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Abstract— Nonblocking interconnection networks are always
favored to be used as switching networks whenever possible.
Crosstalk-free requirement in photonic networks adds a new
dimension of constraints for nonblockingness. Routing algorithms
play a fundamental role in nonblocking networks, and any algo-
rithm that requires more than linear time would be considered
too slow for real-time applications. One remedy is to use multiple
processors to route connections in parallel and the other is to
construct cost effective self-routing nonblocking networks. In this
paper, we propose a new class of self-routing strictly nonblocking
networks by studying the connection capacity of Banyan-type net-
works. Compared with existing strictly nonblocking self-routing
networks, the presented new networks have lower hardware
cost, shorter connection diameter, and much smaller number
of required wavelengths. Consequently, they are more feasible
for implementation with reduced optical signal attenuation and
crosstalk.

Index Terms— Self-routing, crossbar, Banyan network,
crosstalk, optical switching, nonblocking network.

I. INTRODUCTION

The deployment of optical fibers as a transmission medium
aroused the problem of speed mismatching between transmis-
sion and switching. To build a large IP router with capacity of
1 Tb/s and beyond, either electronic or optical switching can
be used. Optical communications with photonic switching are
promising to provide high bandwidth and low error probability.

A switching network usually comprises a number of elec-
tronic or photonic switching elements (SEs) grouped into
several stages interconnected by a set of wires or optical links.
Each SE has two inputs and two outputs, and two states,
namely, bar and cross (see Fig. 1).
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Fig. 1. An SE and its two states.

An electronic SE can be implemented by a 2× 2 crossbar1,
and a photonic SE can be implemented by a 2 × 2 electro-
optical SE such as a common lithium-niobate (LiNbO3) SE

1In this paper, an M × N network means that it has M inputs and N
outputs.

(e.g. [4], [5], [15]). Each electro-optical SE is a directional
coupler with two inputs and two outputs. Depending on the
amount of voltage at the junction of two waveguides, optical
signals carried on either of inputs can be coupled to either
of outputs. An electronically controlled optical SE can have
switching speed ranging from hundreds of picoseconds to tens
of nanoseconds [13]. However, due to the nature of optical
devices, photonic switching holds their own challenges. One
problem is path dependent loss, the substantial signal loss on
the longest connection path, which is directly proportional to
connection diameter, the number of SEs on this path. Another
problem is crosstalk, which is caused by undesired coupling
between signals with the same wavelength carried in two
waveguides so that two signal channels interfere with each
other. Fig. 2 shows an example of crosstalk in an electro-
optical SE. For the bar state, a small fraction of input signal
injected at the upper input may be detected at the lower
output (see Fig. 2). Crosstalk can also occur when an electro-
optical SE is in the cross state. Consequently, the input signal
will be distorted at the output due to the loss and crosstalk
accumulated along a connection path.
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Fig. 2. Crosstalk in an electro-optical SE.

In a switching network, if multiple connections contend for
a link at the same time, link conflict occurs. In addition to link
conflict, the only type of blocking in electronic switching net-
works, the crosstalk problem in photonic switching networks
introduces a new type of blocking, called node conflict, which
happens when multiple connections with the same wavelength
try to pass through the same SE at the same time.

If a connection path does not have any link (resp. node)
conflict with other connection paths, it is called a link conflict-
free (resp. node conflict-free) path. Clearly, node conflict-free
path is also link conflict-free, but the converse is not true. The
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process of establishing conflict-free connection paths to satisfy
connection requests is called switch routing. A switch routing
algorithm is needed to find these paths.

Nonblocking networks have been favored in switching sys-
tems because a conflict-free connection path is always avail-
able to connect any idle input to any idle output. One type of
nonblocking networks, called strictly nonblocking networks,
in which the connection can be established without disturbing
existing connections, has the highest degree of connection
capability. Routing algorithms play a more fundamental role
in nonblocking networks since the nonblockingness depends
on them. The high complexity of the routing algorithms
may become a performance bottleneck for high-speed switch-
ing networks. Thus, switching networks, called self-routing
networks, have been proposed. In a self-routing network, a
connection can be established only by the addresses of its
source and destination regardless of other connections. A self-
routing network can be either blocking such as a Banyan-type
network or nonblocking such as a crossbar.

