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In this article, we present a highly scalable, flexible hardware-based network-on-
chip (NoC) emulation framework, through which NoCs built upon various types
of network topologies, routing algorithms, switching protocols and flow control
schemes can be explored, compared, and validated with injected or self-generated
traffic from both real-life and synthetic applications. This high degree of
scalability and flexibility is achieved due to the field programmable gate array
(FPGA) design choices made at both functional and physical levels. At the
functional level, a NoC system to be emulated can be partitioned into two parts:
(i) the processing cores and (ii) the network. Each part is mapped onto a different
FPGA so that when there is any change to be made to any one of these parts, only
the corresponding FPGA needs to be reconfigured and the rest of the FPGAs will
be left untouched. At the physical level, two levels of interconnects are adopted to
mimic NoC on-chip communications: high bandwidth and low latency parallel
on-board wires, and high-speed serial multigigabit transceivers available in
FPGAs. The latter is particularly important as it helps the proposed NoC
emulation platform scale well with the size increase of the NoCs.

Keywords: networks-on-chip; emulation; FPGA; verification; on-chip
interconnection networks

1. Introduction

In future many-core system on chip (SoC) designs, on-chip interconnect links
between cores will have significant effects on the overall system performance and
power consumption. In these SoCs with tens or even hundreds of cores integrated
either onto a single integrated circuit die, or onto multiple dies in a single chip
package, traditional interconnection techniques using a bus topology or dedicated
wires are no longer feasible due to insufficient data bandwidth and poor scalability.
As a viable alternative, the network-on-chip (NoC) paradigm has been proposed as
an enabling replacement to overcome the communication bottlenecks in future
many-core SoCs (Benini and Micheli 2002; Jantsch and Tenhunen 2003).

In a NoC system processing elements, such as processor cores, memories
and specialised intellectual property (IP) blocks, exchange data using the network
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constructed from multiple point-to-point data links interconnected by switches/
routers. There are a number of critical issues that need to be considered in designing a
power-efficient and high-performance NoC (Marculescu et al. 2009), such as the
topology selection, the design of the network interface and communication protocols,
and fault tolerance. This wide range of design choices requires a very time-consuming
and error-prone tuning and verification process, which involves extensive use of the
software- and/or hardware-based simulation/emulation techniques and tools.

. Software-based simulation approaches (Chan and Parameshwaran 2004;
Coppola et al. 2004; Bertozzi et al. 2005; Mahadevan, Virk, and Madsen
2007) are suitable for system design at early stages as they allow rapid design
space exploration due to their flexibility and low cost. However, these
approaches often suffer from relatively slow speed (Genko, Atienza, De
Micheli, and Benini 2007), and thus their applicability for extensively
evaluating a complete NoC system with real world data traces is questionable.

. Hardware-based emulation solutions (Moraes, Calazans, Mello, Mller and Ost
2004; Genko et al. 2007; Kumar, Hansson, Huisken, and Corporaal 2007;
Ogras et al. 2007; Abdellah-Medjadji et al. 2008; Krasteva et al. 2008), such as
ones using FPGAs, on the other hand, can help drastically reduce the system
evaluation time without compromising accuracy. One big problem with this
solution is that it does not scale well with the large systems due to the resource
limits of FPGA devices. In addition, FPGA-based emulation design typically
requires the whole system to be re-synthesised and re-implemented on FPGA
when there are any architectural and/or logic changes to be made on the
system to be emulated.

In this article, we propose a scalable NoC emulation platform implemented with
multiple FPGA devices. Using this proposed emulator, designers shall be able to
explore, compare and verify every aspect of a complete NoC design for complex
many-core SoCs, including network topologies, routing algorithms, switching
protocols and flow control schemes, with injected or self-generated traffic from
both real-life and synthetic applications.

To make the emulation platform highly scalable and also minimise the re-
synthesis needs when evaluating different NoC designs, we propose a number of
solutions in both the software and hardware layers.

