with more obvious flow dominance (larger kurtosis values) the
reductions against EVC are more than 10%.

The duo approach in [10] analyzes the characteristics of
traffic flows and use heuristics to configure the multi-drop
channels to set up express channels. Our framework differs
from that approach in the following three aspects. (1) The
work in [10] focuses on traffic distribution analysis, while our
work emphasizes a framework combing regression model and
non-overlapping point-to-point path setup. Our framework is
more general and targeted at supporting online reconfiguration
of NoC. (2) In our approach, regression models are used to
predict the traffic flow, such that, the point-to-point paths can
be set up in advance in each time interval. In contrast, in [10]
express paths are set up after collecting traffic flow values
in current interval, whereas the traffic distribution could be
different from that during the express path setup. Thus, the
express paths might not be optimal for the real traffic. (3) In our
approach, dominant flows are preferred to be optimized while
in [10] flows with longer communication distance are biased.
Thus the packet coverage of the two approaches differs as in
Section III.C. More packets are optimized in our approach than
that in [10]. Overall, our approach reduces 7% latency and 7%
network power against the work in [10] on average.

V. CONCLUSION

In this paper, we proposed a self-tuning NoC framework to
help build intelligent NoC that can deliver higher performance
at the presence of changing data traffic. This framework
identifies the flow dominance of the applications’ flow traffic
and optimizes the dominant flows in two phases. First, flows
are recorded and modeled. Next, the master core identifies
the dominate flows which are optimized by reconfiguring the
network layer made of configurable switches. An efficient
algorithm sets up non-overlapping point-to-point paths for the
dominant flows on the reconfigurable layer such that these
flows can traverse through the path with latency as low as
the wire delay. The reconfigurable layer can be augmented to
any existing NoC topologies. Our experiments showed that,
existing topologies like concentrated mesh augmented with
our framework can reduce as much as 25% latency and 24%
network power compared against the original NoC system for
both PARSEC and SPLASH-2 benchmarks. We expect that

such type of self-tuning NoC systems can be used to improve
the performance for a wide variety of applications.
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