To reduce path dependent loss, an optical switching network
must have a small connection diameter. Crossbar network is
not scalable for constructing large optical switches because
of its relatively large diameter. Banyan-type networks with
logarithmic diameters have been the focus of implementing
optical switches. However, they are blocking networks. Al-
though nonblocking networks can be built by horizontally
concatenating extra stages to a Banyan-type network and
vertically stacking multiple copies of the extended Banyan
[7], [8], [10], [17], [18], routing K connections sequentially
in these networks needs Ω(K log N) time. When the number
of connection requests is large, the routing time complexity is
greater than O(N). It turned out that simultaneously finding
multiple connection paths in these networks is not a simple
problem. Routing algorithms with sublinear time for this
class of networks using parallel processing techniques were
proposed in [9].

In this paper, we propose a self-routing strictly nonblocking
network, T (N,α), to further reduce routing time. α is defined
as crosstalk factor. That is, α = 0 if the network has only
link conflict-free constraint, and α = 1 if the network has
node conflict-free constraint. Networks T (N, 0) and T (N, 1)
are suitable for electronic and optical implementation, re-
spectively. Compared with existing strictly nonblocking self-
routing networks, the presented new networks T (N,α) have
lower hardware cost, shorter connection diameter, and much
smaller number of required wavelengths.

The remainder of this paper is organized as follows. In
Section II, we discuss existing self-routing networks. In Sec-
tion III, we study the connection capacity of Banyan network,
propose a new structure T (N,α) for self-routing strictly non-
blocking networks, and compare it with existing self-routing
networks. Finally, we conclude our paper in Section IV.

II. EXISTING SELF-ROUTING NETWORKS

A. Crossbar

Basically, an N×M crossbar, as shown in Fig 3 (a), consists
of an array of N ×M individually operated switching points.
For electronic switching, these points are called crosspoints.
Each crosspoint has two logical states: cross and bar states, as
shown in Fig 3 (b). For photonic switching, switching points

can be implemented by electro-optical SEs, as shown in Fig
3 (c).
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Fig. 3. (a) Crossbar. (b) States of crosspoint. (c) A 4×4 crossbar for photonic
switching.

A connection between input i and output j in a crossbar is
established by setting the (i, j)-th switching point to be bar
state while letting other switching points along the connection
remain the cross state. The bar state of a switching point can
be triggered individually by the destination of each incoming
connection.

The crossbar has three attractive properties: it is strictly
nonblocking, simple in architecture, and self-routing. For an
N × N crossbar, however, the hardware cost in terms of
the number of crosspoints and SEs is N2 and its connection
diameter is 2N −1 (because the longest connection path from
0 to N − 1 needs to pass 2N − 1 switching points). To
our knowledge, all known strictly nonblocking networks with
hardware cost less than O(N2) are not entirely self-routing.

B. Banyan-type Network

A network belonging to the class of Banyan-type networks
satisfies the following basic properties:

(i) It has N inputs, N outputs, log N -stages and N/2 SEs
in each stage2.

(ii) There is a unique path between each input and each
output.

(iii) Let u and v be two SEs in stage i, and let Sj(u) and
Sj(v) be two sets of SEs to which u and v can reach in
stage j, 0 < j = i+1 ≤ log N . Then Sj(u)∩Sj(v) = ∅
or Sj(u) = Sj(v) for any u and v.

Several well-known networks, such as Banyan, Omega,
Shuffle, and Baseline, belong to this class. It has been shown
that these networks are topologically equivalent [1], [20]. In
this paper, we use Baseline network as the representative of
Banyan-type networks.

An N × N Baseline network, denoted by BL(N), is
constructed recursively. A BL(2) is a 2 × 2 SE. A BL(N)
consists of a switching stage of N/2 SEs, and a shuffle
connection, followed by a stack of two BL(N/2)’s. Thus a
BL(N) has log N stages labeled by 0, · · · , log N−1 from left
to right, and each stage has N/2 SEs labeled by 0, · · · , N/2−1
from top to bottom. The upper and lower outputs of each
SE in stage i are connected with two BL(N/2i+1)’s, named
upper subnetwork and lower subnetwork, respectively. The N
links interconnecting two adjacent stages i and i+1 are called
output links of stage i and input links of stage i + 1. The N

2In this paper, we let n = log N and all logarithms are in base 2.
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input links in the first stage of BL(N) are connected with
the N inputs of BL(N) and the N output links in the last
stage of BL(N) are connected with N outputs of BL(N). To
facilitate our discussions, the label of each stage, link and SE
is represented by a binary number. Let alal−1 · · · a1a0 be the
binary representation of a. An example is shown in Fig. 4.
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Fig. 4. Self-routing of Baseline network BL(16).