. At the hardware layer, an emulation platform is built upon one or multiple
emulation module boards. Each single module board consists of five FPGA
chips, and it can emulate a complete 4 6 4 NoC architecture using a 32-bit
RISC processor core. Functionally, these five FPGAs are partitioned into two
parts: the resource part (four FPGAs) and the network part (one FPGA). One
big benefit by doing this is that when certain functionality change needs to be
made, only the impacted FPGA needs to re-synthesised. In addition, not only
can this platform employ high bandwidth and low latency parallel on-board
wires to mimic NoC on-chip communications, it also utilises the high speed
serial multigigabit transceivers available on FPGA to expand effortlessly along
with the size increase of the NoC to be emulated, which allows multiple
emulation module boards to be readily connected and configured to emulate
NoCs with much larger sizes (i.e. 8 6 8, 16 6 16, or even larger).
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. At the software layer, a real-life application program can be compiled using a
customised parallel compiler. Basically, a program is partitioned into smaller
pieces of run time units, tasks and/or thread constructs, and each unit is
bounded to a processing core and executed synergistically in the context of an
NoC. Moreover, software tools running at the host computer can set up the
emulation parameters, control the emulation process, and collect the
emulation results for display and further analysis.

The remainder of the article is organised as follows. In section 2, we briefly
discuss the related work, and the functionalities of the proposed emulation platform
are given in section 3. In section 4, we specify the NoC emulation framework and
emulation module board design with wire modelling. In section 5, we present a
detailed explanation of the evaluation/verification flow, two types of partition
strategies and the scale-up methodology. Implementation and experiments using the
proposed emulation platform have been reported in section 6. Finally, the
conclusions are drawn in section 7 along with the suggested future work.

2. Related work

In recent years, significant research efforts have been made in NoC simulation and
emulation for evaluating NoC designs at different abstraction levels. Several simulation
environments in SystemC (Bertozzi et al. 2005; Mahadevan et al. 2007) have been
proposed in order to perform NoC design without going down to the extensive process
of physical synthesis. A very high speed integrated circuit hardware description
language (VHDL)-based parameterised model for evaluating the performance in mesh
NoC topology has been presented (Chan and Parameshwaran 2004). An efficient
framework based on an object-oriented Cþþ library built on top of SystemC has been
provided for NoC simulation and design exploration (Coppola et al. 2004). However,
the disadvantage of these software solutions is their relatively slow speeds.

FPGA-based emulation systems are proposed for emulating NoC architectures for
reducing validation time. A switch employed in an XY routing algorithm has been
realised in an FPGA to validate the interconnection network (Moraes et al. 2004). In
Ogras et al. (2007) four NoC prototypes targeting specific applications, especially
multimedia applications, are discussed and a 4 6 4 mesh network without an actual
processing core is implemented. An FPGA emulation-based NoC prototyping
framework has been introduced (Krasteva et al. 2008), which utilised the partial
reconfiguration capabilities of an FPGA to reduce re-synthesis time for accelerating
emulation process, and a 2 6 2 mesh was mapped onto an FPGA as a demonstration.
A hardware-software emulation framework implemented on an FPGA has been
presented (Genko et al. 2007). It is shown that the FPGA-based emulation framework
achieves four orders of magnitude of speedup over a software simulator. An integrated
flow to automatically generate a configurable NoC-based multi-processor SoC has
been proposed (Kumar et al. 2007). The complete NoC architecture with three cores, a
single router and two network interfaces was emulated on an FPGA.

However, none of the above works is capable of emulating a complete, large scale
NoC, as their focus is either on limited aspects of NoC systems or small scale NoC
architectures caused by the resource limitation of a single FPGA. To address
this scalability problem, in Abdellah-Medjadji et al. (2008) a multi-FPGA-based
platform which can evaluate large-scale NoCs using multiple XUP VirtexII Pro
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boards was designed. To connect multiple FPGA boards, high-speed serial links are
employed which simulate physical links between routers. The wire-multiplexing
technique is applied to overcome resources and pin limitations. A NoC prototype
with only the traffic generators and receptors is implemented on two interconnected
boards as an illustration. A similar platform built on multiple Altera FPGA boards
is reported in Kouadri-Mostefaoui, Senouci, and Petrot (2008). However, the
scalability of these designs is limited with a single FPGA per board.

In the following, we will present a flexible and scalable multi-FPGA emulation
module board for complete prototyping of large-scale NoCs, which consists of
processing cores together with an on-chip network. This emulation module uses
parallel on-board wires with a high bandwidth and a low latency to implement the
physical links. This way, the performance statistics for large-scale NoCs to be
emulated can be readily obtained.

3. Functions and features of the proposed NoC emulation platform

The objective of this research is to build a multi-purpose, scalable emulation
platform which can evaluate, compare and verify various NoC systems for different
applications. Specifically, this proposed emulation platform will be able to emulate
every aspect of a NoC communication process which encompasses the functions
of traffic pattern generation, routing/switching, flow control, process monitoring
and evaluation, result data collection and analysis. As shown in Figure 1, these
functionalities can be abstracted and conveniently clustered into a three-layer
structure which consists of the application, the link/network, and the physical layers
(Liu et al. 2009a).

