
Parallel Computing 39 (2013) 408–423
Contents lists available at SciVerse ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate /parco
Avoiding request–request type message-dependent deadlocks
in networks-on-chips
0167-8191/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.parco.2013.05.002

⇑ Corresponding author.
E-mail addresses: xh.wang@giat.ac.cn (X. Wang), liupeng@zju.edu.cn (P. Liu), mei.yang@unlv.edu (M. Yang), yingtao@egr.unlv.edu (Y. Jiang).
Xiaohang Wang a,b, Peng Liu b,⇑, Mei Yang c, Yingtao Jiang c

a Intelligent Chips and Systems Research Centre, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, Guangdong 511458, China
b Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
c Department of Electrical and Computer Engineering, University of Nevada, Las Vegas 89154, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 1 June 2013

Keywords:
Streaming protocols
Network-on-chip (NoC)
Message-dependent deadlock
Virtual channel
When an application is running on a network-on-chip (NoC)-based multiprocessor system-
on-chip (MPSoC), two types of deadlocks may occur: (i) the routing-dependent deadlocks,
and (ii) the message-dependent deadlocks. The former type of deadlocks can be avoided by
removing any cyclic paths on the application’s channel dependency graph. The message-
dependent deadlocks, caused by mutual dependency of different control and/or data mes-
sages, on the other hand, are very complicated to deal with. In this paper, we focus our
study on the request–request type message-dependent deadlocks which may appear in a
peer-to-peer streaming system. This type of deadlocks can have devastating effects on
applications using streaming protocols that often demands real-time processing over con-
tinuous data streams. We show that request–request type of deadlocks can be avoided by
proper inclusion of virtual channels (VCs) for the links along the selected routing path.
These VCs are not bounded to a particular communication path. Instead, they can be shared
among multiple existing communication flows. In this paper, we have formally proved a
sufficient condition that determines the minimum number of VCs actually needed for each
link of a communication flow such that, request–request type message-dependent dead-
locks can be completely avoided. Following this sufficient condition, we propose a path
selection and minimum VC allocation (PSMV) algorithm to help determine the minimum
number of non-uniform VCs for each link. The PSMV algorithm consists of two major steps.
In the first step, we attempt to minimize the maximum number of VCs among all the links.
This problem is NP-complete in nature, and it is solved using the proposed mixed integral
linear programming (MILP)-based algorithm. In the second step, based on the solution sug-
gested in the first step, the minimum number of VCs for each link is finally determined. The
PSMV algorithm can literally be integrated with any existing application mapping algo-
rithm to provide deadlock-free mapping results. One such deadlock-free mapping algo-
rithm is suggested in this paper. Our experiments also show that, compared to an
existing flow control based deadlock avoidance method (CTC) and a deadlock recovery
method (DR), increase of buffers size in PSMV is within 5% compared to a baseline network
configuration. The message latency of PSMV is the lowest among all three designs.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Network-on-chip (NoC) has been widely accepted as a viable communication infrastructure for current and future Mul-
tiprocessor System on Chip (MPSoC) designs [1]. Particularly, NoCs are used in MPSoCs designed for running applications

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.parco.2013.05.002&domain=pdf
http://dx.doi.org/10.1016/j.parco.2013.05.002
mailto:xh.wang@giat.ac.cn
mailto:liupeng@zju.edu.cn
mailto:mei.yang@unlv.edu
mailto:yingtao@egr.unlv.edu
http://dx.doi.org/10.1016/j.parco.2013.05.002
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco

X. Wang et al. / Parallel Computing 39 (2013) 408–423 409
which use streaming protocols ranging from VoIP telephony, playback audio/video, IPTV, online multi-user games, security
surveillance, to sensor data analysis [2–4]. These vastly diversified applications using streaming protocols share one com-
monality as they all demand real time processing over continuous, high volume data streams.

A typical application using streaming protocols is composed of a serial of computation intensive tasks, such as mathemat-
ical algorithms. These tasks can be executed in multiple parallel processing units organized in a pipelined fashion to enable
higher processing throughput and flexibility. There are two noticeable features in the execution of applications using stream-
ing protocols.

1. First and foremost, the tasks are executed iteratively. Since a data stream passes through the pipeline periodically, the
same tasks shall be executed repeatedly. As a result, the communications among tasks/processors will last for the dura-
tion of the application.

2. Second, in a pipelined application using streaming protocols, there are two types of data dependencies [5] that determine
the order of the tasks to be executed. That is, (i) the execution of a producer task (a task that produces the data needed by
other task(s)) must precede execution of a consumer task (a task that actually consumes the data generated from preced-
ing tasks), and (ii) a task can start its n-th iteration only if its (n � 1)-th iteration is finished.

There are unfortunately two types of deadlocks that may occur to a pipelined application using streaming protocols on an
NoC-based architecture: (1) the routing-dependent deadlocks [6,7] and (2) the message-dependent deadlocks [8]. The rout-
ing-dependent deadlocks, caused by cyclic channel dependency, can be avoided by removing any cycle that exists in the
application’s channel dependency graph [9]. Message-dependent deadlocks [8], caused by the dependency of different mes-
sages, on the other hand, are more complicated to deal with. As reviewed in [8], there are three major types of message
dependencies, namely, request–response dependency, response–request dependency and request–request dependency.

Our focus is on the important type of message-dependent deadlock caused by request–request message dependency [8]
in an NoC-based peer-to-peer streaming system. In such a system, each pair of tasks (or actors) has a virtual point to point
communication path [10]. Fig. 1 shows such an example where message Y is dependent on message X. A producer task ini-
tiates a communication by sending (or pushing) a request message to its designated consumer task where this request mes-
sage will be consumed. As a task is iteratively executed in an application using streaming protocols, multiple request
messages can be continuously generated from the same producer task. These request messages, if they are not yet been con-
sumed by their designated consumer task, have to be stored at various network places, such as various routers’ and network
interfaces’ (NI) buffers. A message-dependent deadlock is created when some of these messages can never be consumed by
the consumer task. Because the consumption of these messages is mutually dependent on each other’s arrival because the
network resources (e.g. the routers’ buffers) are reserved and the messages are blocked in some network places. This re-
quest–request type message-dependent deadlock can cause severe effects on an application which uses streaming protocols
as it may put the whole system into a complete stall [8].

In the literature, several message dependent deadlock avoidance/recovery methods for NoCs have been proposed, includ-
ing stricting order and end-to-end flow control [8]. These approaches may either require a large number of on-chip buffers or
may result in high message latency. For example, the work in [8] indicates that use of separate virtual channels for each mes-
sage type can help avoid deadlocks. However, the buffer size of the additional VCs for deadlock avoidance tends to be too
large, leading to poor resource utilization.