Self-routing in BL(N) is decided by the destination ad-
dress, dn−1dn−2 · · · d0, of each connection. If dn−i−1 = 0, the
input of the SE on the connection path in stage i is connected
to the SE’s upper output, and to the lower output otherwise
(i.e., dn−i−1 = 1). As shown in Fig. 4, the connection paths P0

and P1 are set up by self-routing in BL(16). For example, for
connection from 0010 to 1011, since its destination is 1011,
the connection path P0 passes the lower, upper, lower, and
lower outputs of the SEs 1, 4, 4 and 5 in stages 0, 1, 2, and 3,
respectively. P0 and P1 have the output link conflict in stage
2 and input link conflict in stage 3. If each SE is an electro-
optic SE in BL(16), then they also have node conflicts at SEs
4 and 5 in stages 2 and 3, respectively.

The Banyan-type network has the following advantages.
Firstly, it has the hardware cost O(N log N) in terms of the
number of crosspoints and SEs, which makes it much more
feasible than crossbar for the construction of large switching
networks. Secondly, self-routing is an attractive feature in that
no complex routing mechanism is needed for establishing con-
nections. Thirdly, due to its modular and recursive structure,
large-scale networks can be easily built by adding one stage
of SEs and a set of links with a shuffle connection without
modifying its original structure. Finally, it has short connection
diameter log N , which makes it suitable for optical switching.
However, it is a blocking network, and it has been shown that
its performance degrades rapidly as the size of the network
increases.

III. A NEW CLASS OF SELF-ROUTING STRICTLY

NONBLOCKING NETWORKS

Based on BL(N), we propose a new class of self-routing
strictly nonblocking switching networks with log N connec-
tion diameter and less SEs and wavelengths compared with
crossbar.

A. Connection Capacity of BL(N)
Let I be a set of N inputs, I0, · · · , IN−1, and O be a

set of N outputs, O0, · · · , ON−1, of BL(N). Let g = 2i,

0 ≤ i ≤ n. Then the k-th modulo-g input group comprises in-
puts I(k−1)g, I(k−1)g+1, · · · , Ikg−1, and the k-th modulo-g out-
put group comprises outputs O(k−1)g, O(k−1)g+1, · · · , Okg−1,
where 1 ≤ k ≤ N/g.

We say that two connections share a modulo-g input (resp.
output) group if their sources (resp. destinations) are in the
same modulo-g input (resp. output) group. Clearly, if two
connections do not share any modulo-g1 input (resp. output)
group, then they do not share any modulo-g2 input (resp.
output) group with g2 ≤ g1. Let us study the connection
capability of BL(N) first.

Lemma 1: For any connection set C of BL(N), if no two
connections in C share any modulo-g input group, then the
connection paths for C are node conflict-free in the first log g
stages; if no two connections in C share any modulo-g output
group, then the connection paths for C are node conflict-free
in the last log g stages, 2 ≤ g ≤ 2n.

It is easy to verify that Lemma 1 is true according to the
topology of BL(N). For brevity, we omit the proof of this
lemma. For example, in Fig. 4, two connections along paths
P0 and P1 do not share any modulo-4 input group, and thus,
there is no node conflict in the first two stages. But they share
the first modulo-8 input group and the sixth modulo-2 output
group, and thus, there are node conflicts in stages 2 and 3. By
Lemma 1, the following claim can be derived.

Lemma 2: Given a connection set C of BL(N), if any two
connections in C do not share any modulo-2�

n+α
2 � input group

and also do not share any modulo-2�
n+α

2 � output group, then
(i) for α = 0, there is no link conflict in BL(N);
(ii) for α = 1, there is no node conflict in BL(N).