The application layer handles end-user applications under different traffic
patterns. Most of the network implementation details are hidden from this level.
The detailed functionalities that will be supported at this application layer are
summarised below.

. Emulate different types of latency critical or data streaming applications’
behaviours under multiple traffic patterns, including stochastic traffic in
uniform or non-uniform distributions, and real-life traffic.

Figure 1. A layered structure for NoC emulation.
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. Collect transient and statistic results for performance analysis in terms of
latency, throughput, degree of congestion, power consumption, and so on.

The link/network layer concerns the network and router aspects of a NoC design,
including the network topology, routing algorithm, switching strategy, flow control
scheme, and communication mode. Detailed functionalities that fall into this link/
network layer are summarised below.

. Evaluate both regular network topologies, such as mesh, torus, binary tree,
PRDT (Yang, Yang, Yang, and Jiang 2007), etc., and irregular topologies.

. Validate different deterministic and adaptive routing schemes, including
deterministic source routing, X–Y routing, and various adaptive routing
schemes that the routing path is decided on a per-hop basis by dynamic
arbitration mechanisms. There are a number of routing related features, and
thus the emulation platform shall be able to model and emulate: (i) various
switching protocols including the circuit switching, the packet switching, the
virtual cut-through, the wormhole switching, and the hybrid switching
schemes; (ii) various flow control schemes that involve different buffering
schemes and virtual channels; and (iii) three communication modes: unicast,
multicast, and broadcast.

At the physical layer, in addition to modelling and emulating the behaviours of
the physical wires, the processor type, the memory, and the core clock shall be
specified for a processing core. Synchronisation at the physical layer is an utmost
concern to realise reliable data transfer in a NoC system running with multi-clock
domains. Also at the physical layer, the wire delay and the power consumption has
to be estimated while studying the interconnect wire effects. In what follows, the
functionalities that are supported at the physical layer are summarised.

. Realise synchronisation for reliable data transfer in a multi-clock NoC system.

. Estimate wire delay and power consumption of various types of interconnec-
tion wires.

Besides all the aforementioned functionalities that are supported by the proposed
NoC emulation platform, there are a number of implementations and hardware
features that can help effectively accomplish these functionalities.

. High speed: the whole system shall be able to take advantage of modern
FPGAs running at high frequencies, 100 MHz or higher. High-speed FPGAs
can help reduce emulation/simulation time considerably, as compared with
software simulators. The high evaluation speed also enables an integral
functional verification with a large amount of data and more scenarios.

. High accuracy: the NoC architecture is modelled in hardware description
language (HDL) code, and cycle level accuracy is achievable.

. Flexibility: it is convenient to emulate several network topologies, explore
various router structures, and implement different applications by reconfigur-
ing corresponding FPGAs without re-synthesising the whole architecture.

. Scalability: the platform provides the capability to extend the emulation
system for a much larger scale NoC architecture involving a much larger
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number of processing cores (e.g., 8 6 8, 16 6 16 or even larger) by utilising
the serial multigigabit transceivers on the FPGA to connect multiple emulation
module boards.

. Great design space exploration: the emulator can validate various NoC
characteristics for real-life applications, including network topology, routing
algorithm, flow control scheme, and link synchronisation implementation, etc.
Hence, the optimum NoC communication architecture can be explored to meet
different design and performance study needs.

4. NoC emulation design

4.1. Emulation framework

To achieve the functions and features described in section 3, a multi-FPGA-based
emulation framework is designed. The proposed NoC emulation framework includes
both a hardware part and a software part as shown in Figure 2.

In essence, the hardware part harbours the complete NoC architecture to be
emulated. The memory supplies data storage space for the processing cores. The
controller and monitor unit initialises the NoC communication and collects the
emulation result data. Besides, the hardware platform features a universal serial bus
(USB) IP core and a universal asynchronous receiver transmitter (UART) interface
between the host computer and the NoC. To allow the interaction between the
hardware and the software, interface controllers that are accessible through a high
performance advanced microcontroller bus architecture (AMBA) have been
designed.

The software layer is responsible for (i) compiling and partitioning an application
program into tasks and then assigning them to the processor cores, (ii) setting up the
emulation parameters, (iii) controlling the emulation process of NoC architecture,
and (iv) displaying result statistics. In general, the designer can utilise software tools
residing and running on the host computer to configure the hardware emulation
platform for different NoC emulation purposes. The software tools contain a USB
communicator, an instruction set simulator (ISS), and a personal computer (PC)
UART monitor program.

