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1 Introduction

Internet service providers (ISPs) measure the usage of IP network for billing in dif-
ferent ways. Residential ISPs typically offer a flat rate for unlimited usage while
wireless ISPs typically charge customers based on traffic volume. In the litera-
ture, there has been a lot of work on the Internet pricing; e.g. (Antoniadis et al.
2004; Cao et al. 2002; Courcoubetis and Weber 2003; Fulp and Reeves 2004;
Keon and Anandalingam 2003; Li et al. 2004; Odlyzko 2004; Ros and Tuffin 2004;
Wang and Schulzrinne 2000; Yaiche et al. 2000). Most of past work concentrates
on the design of different pricing schemes, especially dynamic pricing schemes that
accommodate various QoS services.

Recently many ISPs start to charge customers based on a statistical method called
“95th percentile” (Cerruti and Wright 2002; CFDynamics 2007; Net1plus.com 1995;
Service Level Corporation 2002; The Internet NG Project 2002). In general, under an
α-th percentile pricing policy, an ISP records the traffic volume generated by a cus-
tomer for each small time period, typically every five minutes. At the end of charging
horizon, the traffic volumes in all periods are lined up from the highest to the low-
est, and the α-th percentile of all five-minute traffic volumes is used as the charging
volume. For example, suppose that an ISP uses a 95th percentile pricing policy, and
the charging horizon for a customer contains 100 five-minute time periods. The ISP
will ignore the first 5 highest traffic volumes, and use the 6th traffic volume to bill the
customer. It is noticeable that the percentile-based pricing policy is also used between
ISPs.

One of the major reasons that ISPs adopt such a pricing policy is that the customers
are actually charged based on an approximation of their peak time traffic. This is
important to ISPs because peak time traffic makes a big contribution to their capacity
planning cost. Without adequate capacity planning, network performance becomes
unpredictable.

From the customers’ perspective, a percentile-based pricing policy is acceptable
and attractive because it can tolerate their untypical traffic bursts without financial
penalty. For example, under the 95th percentile billing policy, a customer can receive
approximately the highest 36 hours of bandwidth usage free for each month. For a
customer with a high traffic volume, such as a large corporation or a university, usu-
ally the daily traffic demand has a fixed pattern. Given its traffic pattern, the customer
can actually set up a hedging point in terms of the traffic volume for each five-minute
time period, and only allow (100 −α)% of the total time periods to have a real traffic
volume greater than the hedging point. In this way, the hedging point will be used
as the charging traffic volume, which is controllable to the customer. However, there
may be more than (100 − α)% time periods with the traffic demand greater than the
hedging point, and thus some traffic demand has to be delayed to the following time
periods. Therefore, a customer can control its traffic to achieve tradeoffs between a
lower hedging point with a lower cost and more delayed traffic demand, and a higher
hedging point with a higher cost and less delayed traffic demand, without violating
its bandwidth capacity constraint.

Such traffic regulation for customers with multiple Internet connections is also
important because, with explosive growth of the Internet, having multiple connections
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has become an essential part of businesses. Many enterprises have deployed multi-
homed load balancing gateways between the ISPs and enterprise networks to increase
productivity, reduce the risk of potential catastrophe, and provide fault-tolerance in
case of failure of any connection.

In this paper, we study the problem of how a customer (referring to an enterprise
or a large organization), when facing the percentile-based pricing policy, can opti-
mally balance its Internet access cost and traffic buffering delay penalty with both
single-homed and multi-homed ISPs by regulating its traffic. In the following, we
refer to this problem as the Optimal Traffic Regulation (OTR) problem. We address
both offline and online cases of the OTR problem for a customer with single-homed
or multi-homed ISPs. For a customer with a single-homed ISP, we present optimal
solutions based on dynamic programming model for the offline case with a known
traffic demand pattern. Note that such an assumption is reasonable for those large
organizations which have traffic demand patterns relatively stable over time. A real-
time traffic scheduling algorithm is proposed to deal with the online case where traffic
demands are different from the given demand pattern. We further extend our solutions
to the case of dual-homed ISPs where the traffic is distributed to two ISPs, each em-
ploying a percentile-based pricing policy.