In this paper, for the first time, we have formally proved a sufficient condition that determines the minimum number of
VCs actually needed to avoid the message-dependent deadlocks. These virtual channels can be shared among multiple com-
munication flows. Following this theory, we propose the path selection and minimum VC allocation (PSMV) method to find
the minimum number of VCs in order to avoid request–request type message dependent deadlocks. PSMV selects the
minimal routing path and allocates non-uniform minimum number of VCs for each communication. The non-uniform VC
concept is introduced in [11]. Non-uniform VC planning means that some of the channels have more VCs than others.
Non-uniform VC can be used in application-specific design. PSMV could be integrated with existing application mapping
algorithms, like the ones reported in [6,12–14], to obtain deadlock-free mapping results. Our experiments have revealed that
for many popular applications which use using streaming protocols, such as networking and multimedia applications, the
NI0

req req

NI1

IP0 IP1

NoC

req req

X X Y

NI2

IP2

req req

Y

Fig. 1. An example of request–request type message dependency.

410 X. Wang et al. / Parallel Computing 39 (2013) 408–423
number of additional VCs needed by PSMV to avoid deadlocks is fairly modest. That is, with a modest price paid in terms of
buffer area, applications using streaming protocols can run in an NoC-based system completely free of deadlock concerns,
which is necessary to deliver the QoS guarantee required by these applications.

The rest of the paper is organized as follows. Section 2 introduces related work. The target application and architectural
models are defined in Section 3. Section 4 provides a detailed explanation of the cause of request–request type message-
dependent deadlocks followed by an illustrative example showing how this type of deadlock can be avoided with proper
inclusion of non-uniform VCs. Inspired by this observation, Section 5 presents a theory concerning the minimum number
of non-uniform VCs for each channel actually needed to avoid deadlocks; in the same section, an algorithm PSMV to explore
this theory to find the minimum number of non-uniform VCs for each channel is described. Section 6 shows how the pro-
posed PSMV algorithm can be integrated with an existing application mapping algorithm to produce deadlock-free mapping
results. Finally, Section 7 concludes the paper.
2. Related work on deadlock resolution in NoC

Message-dependent deadlock resolution methods in NoCs can be classified into two types, deadlock avoidance and recov-
ery. Deadlock avoidance methods aim to eliminate the emergence of deadlocks. Deadlock recovery methods allow the occur-
rence of deadlocks, but manage to recover from deadlock, after which the system can return to normal states.
2.1. Deadlock avoidance methods

There are mainly two types of message-dependent deadlock avoidance methods for NoCs. The first type is using separate
networks (physical or virtual networks) for different types of messages, exemplified as the strict ordering method described
in [8]. A major drawback of strict ordering is its requirements for too many separate networks, when applied to applications
using streaming protocols. As pointed out in [8,15], when a request–request type message dependent deadlock emerges, the
number of separate networks will be equal to the number of communication flows in the network.

The second type is using end-to-end flow control (e.g., the credit based (CB) method [8] and the connection then credits
(CTC) method [15]). In CB, each receiver’s NI keeps a buffer queue and a credit counter for each sender or predecessor. The
sender NI sends a request packet to the receiver to initiate the communication. Then it waits for the response packet from the
receiver. Upon receiving the request packet, the receiver NI first checks whether the receiver’s buffer queue has sufficient
empty slots to accomodate the message, and then it sends the empty slots info (credits) back to the sender. With credit infor-
mation from the receiver, the sender can begin its data transmission towards the receiver. CB requires an individual input
data buffer queue for each sender, an output data buffer queue and a credit counter for each receiver NI. The CTC [15] method
is based on CB but it tries to reduce the buffer usage of CB. There is only one input data buffer queue and one request queue
per NI. Therefore, an input arbiter and an output arbiter are used for different senders or receivers. The buffer has K flits,
where K is a user defined parameter. Before a sender initiates a communication, it sends a request packet to the receiver.
The receiver checks whether there are K empty slots in the buffer queue. If so, the receiver notifies the sender of the credit
number (K). When the sender gets this credit number, it will send out a sub-message with maximum K flits at each time.
Thus, if a message has M flits, both the numbers of sub-messages and response packets are dM=Ke: When applied to appli-
cations which use streaming protocols, this type of avoidance method may incur additional response packets which may in-
crease the probability of network congestion and consequently, tend to negatively impact the message latency.
2.2. Deadlock recovery methods

An alternative way to resolve message dependent deadlocksis is through deadlock recovery. In deadlock recovery meth-
ods, deadlocks are allowed to occur. Once a deadlock is detected, the deadlocked packets will be transmitted in reserved or
backup channels. mDISHA [16] is a deadlock recovery method proposed for parallel computer networks. In mDISHA, a dead-
lock situation is first detected and then resolved by using the deadlock channel. Deadlock detection in mDISHA is realized
through timers associated with each buffer queue. For a packet, when its timer reaches a certain threshold, it is assumed
that a deadlock has occurred. The deadlock channel is realized by dedicated buffers in both NIs and routers. Each destination
NI is augmented with additional buffers reserved for deadlocked packets. The deadlocked packet will be routed in the dead-
lock buffers by preempting the idle output channels until it reaches the destination node.

mDISHA has been extended [17] as a deadlock recovery method (DR) for NoCs. The deadlock recovery method in [17] dif-
fers from mDISHA as there is no preemption mechanism in each NI. The work flow of DR is as follows. For each message type,
there is one deadlock virtual channel (DVC) dedicated for deadlock recovery usage in each router and NI. Access to the DVCs
is controlled by an additional token network where tokens corresponding to different message types are circulating. Thus,
once a deadlock has been detected at a router, the deadlocked packet will be redirected to the DVC of the message type if
the corresponding token arrives at this router. After the deadlocked packet is transmitted to the destination, the token will
be released and placed back again to the token network. The deadlocked packets can arrive at their destination since they are

X. Wang et al. / Parallel Computing 39 (2013) 408–423 411
holding the reserved path composed of the DVCs exclusively. This method, however, may have several drawbacks when ap-
plied to applications which use streaming protocols.

� It may increase message latency as the deadlock cannot be detected until a timeout threshold of the timer is reached.
� Additional buffers (i.e. DVC) are introduced in each router and NI.
� An additional network for token distribution is required.

3. Target architectural and application models

In this section, we introduce the model of an application which uses streaming protocols, followed by an architectural
model that describes the underline architectures that an application using streaming protocols is operating upon. These
application and architectural models are adopted for the illustration of deadlock phenomenon provided in Section 3.1.

3.1. Application model

The tasks of an application can be modeled by a communication trace graph.

Definition 1. A communication trace graph [14] is a directed graph G = (A, E).
� Each vertex ai 2 A represents a task. Each task cannot be preempted by other tasks.
� Each directed edge ei = (ak, aj) 2 E represents the data communication from ak to aj. x(ei) defines the amount of data sent

from ak to aj in bits per second (bps).

A source task is one which has no predecessor task. A sink task is one which has no successor task. All the tasks will be
executed repeatedly for a number of iterations to process the incoming data stream. A task that needs to communicate with
others is allowed to do so either at the beginning (i.e. read input data) or at the end (send output data) of an iteration. Let
(ak ? aj)m denote the data (packets in messages) from ak to aj after ak finishes its m-th iteration.