Figure 2. NoC emulation framework.
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(1) The USB communicator is used to access USB hardware based on the USB
1.1 protocol. The whole address space of the AMBA bus can be accessed by
the USB communicator. It can be used to download the compiled program
into the SRAM and SDRAM for the processor core and collect the result
that is stored in memory. This program is loaded during the initialisation and
controls the emulation process that has several driver functions.

(2) The ISS is an instruction-accurate simulator whose instructions are
compatible with the MIPS 32 instruction set (MIPS Corp 2005). The ISS
can connect with USB interface so as to access the AMBA bus. The ISS can
replace the processor IP soft core for simulating the application program.

(3) The PC UART monitor completes the PC UART functions. Any
commercially available PC UART software tools can be used to commu-
nicate with the hardware platform. The program can initialise UART, print
the initial information, and wait for the user’s input to configure the
parameters for NoC emulation.

4.2. Emulation module board

The NoC emulation module board consists of five Xilinx Virtex-5 LX110T FPGA
chips shown in Figure 3. The physical wires on the emulation module are organised
as low-voltage CMOS (LVCMOS) parallel links and multigigabit transceiver serial
(MGT) lines. The four surrounding FPGAs are connected through a 2D mesh grid.
Each link between the adjacent FPGAs on the grid provides 90 single-bit lines
running at 100 MHz with a total data throughput of 9 Gb/s. The 152-bit parallel
LVCMOS interconnection wires are provided between the middle FPGA and the
surrounding FPGAs to achieve a total of 15.2 Gb/s data bandwidth. All these
FPGA-to-FPGA parallel links, which can faithfully emulate the interconnection
links in an NoC architecture, form one virtual FPGA but with much larger resources
capacity than any one actual FPGA can provide.

MGT is a power-efficient transceiver for Xilinx Virtex-5 FPGAs. It is highly
configurable and tightly integrated with the programmable logic resources of the
FPGA. The full-duplex serial channel can support 100 Mb/s to 3.75 Gb/s bandwidth
using 8B/10B encoding (Xilinx 2008). There are a total of 16 MGT transceivers on
the emulation model for off-board extension to provide up to 60 Gb/s communica-
tion bandwidth. The MGT serial interfaces are thus used to connect on-board and
off-board FPGAs for scalability purposes. That is,

. For the middle FPGA, two MGT transceivers are used to connect it with each
of the four surrounding FPGAs and the remaining eight MGT transceivers are
reserved for connecting to other FPGAs in another module board (off-board
extensions).

. For each surrounding FPGA, two MGT transceivers are needed to connect
with the middle FPGA, six MGT transceivers to connect with every adjacent
surrounding FPGA, and the other two MGT transceivers are reserved for off-
board connections.

Each FPGA on a module board has some reserved MGT channels for off-board
connections. Each of these off-board MGT channels is connected to a small
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form-factor pluggable (SFP) connector. The SFP transceiver is designed to support
synchronous high speed data communications protocols, such as optical networking
(SONET), Gigabit Ethernet, Fibre Channel, and other communications standards,
with data rates up to 4.25 Gb/s. Using these SFP transceivers, the emulation system
can be extended to include multiple emulation module boards that support a larger
NoC architecture.

Each surrounding FPGA communicates with the SRAM (4 Mbytes) and
SDRAM (256 Mbytes) for data storage. Each memory channel runs at 100 MHz
with a 32-bit or up to 64-bit data interface. As such, the peak aggregate memory
bandwidth for one FPGA can reach 6.4 Gb/s.

The emulation module utilises various available FPGA interconnect interfaces,
including JTAG, USB, and RS232 serial ports to (i) connect the host computer with
the emulation module to set up the emulation parameters, (ii) control the emulation
process, and (iii) collect results data. Moreover, each surrounding FPGA provides
one 1000 Base-T Ethernet interface for other types of data communications.

4.3. Modelling of wires

With modern deep submicron and nanofabrication technologies, the interconnect
wires, as opposed to the logic cells, dominate system performance in terms of timing
delay and power consumption. It is significant to study the NoC architecture in wire
modelling at the physical layer (Figure 1). The on-board wires and internal wiring
inside an FPGA chip will be modelled to provide emulation for on-chip wires of an
NoC system so that physical design issues such as wire delay and power consumption
can be estimated.

The wiring delay of a distributed RC line can be modelled as follows (Liu, Shen,
Zheng, and Tenhunen 2003).