The rest of the paper is organized as follows. Section 2 overviews related work in
traffic regulation and multi-homing. In Sect. 3, we formally define the OTR problem.
In Sect. 4, we discuss the solutions to two offline cases. In Sect. 5, we show how to
generalize the offline results to handle the online case. In Sect. 6, we extend the results
to the case of dual-homed ISPs. In Sect. 7, we propose a problem decomposition
solution to handle large-scale problems with a large charging horizon. Experimental
results are reported in Sect. 8. We conclude the paper in Sect. 9.

2 Related work

Traffic regulation, which allows network administrators in an enterprise network to
define how much bandwidth that a user or an enterprise network can use, is supported
in most gateways available in the market, e.g., Cisco routers supporting QoS. Traffic
regulation is usually supported by two different approaches: rate-limiting and traffic
shaping (Cisco 2006). The rate-limiting approach drops traffic based upon rules while
the traffic shaping approach generally buffers the excess traffic while waiting for the
next open interval to transmit data. Both approaches identify when traffic exceeds the
thresholds set by the network administrators. Traffic shaping is usually performed at
the edge of the network (on customer premises) to make sure the customer is utilizing
the bandwidth for business needs. Our proposed work falls into the traffic shaping
category.

In the literature, traffic regulation has been studied from different perspectives, for
example, under the filtering theory (Chang 1998; Chang et al. 2002), in multimedia
applications (Salehi et al. 1998), and for QoS control in WDM networks (Ma and
Hamdi 2000). To our best knowledge, no work has been done on traffic regulation for
the purpose of Internet access cost reduction.

The research work on the impact of multi-homing under percentile-based pricing
policy can be found in (Goldenberg et al. 2004; Shakkottai and Srikant 2005; Wang
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et al. 2005). In (Shakkottai and Srikant 2005), the paper examines how the transit and
customer prices are set in a network consisting of multiple ISPs. In (Goldenberg et
al. 2004), Goldenberg et al. investigate how to distribute the traffic with minimum
cost among multiple ISPs. In (Wang et al. 2005), the problem of how to select the
ISPs to subscribe from a set of feasible ISPs is studied. It is worth pointing out that,
different from the aforementioned work on multi-homing, we study the optimal traffic
regulation where the customer can reduce the Internet access cost by delaying the
traffic in some periods.

3 Problem description for the case of single-homed ISP

In this section, we formulate the optimal traffic regulation problem for the case of
single-homed ISP. Assume that the charging horizon contains T periods, where the
traffic demand for each time period t during the charging horizon is known as dt . Let
the real traffic volume sent to the ISP be xt for period t . Under the α-th percentile
pricing policy, the ISP will bill the customer based on the �(1 − α%)T �-th largest
xt , which is denoted as x̄. In other words, there will be no more than �(1 − α%)T �
periods which have the real traffic volume greater than x̄. We refer to such periods
as peak periods and use N = �(1 − α%)T � to denote the maximum number of peak
periods. Note that N is solely determined by α for any fixed charging horizon.

If, for a period t , dt > xt , then some traffic demands will be delayed to the follow-
ing period, causing a deteriorative service quality. We assume that there is a penalty
for each delay occurrence. For a customer who would like to spread out the traffic in
favor of minimizing the cost, it is important to minimize the total delay penalty over
the entire charging horizon.

The following notations are needed for defining the OTR problem.
Dt1,t2 : the total traffic demand from period t1 to t2, Dt1,t2 = ∑t2

τ=t1
dτ .

yt : the amount of traffic to be delayed from period t to period t + 1 where y0 =
yT = 0.

f (yt ): the delay penalty function which is nondecreasing for yt > 0 and f (0) = 0.
Ut : a binary variable indicating whether period t is a peak period, and Ut = 1 if

and only if xt > x̄. Under the percentile-based pricing policy, we have
∑T

t=1 Ut ≤ N

for a given x̄ and N .
C(x̄): the cost charged by the ISP with x̄ as the charging volume.
B̄: the maximum capacity that the ISP can provide for a single period.
Two objectives are considered in the OTR problem: the cost charged by the ISP,

and the service quality measured by the delay penalty. Considering both criteria, the
OTR problem for the case of single-homed ISP (referred to as P problem in the
following text) is defined as to

minZ = ηC(x̄) + (1 − η)