There are two types of buffers associated with a task: the input data buffers and the output data buffers.

� For any task, one input data buffer is dedicated to receive the messages from just one of its predecessors [10]. That is, the
number of input data buffers needed is the same as that of the task’s predecessors.
� For any task, messages for one of its successors will be stored in a dedicated output data buffer before they can be sent out

[10]. That is, the number of output data buffers is the same as that of the task’s successors.
R0 R1

(a)

(b)

R

NI

R

R R
...

Processor

Memory

NI Processor

Memory

NI Processor

Memory

NI Processor

Memory

l0

VC1

VC V

Routing
computation

(RC)

VC allocator
(VA)

Switch allocator
(SA)

... ...

Output 1

Output 5

Input port 1

Input port 5

...

Input
buffers

Fig. 2. (a) The NoC architectural model. A rectangle box represents a router and a circle represents a processing node. (b) Non-uniform VC example. The link
l0 has two virtual channels while the other links has only one virtual channel.

412 X. Wang et al. / Parallel Computing 39 (2013) 408–423
All tasks are scheduled in a self timing manner [10] as follows. A task can start a new iteration if (a) it receives the data
(messages) from all its predecessors and (b) its output data buffers are empty. The data (messages) are consumed (cleared)
from its input edges of a task after it starts a new iteration.

3.2. Architectural model

The architectural model considered in this paper is shown in Fig. 2. Application specific NoC architectures are assumed.
The NoC system under consideration is composed of N � N tiles interconnected by a 2-D mesh network. Each tile, indexed by
its coordinate (x, y), where 0 6 x 6 N � 1 and 0 6 y 6 N � 1, is associated with one router and one local processing node.

3.2.1. Router
Fig. 2(a) shows the router architecture with wormhole switching [18]. Each message consists of a number of fixed-size

packets with each carrying the needed routing information. Each packet will be further decomposed into fixed-size flits. Each
router is composed of input buffers, routing computation unit, VC allocator, and switch allocator. Each input port has into
one or more input VC buffers. The flits are first stored in one of these input VC buffers. If a flit at the head of an input buffer
is deemed as a header flit, the routing calculation unit finds the output port that this flit shall go. The VC allocator (VA) then
selects the VC within the selected output port for the flit. The switch allocator (SA) arbitrates the requests made by all the
VCs competing for the switching fabric (i. e., a crossbar). The winner flits will be given the permission to transmit over the
crossbar to the corresponding output link.

3.2.2. Local processing node
As shown in Fig. 2, each processing node is composed of three components: a processor, a local memory unit and a net-

work interface (NI). The local memory unit holds the input/output data buffers (see Section 3.1) that can be used by the task
allocated to this processor. The NI provides the interface between the router and the processor.

Definition 2. An Architecture Characterization Graph (ACG) is a directed graph G’ = (T, L). Each vertex ti 2 T represents a tile
(Fig. 2). A tile T is composed of a local processing node and a router, i.e., T = P [R, where P is the set of processors and R is the
set of routers. Each edge li = (tk, tj) 2 L represents the link between adjacent tk and tj. For each link li,

� bw(li) defines the bandwidth provided between tiles tk and tj.
� CH(li) gives the number of virtual channels of link li. Fig. 2(a) shows a non-uniform VC allocation [11].
� c(li) defines the link cost of li, i.e., power consumption for transmitting one bit data from tk and tj with the number of VCs

equal to CH(li).
Definition 3. A mapping function M: A ? P maps each vertex in CTG to a processor in ACG. M(ai) gives the processor which
vertex ai is mapped to. For simplicity, we assume that each processor is allocated with one task.

In this paper, we limit our discussion to regular NoC architectures which have bw(li) = B for each li 2 L, where B is a
constant. hk,j is the set of links forming one of the shortest paths from tile tk to tile tj (hk,j # L). dist(hk,j) determines the
number of elements in hk,j, which corresponds to the hop count of the shortest path between tile tk and tile tj.

4. Message-dependent deadlock in applications using streaming protocols and a motivating example

In this section, we provide an example to illustrate how a request–request type message-dependent deadlock can occur,
followed by important observations how such deadlock can be avoided.

Assume the CTG has three tasks a, b, and c, as shown in Fig. 3(a), has already been mapped to the ACG with a 1 � 3 mesh
using the mapping algorithm in [6]. The three tasks (with a and b as the producers and c as the consumer) form a pipeline.
Assume the pushing protocol [8] is applied; that is, a producer task is allowed to continuously push all its generated data into
the network until the network is saturated. In this example, no virtual channel is used. Here tasks a and b send their gen-
erated data to c after they complete one iteration. Task c has two input data buffers in its local memory and each holds
one message from one of its predecessor tasks, a or b. The NI of each tile has one input buffer which can hold a few flits.
As indicated in Section 3.1, for all three tasks to operate properly, c cannot start a new iteration (say the i-th iteration) until
it receives the data generated in the i-th iteration of a and b in its corresponding input data buffers. Once c starts a new iter-
ation, its two input data buffers must have been cleared.

A problem may happen when, for example, b produces data at a higher rate than a and c. Fig. 3(b) illustrates such a sit-
uation. Suppose c has finished its (n � 1)-th iteration and it is now waiting for (b ? c)n and (a ? c)n. In the following, we will
show how a cyclic dependency among the messages can be developed.

(1) Flits of (b ? c)n + 1 reserve link (1, 2), the west input buffer of R2 and the receiving buffer of NI2 (marked with ⁄ in
Fig. 3(b)).

(2) Flits of (b ? c)n+1 cannot proceed to the input data buffer dedicated for b in c’s local memory since the buffer is occu-
pied by (b ? c)n which has not been consumed (cleared) yet.

(a) (c)

(b)

Fig. 3. (a) An example of ACG with three tiles mapped with three tasks. (b) Deadlock configuration due to request–request type message-dependency. (c)
Increasing the number of virtual channels can help avoid request–request type message-dependent deadlocks.

X. Wang et al. / Parallel Computing 39 (2013) 408–423 413
(3) To consume (b ? c)n, (a ? c)n needs to arrive at the input data buffer dedicated for a in c’s local memory to allow c to
start the n-th iteration. (This dependency is marked as ⁄⁄ in Fig. 3(b))

(4) In Fig. 3(b), the arrow marked with ⁄⁄⁄ denotes that the input data buffer in c’s local memory dedicated for a waits for
the arrival of flits of (a ? c)n.

(5) However, flits of (a ? c)n cannot proceed since the west input buffer of R2 is already reserved by flits of (b ? c)n + 1.
(6) Up to this point, a deadlock is already formed.