Proof: We prove the lemma by considering the following
two cases.
1) n is even:
We have 2�

n+α
2 � = 2

n
2 . Since there are no two connections

sharing any modulo-2
n
2 input and output groups, by Lemma

1, there is no node conflict in the first n
2 and last n

2 stages.
Since n

2 + n
2 = n, there is no node conflict in all n stages

of BL(N). Since no node conflict in stage i implies no link
conflict in stage i. Thus, there is neither link conflict nor node
conflict in BL(N).
2) n is odd:
2.1) For α = 0, we have 2�

n+α
2 � = 2

n−1
2 . Since there are no

two connections sharing any modulo-2
n−1

2 input and output
groups, by Lemma 1, there is no node conflict in the first n−1

2
stages, stage 0 to stage n−3

2 , and last n−1
2 stages, stage n+1

2 to
stage n−1. Thus, there is no node conflict in all stages except
the central stage, stage n−1

2 , of BL(N). Since the output links
of stage n−3

2 is the input links of stage n−1
2 and the input links

of stage n+1
2 is the output links of stage n−1

2 , there is no link
conflict in all stages of BL(N).
2.2) For α = 1, we have 2�

n+α
2 � = 2

n+1
2 . By Lemma 1, there

is no node conflict in the first n+1
2 and last n+1

2 stages Since
n+1

2 + n+1
2 > n, there is no node conflict in BL(N). �

By Lemma 2, if we only allow one connection to pass
through each modulo-2�

n
2 � input and output groups at any

time, then we can route connections in BL(N) without link
conflict; if we only allow one connection to pass through each
modulo-2�

n+1
2 � input and output groups at any time, then we

can route connections in BL(N) without node conflict. The
new class of self-routing strictly nonblocking networks will be
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built based on this idea.

B. Constructing T (N,α)

In this subsection, we assume that M = 2m = N2

21−α and
g = N

21−α = 2n−1+α.
Lemma 3: Given a connection set C of BL(M), if neither

do two connections share any modulo-g input group nor do
they share any modulo-g output group in a given connection
set C, then C can be set up without conflict in BL(M).

Proof: By M = 2m = N2

21−α = (2n)22−1+α = 22n−1+α,
we have m = 2n − 1 + α. According to Lemma 2, if any
two connections in C do not share any modulo-2�

m+α
2 � =

2�
2n−1+2α

2 � = 2n−1+α input and output groups at any time,
then we can route the connections of C in BL(M) with link
conflict-free constraint (i.e. α = 0) or with node conflict-free
constraint (i.e. α = 1). �

We select the first input in each modulo-g input group of
BL(M) as a useful input of BL(M), and the first output in
each modulo-g output group of BL(M) as a useful output
of BL(M). Clearly, M/g = N . Thus, restricted to these
useful inputs and outputs, BL(M) can be used as an N ×N
self-routing switching network with link or node conflict-free
constraint, depending on the value of α by Lemma 3. In
the following we show how to construct an N × N self-
routing strictly nonblocking network, denoted by T (N,α),
from BL(M).

We first give some definitions. A link (resp. SE) is called
a redundant link (resp. SE) if its removal will not affect the
switching functionality of BL(M) for establishing connec-
tions from N useful inputs to N useful outputs; otherwise it
is called an essential link (resp. SE). T (N,α) is constructed
from BL(M) by performing the following two steps to remove
all redundant links and SEs.

Step 1. Because BL(M) has m = 2n − 1 + α = n + log g
stages, the subnetworks of BL(M) induced by the SEs from
stage n to the last stage form a set of 2n BL(g)’s. Since each
of these BL(g)’s is connected with exactly one useful output
of BL(M), at most one of any given set of connections from
useful inputs to useful outputs is routed though each BL(g).
We replace each of these BL(g)’s by a g × 1 combiner, and
set the output of this combiner as an output of T (N,α).

Step 2. To complete the construction of T (N,α), we need
to remove additional redundant SEs and links in the first n
stages of BL(M). It can be done by starting from stage 0 to
stage n−1 as follows. Initially, N useful inputs are considered
to be connected with N essential links in stage 0. In stage
i, 0 ≤ i ≤ n − 1, do the following operations. Firstly, we
identify all essential SEs and links: if an SE has one of input
connecting with an essential link, it is marked as an essential
SE and its two output links are marked as essential links.
Secondly, we remove all redundant SEs and links: if a link is
not an essential link, it is removed; if both input links of an
SE have been removed, this SE and its two output links are
considered redundant and removed.

Fig. 5 (a)(i) and (b)(i) show BL(32) and BL(64), respec-
tively, where essential links and SEs are highlighted with dark
color and redundant links and SEs are colored gray. Fig. 5
(a)(ii) and (b)(ii) show T (8, 0) and T (8, 1) constructed from
BL(32) and BL(64), respectively.