Twire ¼ 0:39 rcl2 ð1Þ

where Twire is the wiring delay, l is the wiring length, r is the resistance per unit length
and c is the capacitance per unit length. The delay can be reduced by employing
various circuit structures, like inserting repeaters (Liu et al. 2003).

Based on Equation (1), the wire delay on different links between routers in a NoC
architecture can be determined, and thus the wires in the PCB board are deliberately
designed so that they exhibit the same delay as appeared in the NoC chip.

Power consumption is another design issue to be studied. The average packet
traversal energy can be utilised as a network energy efficiency metric (Lee, Lee, and
Yoo 2006). The energy consumed by one packet from the sender to the receiver can
be estimated by the following equation (Dally and Towles 2001; Lee et al. 2006).

Epkt ¼ H � Equeue þ ESF þ EARB

� �
þ L � ELink þ EQueue ð2Þ

where H and L are hop counts and link distance, between a sender and a receiver,
respectively. Energy consumption on a switching hop is composed of energy
consumption in an input queuing buffer or latch Equeue, switching fabric ESF, and
arbitration logic EARB. ELink stands for transmission energy on a unit length link.

In our design, Equation (2) is used to estimate the energy consumed by one flit
travelling from the sender to the receiver. Estimation of these parameters can be
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obtained by synthesis in the Synopsys Power Compiler tool. For example, the power
consumption in wires consists of dynamic power and leakage power. The leakage
power can be estimated with the Synopsys tool. The dynamic power can be estimated
as 0.5 cV2fa, where c is the capacitance of the wire, V is the voltage to be charged to,
f is the clock frequency, and a is the number of switching activities per unit time. The
switching activities per unit time can be acquired with a simulation tool, such as
Modelsim. Thus, the dynamic power can be reported by the power compiler.

Synchronisation in the wires at the physical layer is important to implement
reliable data transfer in the multi-FPGA NoC emulation system. In digital system
communication, when a transmitter chip sends data to receiver chip, the receiver
must sample the data with some clock source. One option is to generate a clock on
the board and distribute it to both chips. This implementation requires a slower
operating speed so that the clocks can be in phase with each other. The other option
is that the transmitter sends both the clock and data to the receiver, which can run at
a higher operating speed. The receiver chip uses asynchronous FIFO to accomplish
transformation between two clock domains. The FIFO in the router input/output
channel can be employed justifiably. In the proposed emulation platform both
synchronous schemes, shown in Figure 4, are supported.

5. Work flow using the proposed NoC evaluation on emulation platform

5.1. Synthesis flow

To use the proposed emulation platform described in sections 3 and 4, the NoC to be
emulated shall be modelled at the register transfer level (RTL) level using HDL,
preferably Verilog. Figure 5 shows the synthesis flow to validate a NoC design. The
flow begins with a complete NoC architecture and an underlined application. As
there are five FPGAs in the emulation platform, the whole NoC architecture needs
to be partitioned into no more than five subsets, and afterwards, each subset is
synthesised and mapped onto one FPGA.

The software tools running on the host computer are in charge of downloading
the application programs to the FPGAs, setting up all the configuration parameters,

Figure 4. Synchronisation on emulation platform.
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controlling the emulation process, and displaying the results collected from the
emulation hardware.

The FPGAs on the emulation platform can be configured via the JTAG interface
(Xilinx Corp. 2008). All five FPGA chips are connected in a serial daisy chain, as
shown in Figure 6. The devices connected in the JTAG chain are configured one by
one according to NoC partition subsets shown in Figure 5.

5.2. NoC partition

With five FPGAs available on the emulation module board, the NoC architecture
being emulated needs to be partitioned into five subsets. The partition strategy
should lead to minimum inter-FPGA connections, meanwhile, it must ensure that
each subset fits on one FPGA chip in terms of logic resources. In the following, two
types of partition strategies are described.

Figure 5. NoC emulation synthesis flow.

Figure 6. JTAG configuration chain for FPGAs.
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5.2.1. Function-based partition

In the function-based partition strategy, the five FPGA chips on the module board
are logically partitioned into two sets based on their functions: the resource chip set
which emulates processing cores and the network chip set which emulates various
interconnection networks. The resource chip set is composed of the four surrounding
FPGAs, and the network chip set is composed of the middle FPGA.

Each FPGA chip in the resource chip set can be configured to emulate single or
multiple processing cores for different emulation requirements. The basic function
units of a processing core include a packet generator (PG) and a packet receptor
(PR). The PG generates packets under various traffic patterns and different
communication modes (i.e. unicast, multicast and broadcast). Traffic patterns
include (i) stochastic traffic with uniform and non-uniform distributions and (ii)
traffic generated from real-life applications. The PR, on the other end, not only
handles received packets and conducts error checking, and also performs statistic
analysis on traffic results and assesses each and every individual independent packet
trace.