Above example has revealed that a deadlock can be formed when some data flows may take all the network resources,
like network buffers, consequently, depriving others from fair access to these resources. However, due to the nature of the
applications using streaming protocols where tasks are iteratively executed (Section 1), mutual dependence of the consump-
tion/arrival of the data/control messages generated across two iterations may be created. As a result, a deadlock is undesir-
ably formed.

As a viable alternative solution, the request–request type message-dependent deadlocks can be completely avoided by
adding a number of non-uniform virtual channels [11] and NI buffers. For the example shown in Fig. 3(a), one can see that
the cycle that creates a deadlock in Fig. 3(b) is completely avoidable by adding (1) one virtual channel at the West direction
of R2 and (2) one input buffer at NI2 (Fig. 3(c)). In this regards, only 2 additional buffers is needed and the size of each buffer is
set to hold several flits. Also, it shall be noted that these virtual channels are not dedicated to specific types of messages.
Actually, they can be shared by any communication flow.

Since in many NoC designs, virtual channels are used for helping improve network routing performance [6,7], the hard-
ware cost of this approach for avoiding message-dependent deadlocks is well justifiable. in a simple term, to avoid request–
request type message-dependent deadlocks, it is required that (1) the number of the receiving buffers of each NI is set to be
the number of predecessors of the task allocated on the local processor and (2) a few additional VC buffers should be used. As
proved in Section 5, these two requirements constituent a sufficient condition to avoid deadlocks of interest.

5. Deadlock avoidance using virtual channels

In this section, the sufficient condition for avoiding request–request type message-dependent deadlocks is proved. Then,
we show that finding the minimum number of virtual channels needed for deadlock-freeness is NP-complete. Thus an MILP-
based approximation algorithm is proposed to solve this sub-problem. The second sub-problem finds the minimum number
of non-uniform VCs for each links.

5.1. Sufficient condition for deadlock-avoidance with virtual channels

Assume an application which uses streaming protocols given as an CTG (Section 3) has already been mapped to an NoC
architecture modeled by an ACG (Section 3). We also assume that (i) the routing algorithm used is deadlock-free, and (ii)
messages are delivered in-order and lossless.

414 X. Wang et al. / Parallel Computing 39 (2013) 408–423
Lemma 1. For any task in an application which uses streaming protocols allocated to a processor, after it finishes the execution of
its n-th iteration, its input data buffers are either empty or they are holding messages from its predecessors’ (n + 1)-th iteration.
Proof (Proof by contradiction). According to the application model (Section 3.1), after the task finishes its n-th iteration, the
messages from its predecessors’ (n + i)-th iteration, i 6 0, must have been consumed.

Assume to the contrary that there exists a task, say task a, which after completing its n-th iteration, holds the message
generated by one of its predecessors, say aj, from aj’s (n + i)-th iteration with i P 2 in one of its input data buffers. Since the
messages are delivered in-order, message (aj ? a)n + 1 must have arrived at the input data buffer of a. This contradicts to the
application model assumed in Section 3.1 in which there is only one input data buffer holding one message from each
predecessor. Hence, the lemma holds. h

From Lemma 1, we can derive the following corollary.

Corollary 1. For any task in an application using streaming protocols allocated to a processor, if it has not started its (n + 1)-th
iteration, any message generated from its predecessors’ (n + i)-th iteration (i P 2) cannot reach the task’s input data buffer.
Lemma 2. There exists one virtual path between any two communicating tasks so that all messages will arrive at their destination
tasks, provided that (1) each link is shared by communications less than or equal to the number of virtual channels and (2) the
number of receiving buffers at the NI of each tile is equal to the number of predecessors of the tasks which are mapped onto this
tile.
Proof. Each message initiated from the source tile (that the source task is mapped to) has to travel through a path to reach
the destination tile (that the destination task is mapped to). For the sake of this proof, this path can be divided into two seg-
ments: (i) from the router at the source tile to the router at the destination tile, and (ii) from the router at the destination tile
to the input data buffer of the destination task. We will show that a virtual path always exists in these two segments.

(i) Each message can arrive at the router at the destination tile.
If a link has V VC’s and is shared by no more than V communication flows, no message belonging to one communica-
tion flow can be blocked by messages from other communication flows (Fig. 4). Hence, there exists a virtual path from
the router at the source tile to the router at the destination tile. Through this virtual path, each message can arrive at
the router connecting to the destination tile.

(ii) Each message can proceed to the input data buffer of the destination task.

According to our architectural model defined in Section 3.2, at each tile that a task is mapped onto, the number of input
data buffers at the local memory and the number of receiving buffers at the NI are the same as the number of the task’s pre-
decessors. This will ensure that each message (generated from the source task) once reaching the router at the destination
tile will arrive at the input data buffer dedicated for its predecessor, if there is free buffer space.

Putting these two segments together, there exists a dedicated virtual path between two communicating tasks. This will
guarantee that all messages will arrive at their destination tasks.
0

a1

1 2

a2

Processor

Memory

Processor

Memory

Processor

Memory

R0 R1 R2

NI0 NI1 NI2

a3a1

a2

a3

Fig. 4. An example illustrating Lemma 2. The channel between routers R0 and R1 has two VCs and the NI2 has two input buffers. There is a virtual path either
from a1 to a2, or from a1 to a3.

X. Wang et al. / Parallel Computing 39 (2013) 408–423 415
For example, in Fig. 4, the channel between routers R0 and R1 has two VCs. Task a3 has two predecessors, a1 and a2. Thus
the NI2 has two input buffers. For each message from a1 to a3 and from a2 to a3, there exists a dedicated virtual path. With
Lemma 2, we can have the following lemma. h
Lemma 3. For an application which using streaming protocols given by a CTG with tasks allocated to the processors in ACG, each
task can start a new iteration as long as the input data are continuously admitted into the system and the output data are con-
tinuously extracted from the system.
Proof. (Proof by contradiction). We first consider the processor allocated with the sink task (the task with no successor task)
ak 2 A which has N predecessors a1

k ; . . . ; aN
k

� �
. If there are multiple sink tasks, a dummy task node can be added which has all

sink tasks as its predecessors. Assume to the contrary that ak has finished its n-th iteration (n P 0, n = 0 refers the state
before the first iteration is executed) but it cannot start its (n + 1)-th iteration. Since ak is a sink task from which output data
are continuously extracted, the reason that it cannot start its (n + 1)-th iteration must be the missing of at least one message
generated from one of its predecessors in the (n + 1)-th iteration.

Assume am
k is one of ak’s predecessors whose message (am

k ? ak)n + 1 has not arrived at ak’s input data buffer. According to
Lemma 2, if message (am

k ? ak)n + 1 is generated, it will arrive at ak’s input data buffers. Thus, the only possible reason is that
am

k has not started its (n + 1)-th iteration yet. Since the sink task ak has finished its n-th iteration, all other tasks (including
am

k) must have finished their n-th iteration. Hence, the output buffers of am
k are empty. The reason that am

k cannot start its
(n + 1)-th iteration must be the missing of at least one message generated from one of am

k ’s predecessors in the (n + 1)-th
iteration.