T∑

t=1

f (yt )

subject to

yt = yt−1 + dt − xt , for t = 1, . . . , T , (1)
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Ut =
{

1 if xt > x̄,

0 xt ≤ x̄,
(2)

T∑

t=1

Ut ≤ N, (3)

0 ≤ xt ≤ B̄, yt ≥ 0, for t = 1, . . . , T . (4)

In the objective function, η, 0 ≤ η ≤ 1, is a parameter showing the relative im-
portance of the two criteria. For the constraints, (1) defines yt which satisfies flow
conservation, (2) and (3) together define the percentile-based pricing policy, and (4)
enforces that the maximum capacity cannot be exceeded for each period.

In the formulation, we use a function f (yt ) to represent the delay penalty of yt

units of traffic for one period. Note that this is only a high-level estimation of delay
penalty. It does not necessarily mean that there are yt units of traffic to be exactly
delayed by one period. For example, suppose that at the end of a five-minute time
period [13:00–13:05], we have yt = 200 MB. It means at 13:05 there are 200 MB
traffic being delayed and buffered. Assuming that an FIFO scheduling rule is used at
the user’s traffic regulation gateway, then we know that the delayed 200 MB traffic
will be processed immediately at the beginning of the next time period [13:05–13:10].
Therefore, the traffic is not really delayed by five minutes. It is worthy of mentioning
that even if yt is 0, there may also be traffic being delayed within [13:00–13:05] due
to the maximum available bandwidth provided by the ISP. In summary, yt is actually
a snapshot of delayed traffic at the end of every period t , and can be regarded as a
good approximation of the real delay situation.

4 Offline traffic regulation for the case of single-homed ISP

4.1 Without capacity constraint

We start with a simple case where the capacity B̄ is large enough so that it has no
impact to the problem. We first study a variant of the problem P which objective is to
minimize the total delay penalty subject to a maximum cost constraint. Specifically,
we are given a maximum budget to be paid to the ISP, which is corresponding to a
given x̄. Then the problem is equivalent to determining xt for each period t such that
the total delay penalty

∑T
t=1 f (yt ) is minimized for a given x̄. We denote this prob-

lem as P 1, and will show that it can be solved by a dynamic programming algorithm.
Then we will discuss how to solve problem P based on the solution to problem P 1.

We have the following theorem that describes the property of an optimal solution
to problem P 1.

Theorem 1 For problem P 1 without capacity constraint, there is an optimal solution
where a peak period t has no traffic delayed to the next period, i.e., xt > x̄ implies
yt = 0.
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Proof If xt > x̄ and yt > 0, we can increase xt so as to make yt = 0 since there is no
capacity constraint. Such a change will reduce the traffic delay without causing any
more peak periods. �

The property given by Theorem 1 results in the following dynamic programming
algorithm.

The idea of our dynamic programming is to divide the entire charging horizon
into a series of consecutive sub-horizons, each containing several consecutive pe-
riods among which at most one is a peak period. The problem of minimizing the
total delay penalty for a given x̄ can be solved by finding the right combination of the
sub-horizons such that the total delay penalty over the entire charging horizon is min-
imized. Theorem 1 implies that we only need to consider those sub-horizons in which
the peak period, if there is indeed one, will appear at the end of the sub-horizons.

Given such a sub-horizon from period t1 to period t2, it is easy to calculate the
delay penalty over the sub-horizon since all traffic has to be delayed into the last
period in the sub-horizon. Specifically, for 1 ≤ t1 ≤ t2 ≤ T , let g(t1, t2) be the min-
imum total delay penalty for a sub-horizon from period t1 to t2 where (1) there is
no delayed traffic carried over to period t1, and (2) only one potential peak period is
allowed to occur at period t2. We can use z(t1, t2) to denote the traffic demand that
has to be delayed from t1 to t2 with only t2 possibly being a peak period. Then we
have z(t1, t1) = 0, and for t2 = t1 + 1, . . . , T ,

z(t1, t2) = max{z(t1, t2 − 1) + dt2−1 − x̄,0}.
Thus we can calculate g(t1, t2) as g(t1, t2) = g(t1, t2 − 1) + f (z(t1, t2)) where

g(t1, t1) = 0.
Furthermore, we can check whether t2 is a peak period for the above g(t1, t2),

which is denoted by a binary function δ(t1, t2) as

δ(t1, t2) =
{

1 if z(t1, t2) + dt2 − x̄ > 0,

0 if z(t1, t2) + dt2 − x̄ ≤ 0.
(5)