The network FPGA chip can be reconfigured to emulate different on-chip
interconnection topologies, such as mesh, torus, and PRDT. In addition, various
types of switching and flow control functions are supported by configuring this
FPGA chip.

The function-based partition strategy utilises the limited user I/O resource and
reconfiguration feature of FPGA sufficiently. The parallel on-board wires implement
interconnections between the processing cores and their routers. This partition
strategy also simplifies the re-synthesis of FPGAs in the way that if there is any
change to be made on one of the two parts, only the corresponding FPGA needs to
be reconfigured and resynthesised and the rest of the FPGAs will be left untouched.
For example, we can reconfigure only the network FPGA to alter the network
topology or routing algorithm while the network interface between the processing
core and the router remains unchanged.

Under this partition strategy, the size of the NoC system to be emulated will
be limited by the number of I/O pins available on the network FPGA. For the
Virtex-5 LX110T FPGA (with 640 I/O pins), the emulation module can emulate up
to 4 6 4 complete NoC systems with 16-bit data bandwidth of each channel
between each processing core and its router. Figure 7a illustrates the function-based
partition strategy using the example of a 4 6 4 mesh-based NoC system. The
network FPGA is mapped with a 4 6 4 mesh and each resource FPGA is
mapped with four processing cores. Every core connects with its own router by
parallel on-board wires. The specific signals between one processing core and its
router are listed in Table 1. The communication channel (in one direction) between a
processing core and its router consists of 19 bits, including 16 data bits, 2 control bits
and 1 clock bit.

5.2.2. Region-based partition

In the region-based partition strategy, each FPGA chip implements a region of the
NoC system which is composed of a set of processing cores and their routers. The
regions may be partitioned in various ways to achieve different objectives, such as
better utilisation of resources on each FPGA or better utilisation of the parallel wires
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on the board. Figure 7b shows one type of region partition for 4 6 4 mesh-based
NoCs, which makes better use of the parallel wires between the middle FPGA and
the surrounding FPGAs.

Under the region-based partition strategy, the number of wires needed between
two FPGAs is determined by the partition of regions. Table 2 lists the inter-FPGA
wires, using 19-bit channels (16 data bits, 2 control bits, 1 clock bit) between routers,
for different 4 6 4 NoC topologies based on the partition in Figure 7b. As the
number of parallel wires available between two surrounding FPGAs is 90-bit, which
is less than the needed amount for torus and PRDT, the MGT serial links will be
used for inter-FPGA communications between the surrounding FPGAs. Thus, the
wire multiplexing technique must be used.

Though wire multiplexing requires extra logic compared with the function-based
partition strategy, the benefit of the region-based partition strategy lies in the
possibility for supporting larger size NoCs as the resources in the middle FPGA are
better utilised under this partition strategy. For instance, by implementing four
processing cores and their routers on one FPGA, the emulation module can support

Table 1. Signals between processing core and router.

Name Bit width Function

Packet_in 16 Flit data for input channel
Req_in 1 Request for input channel
Ack_out 1 Acknowledgement for input channel
Rx_clk 1 Clock for input channel
Packet_out 16 Flit data for output channel
Req_out 1 Request for output channel
Ack_in 1 Acknowledgement for output channel
Tx_clk 1 Clock for output channel

Figure 7. (a) Function-based partition. (b) Region-based partition.
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up to a 4 6 5 network. In addition, the region-based strategy is convenient for
emulating smaller size NoCs, e.g., only the middle FPGA need be configured to
emulate 2 6 2 NoCs.

5.3. Scalability

For an NoC architecture with many more processing nodes, multiple emulation
modules can be built to construct even larger scale emulation systems using MGT
transceivers. We give an example of the possible interconnection of multiple
emulation modules for mesh NoC topology under the function-based partition
strategy. Figure 8 shows the connection of four 4 6 4 meshes to form an 8 6 8
mesh NoC architecture.

To interconnect two emulation module boards, four MGT transceivers on the
network FPGAs of different module boards will be needed, respectively. All eight
MGT off-board links of the network FPGAs will be used for the connection of
adjacent modules to form an 8 6 8 mesh NoC. The connection channels between
every two routers on the two adjacent emulation modules must be multiplexed onto
one MGT transceiver. For other network topologies, such as torus or PRDT, more
interconnections will be multiplexed on one MGT channel.