Following the similar reasoning, at least one reverse path from the processor allocated with the sink task to the processor
allocated with a source task (say as) can be found and all the processors on the path are allocated with tasks which have
finished their n-th iteration but cannot start their (n + 1)-th iteration. Particularly, as has finished its n-th iteration but cannot
start its (n + 1)-th iteration. However, the output data buffers of as must be empty because all as’s successor tasks have
finished their n-th iteration. With the input data continuously provided to the system, as can start its (n + 1)-th iteration. This
is contradicting to the above reasoning.

Therefore, the sink task ak can start its (n + 1)-th iteration after finishing its n-th iteration.
Based on this result, following similar approach we can progressively prove that the predecessor tasks of ak and other

tasks can start their (n + 1)-th iteration after finishing their n-th iteration. Hence, the lemma holds. h
Theorem 1. Consider an application represented as an CTG and mapped to an NoC architecture represented as an ACG in which (i)
the number of communications allocated on each link is not larger than the number of the VCs of the link and (ii) the number of
receiving buffers at the NI of each tile is set to be equal to the number of the predecessors of the tasks which are mapped to the tile.
No request–request type message-dependent deadlock can ever be created.
Proof (Proof by contradiction). Assume to the contrary that a request–request type message-dependent deadlock as
described in Section 4 is created. The deadlock will prevent some messages from reaching their destinations. As such, these
destination tasks cannot receive all the input data generated from their predecessors. Consequently, none of these tasks can
start a new iteration. This is a contradiction to Lemma 3. Hence, the theorem holds. h
5.2. Minimum non-uniform virtual channel algorithm

Once an CTG is mapped to an ACG, the routing path allocation step follows, which determines how each communication
flow is routed through the physical links. According to Theorem 1, to avoid message-dependent deadlocks, the number of
communications allocated on each physical link cannot exceed the number of VCs used by each link. On the other hand,
the number of VCs used shall be minimized to reduce the overhead in terms of power consumption and area. Hence, it is
vital to find the minimum number of non-uniform VCs needed to satisfy Theorem 1.

According to Theorem 1, the number of VCs needed for each link depends on both the mapping result and the rout-
ing path selection for each communication. Assume the mapping result is given, we propose the path selection and
minimum VC allocation method to find the minimum number of non-uniform VCs for each link. The PSMV method
consists of two major steps aiming to solve two sub-problems: (P1) find the minimized maximum (min_max) number
VCs needed among all the links (shortened as the MinVC problem), (P2) based on the solution to the MinVC problem,
determine the minimum number of VCs for each individual link. In the following, the MinVC problem is first defined
and solved first.

The MinVC problem (P1) is stated as follows. Given an ACG(T, L) and an CTG(A, E) which is mapped to the ACG, for each
non-local communication ei = (aj, ak) in CTG, find a routing path in ACG among all the possible minimal routing paths be-
tween M(aj) and M(ak) if M(aj) – M(ak), such that the maximum number of VCs needed among all the links is minimized, i.e.,

416 X. Wang et al. / Parallel Computing 39 (2013) 408–423
MinfVg
satisfying,
8 lm; V P
X

ei¼ðpk ;pjÞ2E

gðlm; hMðakÞ;MðajÞÞ ð1Þ

8 lm; F � B P
X

ei¼ðpk ;pjÞ2E

xðeiÞ � gðlm;hMðakÞ;MðajÞÞ ð2Þ
�

where M(ai) is the tile that ai is mapped to, F is the bandwidth factor and 0 < F 6 1, and gðli;hMðakÞ;MðajÞÞ =
1 if li 2 hMðakÞ;MðajÞ
0 if li R hMðakÞ;MðajÞ

The condition given by (1) ensures that each link l in ACG is shared by at most V communication flows, while the condi-
tion given by (2) ensures that the total bandwidth requirement of all communication flows sharing each link l does not ex-
ceed the capacity of link l. The factor F ensures that the link should not be fully reserved to avoid possible congestions.

Next we will first show that the MinVC problem is NP-complete. Then we will present an MILP-based solution.

Theorem 2 [19]. The knapsack problem defined below is NP-complete.
Given a finite set U, a size su 2 Zþ and a weight vu 2 Zþ for each u 2 U, a size constraint B 2 Zþ; and a value goal K 2 Zþ; is

there a subset U’ # U such that
P

u2U’su 6 B and
P

u2U’vu P K.
Theorem 3. The decision version of the MinVC problem is NP-complete.
The proof sketch is listed below.
The decision version of the MinVC problem is to decide whether there exist the minimal routing paths in the ACG for all

non-local communications in the CTG, while all the resource constraints are satisfied and no more than V VCs are needed at
each router.

We will prove this theorem by restricting [19] the decision version of the MinVC problem to its instances with x(ei) = 1
for all ei, and V = F�B. Thus, conditions (1) and (2) of the MinVC problem are algebraically identical. This restriction, from gen-
eral MinVC to its restricted version, takes O(|L| + |E|) time, where |L| is the number of links in the ACG. The restricted MinVC
problem is equivalent to finding the minimum cost unsplittable flows [20] for a set of |E| communication flows {1, . . ., |E|},
each flow sending from a source node si to its destination node di with demand x(ei) for i 2 {1, . . ., |E|}. The knapsack [19]
problem can thus be viewed as a special case of the restricted MinVC problem, as shown in Fig. 5.

In Fig. 5, for each item in knapsack problem [19], there is a corresponding flow i (i.e., an edge ei in the CTG which is a non-
local communication) whose demand x(ei) is equal to the size of each item. The cost of each direct edge from nodes s to di is
set to wi/qi where wi and qi represent the weight and size of the i-th item, respectively. Costs of all the other edge are set to 0.
The capacity of the edge from nodes s to v is equal to the capacity of the knapsack while assuming all the other edges have
infinite capacity. Therefore, the minimum cost flows from all si to di, i 2 {1, . . ., |E|}, upon satisfying all the demands, lead to an
optimal solution to the knapsack problem and vice versa.

The knapsack problem is NP-complete [19], and so is the MinVC problem which takes the knapsack problem as a special
case.

The MinVC problem can be approximated by formulating it as a mixed integer linear programming problem given in
Fig. 6. As such, a linear programming solver, such as the lp_solve [21] can be used.

In Fig. 6, MPi is the set of all minimal paths between the two tiles mapped by the two terminal vertices of edge ei, and
PATHi,j is the j-th minimal path in MPi.
fi;k ¼
1 if ei takes the k� th minimum path
0 otherwise

�
:

Fig. 5. Formulation of the Knapsack problem [19] as the restricted MinVC problem.

Fig. 6. The solution to the MinVC problem.