Let G(t,n) be the minimum total delay penalty from period t to period T where
(1) there is no delayed traffic carried over to period t , and (2) there are no more than n

peak periods from period t to period T . Consider the sub-horizon starting at period t .
We can use the following dynamic programming recursion to enumerate all possible
cases of the end period τ of the sub-horizon, and find the best one, i.e.,

G(t,n) = min
τ

{g(t, τ ) + G(τ + 1, n − δ(t, τ ))|τ = t, t + 1, . . . , T }. (6)

We have the initial condition as G(T + 1, n) = 0 for any n ≥ 0, and the boundary
condition as G(t,n) = +∞ for any n < 0. The optimal solution to problem P 1 can
be obtained after calculating G(1,N).

The computational complexity of the algorithm is analyzed as follows. Note that
although calculating a single g(t1, t2) or δ(t1, t2) needs O(T ) time, calculating all
g(t1, t2) and δ(t1, t2) can be done in an incremental way. In other words, each g(t1, t2)
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and δ(t1, t2) can be obtained in constant time from z(t1, t2) and g(t1, t2 − 1). So
calculating all g(t1, t2) and δ(t1, t2) takes O(T 2) time. With all g(t1, t2) and δ(t1, t2)

known, each G(t,n) in (6) can be done in O(T ) time. Because the number of G(t,n)

is bounded by O(T N), the overall time complexity of the algorithm is in O(T 2N).
To help understand the dynamic program, we give the implementation details and

pseudo code for the algorithm in Appendix 1.
Now we are ready to show how to solve the original problem P . This can be

done by enumerating different x̄’s where for each x̄, a minimum delay penalty can
be obtained by solving an instance of P 1. In many cases, the charging function C(x̄)

is a stepwise function that changes values only at a set of discrete x̄ values such as
x̄1, x̄2, . . . , x̄max (=B̄). So the searching effort is limited.

4.2 With capacity constraint

Now we consider the case that the ISP capacity B̄ has to be taken into account. As in
the case without capacity constraint, we start with the problem, denoted as problem
P 2, with the objective of minimizing the delay penalty subject to a given budget,
or a given x̄, under the constraint of B̄ . Then the original problem P with capacity
constraint can then be solved by enumerating all possible x̄’s.

Before presenting the solution procedure, we first observe that in any feasible
solution to the problem, the entire charging horizon can be divided into a series of
consecutive sub-horizons in such a way that for each sub-horizon [t1, t2], (1) there is
no traffic delay carried over into and out of the sub-horizon, i.e., yt1−1 = yt2 = 0; and
(2) there is a non-zero traffic delay between two consecutive periods within a sub-
horizon, i.e., yτ > 0 for τ = t1, . . . , t2 − 1. Note that our definition of sub-horizon
includes two extreme cases: the case that a sub-horizon may only contain a single
period [t1, t1] with yt1−1 = yt1 = 0, and the case that the entire charging horizon may
be only a single sub-horizon where there is traffic delay for each period.

We notice that Theorem 1 is not applicable for problem P 2. However, we have a
modified version of the theorem as follows. We call a period t a fractional period if
x̄ < xt < B̄ .

Theorem 2 There exists an optimal solution to problem P 2 in which yt > 0 implies
that either xt = x̄ or xt = B̄ .

The proof is similar to Theorem 1, and thus omitted. Theorem 2 implies that in an
optimal solution to problem P 2, for any τ = t1, t1 + 1, . . . , t2 − 1 in a sub-horizon
[t1, t2], we have either xτ = x̄ or xτ = B̄ . If this is not true, for example, xτ < x̄ or
x̄ < xτ < B̄ , then according to Theorem 2, yτ must be zero, which is inconsistent with
the definition of a sub-horizon. In other words, only the last period in a sub-horizon
may be a fractional period. This conclusion will help us to efficiently calculate the
delay penalty for the sub-horizon.