6. Implementation

6.1. Board implementation and emulating configuration

The emulation module is implemented on a 22-layer PCB board (14.3 inch 6 12.4
inch). It consists of five Virtex-5 LX110T FPGAs with a total of 16 MB SRAM and
1 GB SDRAM for data storage. Besides, there are five USB, JTAG, and RS232
serial ports for debugging, four 1000 Base-T Ethernet interfaces for communication,
and 16 SFP connectors for off-board extension. The picture of the NoC emulation
module board is shown in Figure 9.

The proposed emulation module board can be used for various design and
verification purposes. In this section one reference design is suggested, with all
possible configuration setups that are needed to run a NoC on the proposed
emulation platform given in Table 3. Specifically,

. A processing core is configured with either a RISC core or a basic processing
module with PG and PR, and the cache and translation lookaside buffer (TLB)
sizes of the RISC core are configurable.

. The network interface (NI) (Xia et al. 2010), which enables a processing core to
communicate with the network, can be partitioned into two parts: the
resource-dependent part and the resource-independent part. There are three

Table 2. Inter-FPGA connections of 4 6 4 NoC based on the partition shown in Figure 7b.

Item

Requested number of wires

Mesh Torus PRDT

Middle FPGA – surrounding FPGA 76 76 114
Adjacent surrounding FPGAs 38 114 152
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types of NIs with different resource dependence: (1) AMBA bus-based NIs
which connect the processor to the network through the AMBA bus; (2) direct
memory access (DMA)-based NIs which access the processor’s on-chip
memory through a DMA channel; (3) memory-based NIs which connect
memory elements with network that can responds requests.

. The architecture of a router can be configured in different aspects. The number
of input/output ports can be modified according to the network topology. The
buffer depth in each input/output channel of router can be changed according
to the flow control strategy. The routing algorithm can be either a deterministic
or an adaptive one. The switching scheme is fixed as wormhole switching.

Various applications can run on the emulated NoC architecture, including
synthetic traffics, real-life scientific computation kernels, such as FFT, Cannon and
Gauss Jordan algorithm, and multimedia programs, for instance H.264, MPEG-1
and MPEG-4.

6.2. Emulation example

To verify the implemented emulation platform, one emulation module board is used
for evaluating the H.264 decoding program on a 2 6 2 mesh-based NoC configured

Figure 8. Interconnection of 8 6 8 mesh NoC using four emulation module boards.
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with four RISC processor cores and a function-based partition strategy. Each core is
a high-performance 32-bit RISC processor compatible with MIPS4Kc (Liu et al.
2005). Figure 10 shows the specific mapping of the 2 6 2 mesh-based NoC
architecture. Each resource FPGA is configured with one RISC processor core which
is attached to the AMBA bus in order to connect with peripheral memory,
communication, and debugging interfaces. One of these four cores, named the
control core, is responsible for initialising the NoC communication, starting the
other cores, collecting the result data and calculating statistics, while the other three
cores (called synergic cores) are only used for computation. The network FPGA is
mapped with a 2 6 2 mesh of routers implemented with deterministic routing
algorithm. Each router consists of five input/output ports, 16-depth first-in first-out
(FIFO) buffers and two virtual channels for each port (Liu et al. 2009b).

Table 3. Configuration setups of various building blocks in an NoC of interest.

Building
blocks Type Configurable parameters

Processing
core

RISC processor ICache and DCache: 8, 16, 32, 64 KB, 4-way,
16-bytes line size

2-level TLB: 3-entry ITLB and DTLB, 16-entry JTLB
ScratchPad memory: 4, 8, 16 KB

PG and PR –
NI Resource dependent AMBA bus-based, DMA-based, Memory-based
Router Input/output ports Mesh with four ports, Torus with five ports,

PRDT with nine ports
Buffer depth 4, 8, 16-entry FIFO
Routing algorithm Deterministic, adaptive

Figure 9. Picture of the NoC emulation module board.
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The H.264 decoding program is partitioned into four cores following a coarse-
grained program partition strategy at the frame level (Figure 11). The program is
first downloaded into the peripheral memory of the control core. The control core is
started through an external manual reset signal. During the initialisation phase, the
partitioned programs for the synergic cores are loaded to their corresponding cores
by the control core though the 2 6 2 mesh network. After the initial program
transfer, the control core starts the synergic cores running by configuring the
dedicated register connected with the reset signals of the synergic cores. During the
program execution, all RISC cores also communicate through the network.