X. Wang et al. / Parallel Computing 39 (2013) 408–423 417
Eq. (4) sets a constraint that only one of the minimal paths will be allocated for each communication. Eq. (5) sets a limit that
each link will not accommodate more than V communications. Eq. (6) represents the bandwidth constraint of each link. Our
experiment has shown that when lp_solve [21] is used to solve MinVC, the running time is less than 0.1sec for a 6 � 6 mesh-
based NoC and a little over 0.1 s for an 8 � 8 NoC (obtained from a PC with one Intel Core2 P8600 2.4GHz processor and 2GB
RAM).

The solution to P2 is based on the solution to the MinVC problem which provides the min–max number of VCs among all
the links and the minimal routing paths selected for all communications. Based on these selected minimal routing paths, the
minimum number of non-uniform VCs for each individual link is determined by accumulating the number of flows that use
the link. This sub-problem has a complexity of O(|L||E|).

The PSMV method is listed in Fig. 7.
6. Experiments

To evaluate the deadlock avoidance method proposed in previous section, we have conducted experiments on four appli-
cations which use streaming protocols, including: (1) a synthetic application, (2) orthogonal frequency-division multiplexing
(OFDM) [22], (3) multi-windows display (MWD) [1] and (4) video object plane decoder (VOPD) [1]. To generate the mapping
result for each application, we apply a genetic-based mapping algorithm [13] integrated with the power estimation step
which calls up the PSMV routine. Based on the mapping result, the Noxim simulator [23] is used to obtain the total commu-
nication power. The Noxim simulator is modified, with changes listed below, to make it suitable for simulating applications
which use streaming protocols.

� The processing elements of the simulator are modified so that they are in compliance with the model defined in Section
3.1.
� The traffic generator is modified so that it is able to model the dependency of tasks.
� Virtual channels are supported in the simulation.

In the following, we will first describe the mapping and path allocation procedures followed by the simulation settings
and the experimental results.

Fig. 7. The PSMV algorithm.

418 X. Wang et al. / Parallel Computing 39 (2013) 408–423
6.1. Mapping algorithm

In our experiments, the mapping process is based on an existing mapping algorithm [13], which uses the genetic frame-
work presented in [24]. The flow of the mapping process is shown in Fig. 8. An intermediate mapped result (named an indi-
vidual as in genetic algorithms) is generated by mating and crossover on existing intermediate mapped results. After finding
an intermediate mapping result, the Calculate_Cost procedure is called (within the procedure of fitness calculation) to esti-
mate the power consumption of the mapping result. The Calculate_Cost procedure (Fig. 9) calls the PSMV procedure to ob-
tain the minimum number of non-uniform VCs needed to avoid message-dependent deadlocks and select the minimal
routing paths for all communications.

In order to avoid other types of deadlock, e.g., the routing dependent deadlock, we use the technique in [7] as follows.
After getting the routing paths, we can construct an application specific channel dependency graph (ASCDG). If this ASCDG
has cycles, we can increase the number of virtual channels to avoid the routing-dependent deadlocks [7].
6.2. Simulation settings

For each application, the mapping algorithm shown in Fig. 8 is applied for all three schemes. The mapping results of all
the four applications are shown in Fig. 10.

Initialization

Fitness
calculation

Selection

Mating

Mutation

Terminate?

Termination

Calculate_
Cost

Calculate
domination

Calculate
fitness

Fig. 8. Overall process of the mapping algorithm [13,24].

Fig. 9. The Calculate_Cost algorithm used in the mapping process.

X. Wang et al. / Parallel Computing 39 (2013) 408–423 419
In terms of buffer overhead, the number of additional buffers and the ratio of additional buffers for PSMV, CTC [15], and
DR [17] over the baseline configuration are compared. The baseline configuration for a given NoC is that, each port of routers
has one VC buffer and each NI has one input buffer. The message size is set to be 1024 bits. The flit size is set to be 128 bits
and each buffer can hold 4 flits. In PSMV, the number of buffers in each tile’s NI is set equal to the number of predecessors of
the task allocated to the tile. The number of VCs in each link is found by applying the PSMV method. Each router is configured
with one deadlock virtual channel (DVC) and so is each NI. The size of each DVC is set to hold 4 flits. Each router buffer in DR
is configured with a timer. The threshold of deadlock detection timer in DR is set to be 100 cycles. In CTC, each NI has a data
buffer queue and a request buffer queue. Since the size of elements in the request buffer queue is much smaller than that in
data buffer queue, the request buffer queue is ignored in the comparison. We assume that DR and CTC use XY routing and
PSMV uses the routing paths shown in Fig. 10. The routing paths in Fig. 10(c) are found by the algorithm in Fig. 7. The average
message latency values of the three methods are compared in Fig. 12.
6.3. Buffer and power overhead

In this section, we report the experimental results of PSMV, CTC and DR in terms of (1) buffer overhead and (2) message
latency. Using the PSMV method, the number of non-uniform minimum of VCs is obtained for each application. For the syn-
thetic application shown in Fig. 10(a), links (28, 20), (36, 28), (44, 36) require 4, 3, and 2 VCs, respectively, while all the
remaining links require only one VC. For OFDM shown in Fig. 10(b), the link connecting the tiles mapped with tasks ROTOR
and MIMO dec (marked by star) needs two VCs while all the remaining links request only one VC. For MWD and VOPD shown
in Fig. 10(c) and (d), no link needs more than one VC if PSMV is used.

(a) (b)

(c) (d)

Fig. 10. The CTG and mapping of (a) a synthetic application, (b) orthogonal frequency-division multiplexing (OFDM), (c) multi-windows display (MWD),
and (d) video object plane decoder (VOPD).

420 X. Wang et al. / Parallel Computing 39 (2013) 408–423
Table 1 shows the buffer overhead of all three methods over the baseline configuration. Since CTC does not need any addi-
tional buffer space, the number of additional buffers in CTC is 0 and thus not included in this table. From the table, we can see
that, the ratio of additional buffers of DR over baseline is constant and relatively large as one additional deadlock virtual
channel is added to each router and each NI in DR. PSMV, on the other hand, has a maximum of 5% buffer overhead over
the baseline configuration for the four applications.

In Fig. 11, the power and area savings of PSMV over DR and using separate virtual networks (VNs) are compared. In
Fig. 11, we can see that, the increase in power and area in DR over PSMV is within 7%. This is caused by the additional buffers
in deadlock virtual channels. In DR, each router is increased only by one additional deadlock virtual channel. However, if sep-
arate virtual networks (VNs) are used, the number of virtual channels should be uniform, which causes the increase of the
number of buffers. As in [8], the number of VNs is the same as the number of the communications for request–request type
messages.