For problem P 2, since a sub-horizon may have multiple peak periods anywhere
within the sub-horizon, which makes the solution more complex than that to problem
P 1. In the following, we propose a two-layer algorithm, where the outer layer is a
dynamic program similar to (6) for finding the best combination of sub-horizons, and
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the inner layer is another dynamic program for calculating the optimal solution for
each sub-horizon. Theorem 2 helps us to cope with the inner layer dynamic program.

We start with the introduction of the outer layer. Let ḡ(t1, t2,m) be the minimum
delay penalty for a sub-horizon [t1, t2] when there are no more than m peak periods
being used. Let Ḡ(t, n) be the minimum total delay penalty from period t to T where
(1) there is no delayed traffic carried over to period t , and (2) the number of peak
periods is no more than n. If we have all ḡ(t1, t2,m), then we can use the following
dynamic programming recursion to calculate Ḡ(t, n),

Ḡ(t, n) = min
τ,m

{ḡ(t, τ,m) + Ḡ(τ + 1, n − m) | τ = t, . . . , T ,m = 0,1, . . . , n}, (7)

with initial condition of Ḡ(T + 1, n) = 0 for any n ≥ 0, and boundary condition of
Ḡ(t, n) = ∞ for n < 0. The optimal solution is given by Ḡ(1,N).

Now we discuss how to calculate ḡ(t1, t2,m) in the inner layer. First, for a sub-
horizon with a single period, from definition we have

ḡ(t1, t1,m) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if dt1 ≤ x̄,

0 if x̄ < dt1 ≤ B̄ and m ≥ 1,

+∞ if x̄ < dt1 ≤ B̄ and m = 0,

+∞ if B̄ < dt1

(8)

where g(t1, t1,m) = +∞ indicates the violation of the definition of g(t1, t1,m).
For ḡ(t1, t2,m) with t1 < t2, the calculation involves another dynamic program.

From Theorem 2 we know that for any τ , τ = t1, t1 + 1, . . . , t2 − 1, xτ is either x̄ or
B̄ in an optimal solution. Among the periods t1, . . . , τ − 1, if there are m′ periods for
xt = B̄ , then there must be τ − t1 − m′ periods for xt = x̄. Thus the traffic delayed to
period τ , denoted by yτ−1(t1,m

′), can be calculated as

yτ−1(t1,m
′) = Dt1,τ−1 − (m′B̄ + (τ − t1 − m′)x̄).

And we set yt1−1(t1,m
′) = 0.

Now for τ = t1, t1 + 1, . . . , T , m′ = 0,1, . . . ,N , define h(t1, τ,m
′) as the mini-

mum delay penalty for periods t1 to τ where (1) t1 is the starting time of a sub-horizon
which ends later than period τ , and (2) there are m′ periods with xt = B̄ among pe-
riods t1, . . . , τ . Comparing two possible cases of whether xτ = B̄ or not, we have a
dynamic programming recursion

h(t1, τ,m
′) = min

{
h(t1, τ − 1,m′) + f (yτ−1(t1,m

′) + dτ − x̄),

h(t1, τ − 1,m′ − 1) + f (yτ−1(t1,m
′ − 1) + dτ − B̄).

(9)

We also have the boundary condition for (9) as h(t1, τ,m
′) = +∞ for yτ (t1,

m′) ≤ 0, which enforces that a sub-horizon ends later than τ . For the initial condi-
tion with τ = t1, we have

h(t1, t1,0) =
{+∞ if dt1 ≤ x̄,

f (dt1 − x̄) if dt1 > x̄,
(10)
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h(t1, t1,1) =
{+∞ if dt1 ≤ B̄,

f (dt1 − B̄) if dt1 > B̄,
(11)

and h(t1, t1,m
′) = +∞ for m′ ≥ 2, where the value of +∞ indicates the violation of

the definition of h(t1, t1,m
′).

Then we can obtain ḡ(t1, t2,m) based on h(t1, τ,m
′). There are two possible cases:

period t2 is a peak period or not. For the case that period t2 is not a peak period, we
have

ḡ′(t1, t2,m) =
{

h(t1, t2 − 1,m) if yt2−1(t1,m) + dt2 ≤ x̄,

+∞ otherwise.