In this experiment, four typical video sequences with 58 frames in Quarter
Common Intermediate Format (QCIF) format are tested. The application program
is partitioned statically in the frame level shown in Figure 11. The control core is
responsible for decoding I-frames and P-frames in the sequence, and the synergic
cores are in charge of decoding B-frames. To decode one B-frame, the decoded data
of the reference I-frame or P-frame needs to be transferred to the synergic cores.
Table 4 reports the execution time in clock cycles. It can be seen that the payload on
the control core is heavy and the utilisation of the synergic cores is about 75%.
Moreover, the communication time accounts for less than 1% of the program
running time because of the small amount of communication under the frame-level
program partition strategy. The total amount of data transferred between RISC
cores is 90,000 words (32-bit). The average latency to transfer one packet (32-bit
data) on the 2 6 2 network is 2.6 clock cycles. The program execution time can be
reduced by partitioning the program at finer grains (e.g. macroblock-level), which
will better exploit the parallelism of the program and balance the payload on each
processor core.

As shown in Figure 12, compared with software simulation at the RTL using the
Modelsim tool, our FPGA-based emulation platform achieves more than a 104

magnitude speedup for the same experiment using the foreman sequence. The
speedup result is obtained in the following way. The execution time needed to decode

Figure 10. Specific mapping for 2 6 2 NoC architecture based on the partition shown in
Figure 7a.
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the 58-frame sequence on our FPGA-based emulation module operating at 54 MHz
is 13 s. It takes 247 min to decode one frame on the software simulator, therefore,
the simulation time needed to decode the whole sequence (58 frames) is
approximately 239 h. The environment for the software approach is an AMD
Opteron 2387 processor running at 2.80 GHz configured with 4 GB memory.

6.3. Demonstrative evaluation

Under the function-based partition strategy, as discussed in section 5.2, a complete
4 6 4 mesh-based NoC system can be supported on one emulation module board by
configuring each resource FPGA with four processing cores, and the network FPGA
with 4 6 4 mesh of routers. The utilisation of the resources on one FPGA is shown
in Table 5, which shows that the network requires less logic resources than the RISC
processing cores.

Table 5. Resource usage of NoC elements.

Partition Block Cell Usage Percentage

Function-based Four RISC processor cores Registers 34,079 49
LUTs 54648 79

4 6 4 routers network Registers 13442 19
LUTs 26635 38

Region-based Four processing cores with
their own routers

Registers 37526 54
LUTs 57481 83

– PG and PR Registers 1361 1
LUTs 1624 2

Table 4. Execution time of H.264 decoding program on 2 6 2 mesh NoC.

Sequence
Total cycles

(106)
Communication

cycle (103)
Execution cycles

on control core (106)
Execution cycles on

one synergic core (106)

Foreman 621.89 235.55 621.89 458.99
Salesman 622.24 236.29 622.24 464.01
Container 610.26 237.87 610.26 432.96
Akiyo 605.87 234.43 605.87 442.71

Figure 12. Comparison between hardware emulation and software simulation.
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On the other side, under the region-based partition strategy, each FPGA chip is
configured with four processing cores and their own routers. Based on the resource
usage reported in Table 5, it is clear that the emulation module is capable of
emulating a complete 4 6 5 mesh-based NoC system.

In addition, for evaluating interconnection network behaviours only, another
configuration is used where each core is configured with the basic processing
modules, PG and PR. In this simple configuration, much fewer logic resources are
needed than by the RISC core (Table 5). Note that if the FPGA I/O pins become the
constraining factor for scaling up, wire multiplexing has to be used as suggested in
section 5.

7. Conclusion

A flexible and scalable multi-FPGA emulation platform that can be utilised to
validate and test a complete large scale NoC system has been presented. The
platform not only provides abundant logic resources for emulating real processing
core behaviours, but also employs high bandwidth, low latency parallel links
between FPGAs to directly emulate interconnections in NoCs. The multiple
emulation module boards can be interconnected through the FPGAs’ MGT serial
links that would allow the system to be scaled up to a much larger size. A work
flow, based on multiple FPGA configurations, with two NoC architecture partition
strategies, has also been proposed. As a demonstration, the H.264 decoding
application program using a coarse-grained partition scheme has been executed on
processor cores connected through a 2 6 2 mesh-based NoC. The run time
speedup for this application is shown to be four orders of magnitude faster than
the software-based simulator. In the next step, we plan to use the proposed
emulation platform to carry out extensive performance evaluation of large size
NoC architectures in terms of program execution, network communication and
power performance under various synthetic and real-life applications using a fine-
grained program partition strategy.
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