We can set the number of VNs to be the maximum number of virtual channels. For the synthetic application, four VNs are
used because the South input of tile 20 needs four VCs as in Fig. 10 (a). Thus, all links will be configured with four virtual
channels. Fig. 11 shows that for the synthetic application, the increase in power and area of VN over PSMV is over 20%. Sim-
ilarly, OFDM needs two separate VNs as the input channel to MIMO dec needs two VCs as in Fig. 10(b). The increase in power
and area of VN over PSMV is over 12% for OFDM as in Fig. 11. MWD needs only one VN as no link needs more than one VCs in
Fig. 10(c). The power and area of VN are the same with PSMV for MWD as in Fig. 11. VOPD needs two VNs if XY routing algo-
rithm is used. Because if XY routing algorithm is used, pad needs two VCs for the West input port. The increase in power and
area of VN over PSMV is over 12% for VOPD as in Fig. 11.

6.4. Network performance

Fig. 12 compares the average message latency of PSMV, CTC and DR for all four applications under the injection rate range
(in terms of flits/cycle). For this group of experiments, the bandwidth constraint is relaxed [1]. For all four benchmarks, PSMV
has the lowest message latency by avoiding deadlocks with additional buffers. As such, PSMV does not incur waiting for flow
control feedback (as in CTC [15]), or blocking when deadlock happens (as in DR [17]).

Table 1
The additional buffer number and ratio of PSMV and DR.

Benchmarks PSMV DR

Number of
additional router
buffers

Number of
additional NI
buffers

Total percentage of
additional buffers (%)

Number of
additional router
buffers

Number of
additional NI
buffers

Total percentage of
additional buffers (%)

Synthetic 6 4 2.5 64 64 28
OFDM 1 5 3.3 30 30 28
MWD 0 2 2.7 12 12 28
VOPD 0 4 5 12 12 28

Synthetic OFDM MWD VOPD

30%

20%

10%

0

Normalized power and area savings of PSMV over DR and VN

N
or

m
al

iz
ed

 p
ow

er
 a

nd
 a

re
a

sa
vi

ng
s

Normalized power saving of PSMV over DR
Normalized power saving of PSMV over VN
Normalized area saving of PSMV over DR
Normalized area saving of PSMV over VN

Fig. 11. Power and area savings of PSMV over DR and VN.

X. Wang et al. / Parallel Computing 39 (2013) 408–423 421
For the synthetic application (Fig. 12(a)), when injection rate is relatively low, CTC gives the highest message latency. In
CTC, additional response packets are needed to flag the empty slots at the receiver side. However, this method tends to have
higher level of congestion particularly when the injection rate is high. Also one can see that when the injection rate is high,
DR has the worst performance in terms of latency. The saturation point of DR is reached earlier than PSMV (at injection rate
of 0.5 in Fig. 12(a)), as more packets are injected, deadlocks are more likely to happen in DR. Because from Fig. 10(a), we can
see that communications from tiles 28, 36 and 44 have contests for the links connecting to tile 20 in DR if no VC is used. In
addition, in DR, the message latency is increased due to the latency caused by the deadlock detection timer in detecting
deadlocks when the injection rate is high. At the injection rate of 0.6 (flits/cycle), the message latencies of CTC and DR over
that of PSMV are 1.4� and 1.6�, respectively.

In Fig. 12(b), for OFDM (Fig. 10(b)), the message latency of CTC is the highest. As observed from the experiments, in case of
DR, deadlocks do not occur frequently because only the communications marked by ⁄ in Fig. 10(b) contest for the link con-
necting tile ROTOR and MIMO dec. The additional flow control packets in CTC contribute to the congestions when the injec-
tion rate is high. When the inject rates are larger than 0.6 (flits/cycle), the message latencies of CTC and DR over that of PSMV
are 1.5� and 1.3�, respectively.

In Fig. 12(c), for MWD (Fig. 10(c)), the latencies of DR and PSMV are the same because no deadlock is observed in DR and
PSMV. The paths resulted from XY routing (in DR) is the same as the path selection in Fig. 10(c). Thus, the performance of DR
and PSMV are the same. CTC results in the highest latency due to additional flow control packets needed.

As shown in Fig. 12(d), for VOPD (Fig. 10(d)), the latencies of DR and PSMV are almost the same when the injection
rate is small because deadlocks are not frequently observed in DR. When the injection rate is high, no deadlock is ob-
served in PSMV, while deadlocks can trouble DR. The reason is that, the path selection in Fig. 10(d) helps avoid dead-
lock besides the additional VCs. On the other hand, DR uses XY routing which results in contests for link connecting
acdc pred and iquant (see Fig. 10(d), by the communication from acdc pred to iquant and from acdc pred to stripe mem).
Thus, when the injection rate is high, the message latency of DR becomes larger than PSMV due to deadlocks in DR.
From the comparison of VOPD and MWD, we can see that, path selection can help avoid deadlocks in addition to the
inclusion of non-uniform VC buffers.

From the above comparisons, performance of the three deadlock resolution methods is summarized as follows. CTC has
the smallest number of additional buffers while DR has the largest number of additional buffers. The number of additional

100

200

300

400

0.1 0.2 0.3 0.4 0.5 0.6
Injection rate (flit/cycle)

A
ve

ra
ge

m
es

sa
g e

la
te

nc
y

(c
yc

le
)

0.7

100

200

300

400

0.1 0.2 0.3 0.4 0.5 0.6
Injection rate (flit/cycle)

A
ve

ra
ge

m
es

sa
ge

l a
t e

nc
y

(c
yc

le
)

0.7

(a) (b)

100

200

300

400

0.1 0.2 0.3 0.4 0.5 0.6

PSMV
CTC
DR

Injection rate (flit/cycle)

A
ve

ra
ge

m
es

sa
ge

la
te

nc
y

(c
yc

le
)

0.7

100

200

300

400

0.1 0.2 0.3 0.4 0.5 0.6
Injection rate (flit/cycle)

A
ve

ra
ge

m
es

sa
ge

la
te

nc
y

(c
yc

le
)

0.7

(c) (d)

PSMV
CTC
DR

PSMV
CTC
DR

PSMV
CTC
DR

Fig. 12. The message latency of (a) the synthetic application, (b) orthogonal frequency-division multiplexing (OFDM), (c) multi-windows display (MWD)
and (d) video object plane decoder (VOPD).

422 X. Wang et al. / Parallel Computing 39 (2013) 408–423
buffers needed in PSMV depends on the path selection result and the buffer overhead is relatively small (within 5% for the
four benchmarks). In term of message latency, consistent with our expectation, PSMV shows the lowest message latency
among all three methods. When the injection rate is low, CTC has the highest message latency among the three methods
because of the additional flow control packets. When deadlocks occur more frequently, e.g., more communications are con-
testing for a single link, DR has the worst performance in terms of latency at higher injection rate. The reason might be that,
when deadlocks occur frequently, each deadlocked message can only be transmitted after the deadlock is detected with the
deadlock timer expries. Consequently, longer message latency is resulted.
7. Conclusion

In this paper, a practical method was proposed to avoid the request–request type message-dependent deadlock problem
that otherwise can severely impact the performance of a pipelined application with streaming protocols on an NoC architec-
ture. First, it was shown in this paper that the request–request type message-dependent deadlocks can be avoided by adding
the right number of non-uniform virtual channels (VCs) to specific links based on routing path selection. A sufficient condi-
tion was formally proved which determines the minimum number of non-uniform VCs for each link actually needed to ob-
tain such a deadlock-free NoC designs. Next, finding the minimum number of non-uniform VCs for each link was solved by
the PSMV method, which can be divided into two sub-problems. The first sub-problem is to minimize the number of the
maximum VCs (MinVC) among all the links. We proved the MinVC problem is NP-complete and thus proposed an MILP-
based solution. The second sub-problem tries to find the minimum number of VCs for each individual link based on the solu-
tion of the first sub-problem. PSMV can be integrated with any mapping algorithm whenever a deadlock-free design is de-
sired. Experiments based on four stream applications have confirmed that deadlocks are avoided with modest number of
additional buffers in PSMV. Compared with existing two message dependent deadlock resolution methods, CTC and DR,
PSMV shows the lowest message latency.