In BL(M), we know that two outputs of each SE in one
stage are connected with two SEs of next stage, one in the
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Fig. 5. (a) Construction of T (8, 0) from BL(32). (b) Construction of
T (8, 1) from BL(64).

upper subnetwork and the other in the lower subnetwork. Thus,
the number of essential SEs in stage i (0 ≤ i ≤ n−1) equals to
min{2iN,M/2} = min{2n+i, 22n−2+α}. Let s(N,α) denote
the number of SEs in T (N,α). It is easy to verify that there
are 2n+i essential 1 × 2 SEs in stage i, (0 ≤ i ≤ n − 2),
22n−2+α essential (2 − α) × 2 SEs in stage n − 1, and zero
essential SE in the remaining stages of BL(M). Therefore,
by a simple calculation, the total number of SEs in T (N,α)
is

s(N,α) =
n−2∑
i=0

2n+i + 22n−2+α =
3 + α

4
N2 − N

=
{

3N2

4 − N, if α = 0
N2 − N, if α = 1

In T (N,α), input (resp. output) i is corresponding to input
(resp. output) i′ of BL(M), where the binary representation
of i′ is the binary representation of i concatenating with log g
0s at the end. It means that the first log M − log g = n bits
for i and i′ are the same. Therefore, the routing process in
T (N,α) is the same as that in BL(N), which is self-routing.

We summarize the above discussions by the following
claim.

Theorem 1: T (N,α) is an N × N self-routing strictly
nonblocking network of log N stages. For α = 0, it consists
of 3N2

4 −N SEs, among which N2

2 −N SEs are of size 1×2
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and N2

4 SEs are of size 2×2; for α = 1, it consists of N2−N
SEs, all of size 1 × 2.

An optical switching network is considered crosstalk-free if
the connections passing through the same SE have different
wavelengths ([3], [12], [14], [19]) provided any two connec-
tions neither share an input nor share an output of this network.
For practical reasons, the number of wavelengths used must
be small. Clearly, if two connection paths are allowed to pass
through an SE, then at least two wavelengths are required.
In general, two wavelengths are not sufficient for an optical
switching network. For example, for an N × N crossbar, in
order to establish an identity permutation, which means input
i is mapped to output i, then N wavelengths are necessary for
crosstalk-free routing. In this aspect, T (N,α) is superior, as
indicated in the following claim.

Corollary 1: T (N, 1) is crosstalk-free with one wavelength
and T (N, 0) is crosstalk-free with two wavelengths.

Proof: Since all SEs in T (N, 1) are of size 1×2, there is
only one connection can be passed through an SE at one time.
Thus, one wavelength is sufficient for crosstalk-free routing in
T (N, 1). All SEs in T (N, 0) are of size 1×2 except the ones
in the last stage. Thus, a total of two wavelengths are sufficient
to ensure that the connections passing trough the same SEs use
different wavelengths. �

C. Comparison

Compared with self-routing Banyan-type networks,
T (N,α) is strictly nonblocking, which is promising for high
performance switching.

Smaller connection diameter is very important for optical
implementation. The attenuation of light passing through op-
tical switching networks has several components such as fiber-
to-switch and switch-to-fiber coupling loss, propagation loss
in the medium, loss at waveguide bends, loss at the couplers,
etc. In a large switching network, a substantial part of this
attenuation is directly proportional to the number of couplers
that the optical path passes through. Thus, the connection
diameter is used to characterize the signal loss [11].

Compared with an N ×N crossbar for photonic switching,
T (N, 1) requires slightly fewer number of SEs and only one
wavelength; T (N, 0) requires much fewer number of SEs with
two wavelengths available. The difference between N × N
crossbar and T (N,α) for photonic switching is much more
noticeable as shown in Table I.

Networks Number of SEs Diameter Number of wavelengths

Crossbar N2 2N − 1 N

T (N, 0) 3N2

4
− N log N 2

T (N, 1) N2 − N log N 1

TABLE I

COMPARISON OF SELF-ROUTING STRICTLY NONBLOCKING PHOTONIC

SWITCHING NETWORKS

IV. CONCLUSION

For the design of a switching network, in addition to its
hardware cost in terms of the cost of SEs and interconnection
links and wavelengths, we must take the routing complexity

into consideration. One major contribution of this paper is
the design of a strictly nonblocking self-routing network
T (N,α) with connection diameter of log N and routing time
of O(log N). Compared with crossbar, the presented new
self-routing nonblocking networks have lower hardware cost,
shorter connection diameter, and much smaller number of
required wavelengths. The results of this paper have valuable
architectural implications for design and implementation of
future large-scale electronic and optical switching networks.
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