X. Wang et al. / Parallel Computing 39 (2013) 408–423 423
Acknowledgment

This work was supported in part by NSF under grant no. ECCS-0702168 and Chinese NSF under grant no. 60873112.

References

[1] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, G. De Micheli, NoC synthesis flow for customized domain specific multiprocessor
Systems-on-Chip, IEEE Trans. Parallel Distrib. Syst. 16 (2005) 113–129.

[2] R. Rajkumar, L. Sha, J.P. Lehoczky, Real-time synchronization protocols for multiprocessors, in: Proc Real-Time Systems Symp, 1988, pp. 259–269.
[3] A.H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen, M. Bekooij, B. Theelen, M. Mousavi, Throughput analysis of synchronous data flow graphs, in:

Proc Application of Concurrency to System Design(ACSD), IEEE, 2006, pp. 25–34.
[4] N.K. Kavaldjiev, A run-time reconfigurable Network-on-Chip for streaming DSP applications, Phd thesis, University of Twente, 2007.
[5] M. Ruggiero, A. Guerri, D. Bertozzi, M. Milano, L. Benini, A fast and accurate technique for mapping parallel applications on stream-oriented MPSoC

platforms with communication awareness, Int. J. Parallel Program. 36 (2008) 3–36.
[6] J. Hu, R. Marculescu, Energy-and performance-aware mapping for regular NoC architectures, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24

(2005) 551–562.
[7] M. Palesi, R. Holsmark, S. Kumar, V. Catania, Application specific routing algorithms for networks on chip, IEEE Trans. Parallel Distrib. Syst. 20 (2009)

316–330.
[8] A. Hansson, K. Goossens, A. Radulescu, Avoiding message-dependent deadlock in network-based Systems-on-Chip, VLSI Design 2007 (2007) 1–10.
[9] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks an Engineering Approach, Morgan Kaufmann, 2002.

[10] M. Bekooij, R. Hoes, O. Moreira, P. Poplavko, M. Pastrnak, B. Mesman, J.D. Mol, S. Stuijk, V. Gheorghita, J. van Meerbergen, Dataflow analysis for real-
time embedded multiprocessor system design, Dynamic and Robust Streaming in and between Connected Consumer-Electronic Devices 3 (2006) 81–
108.

[11] T.C. Huang, U.Y. Ogras, R. Marculescu, Virtual channels planning for networks-on-chip, in: Proc 8th Int’l Symp Quality Electronic Design IEEE, 2007, pp.
879–884.

[12] R. Marculescu, U.Y. Ogras, L.S. Peh, N.E. Jerger, Y. Hoskote, Outstanding research problems in NoC Design: system, microarchitecture, and circuit
perspectives, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28 (2009) 3–21.

[13] G. Ascia, V. Catania, M. Palesi, Mapping cores on network-on-chip, Int. J. Comput. Intell. Res. 1 (2005) 109–126.
[14] X. Wang, M. Yang, Y. Jiang, P. Liu, A power-aware mapping approach to map IP cores onto NoCs under bandwidth and latency constraints, ACM Trans.

Archit. Code Optim. 7 (2010) 1–30.
[15] N. Concer, L. Bononi, M. Soulié, R. Locatelli, L.P. Carloni, CTC: an end-to-end flow control protocol for multi-core systems-on-chip, in: Proc 3rd ACM/

IEEE Int’l Symp on Networks-on-Chip, IEEE, 2009, pp. 193–202.
[16] Y.H. Song, T.M. Pinkston, A progressive approach to handling message-dependent deadlock in parallel computer systems, IEEE Trans. Parallel Distrib.

Syst. 14 (2003) 259–275.
[17] A. Lankes, T. Wild, A. Herkersdorf, S. Sonntag, H. Reinig, Comparison of deadlock recovery and avoidance mechanisms to approach message dependent

deadlocks in on-chip Networks, in: Proc ACM/IEEE Int’l Symp Networks-on-Chip, IEEE, 2010, pp. 17–24.
[18] W.J. Dally, B. Towles, Principles and practices of interconnection networks, Morgan Kaufmann, 2004.
[19] M.R. Garey, D.S. Johnson, Computers and Intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, 1979.
[20] M. Skutella, Approximating the single source unsplittable min-cost flow problem, Math. Program. 91 (2002) 493–514.
[21] lp solve 5.5 available: lpsolve.sourceforge.net/5.5/.
[22] T264 available: www.sourceforge.net/projects/t264/.
[23] Noxim available: www.sourceforge.net/Noxim.
[24] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, in: Proc. Evolutionary Methods for Design,

Optimization and Control with Applications to Industrial Problems, 2001, pp. 95–100.

http://refhub.elsevier.com/S0167-8191(13)00068-9/h0005
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0005
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0010
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0010
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0015
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0015
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0020
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0020
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0025
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0030
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0030
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0035
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0035
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0035
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0040
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0040
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0045
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0050
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0050
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0055
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0055
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0055
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0060
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0060
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0065
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0065
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0065
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0070
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0070
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0075
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0075
http://refhub.elsevier.com/S0167-8191(13)00068-9/h0080
http://www.sourceforge.net/projects/t264/
http://www.sourceforge.net/Noxim

	Avoiding request–request type message-dependent deadlocks in networks-on-chips
	1 Introduction
	2 Related work on deadlock resolution in NoC
	2.1 Deadlock avoidance methods
	2.2 Deadlock recovery methods

	3 Target architectural and application models
	3.1 Application model
	3.2 Architectural model
	3.2.1 Router
	3.2.2 Local processing node

	4 Message-dependent deadlock in applications using streaming protocols and a motivating example
	5 Deadlock avoidance using virtual channels
	5.1 Sufficient condition for deadlock-avoidance with virtual channels
	5.2 Minimum non-uniform virtual channel algorithm

	6 Experiments
	6.1 Mapping algorithm
	6.2 Simulation settings
	6.3 Buffer and power overhead
	6.4 Network performance

	7 Conclusion
	Acknowledgment
	References