For the case that period t2 is a peak period, we have

ḡ′′(t1, t2,m) =
{

h(t1, t2 − 1,m − 1) if x̄ < yt2−1(t1,m − 1) + dt2 ≤ B̄,

+∞ otherwise.

Summarizing the above two cases, we have

ḡ(t1, t2,m) = min{ḡ′(t1, t2,m), ḡ′′(t1, t2,m)}. (12)

Then the dynamic program given in (7) can be performed after first calculating all
ḡ(t1, t2,m)’s from (8) to (12). We see that the number of h(t1, τ,m

′)’s is bounded by
O(T 2N) and each of them can be calculated in constant time. Equation (7) can be
calculated in O(T 2N2) time after we have calculated all ḡ(t1, t2,m)’s. So the overall
time complexity of the algorithm is in O(T 2N2).

The implementation details and pseudo code for the dynamic program are given
in Appendix 2.

5 Online implementation for the case of single-homed ISP

Up until this point, we have assumed that the traffic demand is known for each time
period. In real time, we know that traffic demand fluctuates over time even though
we have a very stable traffic demand pattern. In this section, we will discuss how the
results for the offline case can be used to handle the real-time online case.

The difficulty in handling the online case is that the real traffic demand for a period
is not known until the end of the period, but we have to (1) decide whether or not to
make a period as a peak period at the beginning of the period while the real traffic
demand for that period may only be known at the end of that period, and (2) design a
scheme to implement the traffic regulation in real time. In particular, (1) is a planning
problem that should be solved at the beginning of each time period, and (2) is a
real-time scheduling problem for each packet. For the planning problem, we propose
an online solution which uses the offline solution as a reference with an updating
procedure to deal with the online errors. For the scheduling problem, we can apply
an FIFO scheduling rule subject to the online planning decision.
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5.1 Online planning

At the beginning of each period, we need to determine whether a period is to be a
peak period or not. We model the online traffic by adding a random disruption to the
offline traffic demand. In other words, the traffic demand pattern dt for period t is
an estimation for the traffic which is obtained from history data. For a period t , we
assume that the real traffic is a random variable βt , where βt = dt + Et , and Et is a
random error from the estimation.

Before we present the solution to the online planning problem, we assume that
the offline solution is available. To make the planning decision for a period t̂ , two
components shall be considered: the traffic delay carried over from previous period
yt̂−1, and the traffic demand estimation for the current period dt̂ . Note that now yt̂−1
is the real traffic delay obtained from β1, . . . , βt̂−1. In our solution, if yt̂−1 + dt̂ ≤ x̄,
then we know that period t̂ is a non-peak period, regardless of the offline solution.
For the case of yt̂−1 + dt̂ > x̄:

• if period t̂ is scheduled as a peak period in the offline schedule, then we set t̂ as a
peak period;

• if period t̂ is not scheduled as a peak period, but there are fewer peak periods
actually used than scheduled offline by period t̂ , then we set t̂ as a peak period;

• for all other cases, we run an updated offline schedule starting from period t̂ , and
follow this new offline schedule thereafter.

Note that for any of the above cases, the number of peak periods since the most
recent starting time period shall be updated. For instance, in the case that offline
schedule has to be updated, t̂ will become the next starting time period. In our online
policy, we may set period t̂ as a peak period even if it has not been determined as a
peak period in the original offline solution. Thus we can effectively handle an unex-
pected delay caused by a high traffic demand. This may lead to using one peak period
earlier than originally scheduled, but the updating procedure guarantees that the total
number of peak periods will not be overly used in the entire charging horizon, and
thus the budget will not be exceeded.

For the implementation of the updating procedure, when an updated offline sched-
ule is needed at period t̂ , we will apply the dynamic program in (7) which uses t = t̂ as
the starting time period rather than t = 1. In this process, we only need to re-calculate
ḡ(t̂ , t2,m) based on the new traffic delay yt̂−1, which can be done in O(T N) time,
rather than all ḡ(t1, t2,m) for all t1 ≥ t̂ . Similarly, we only need to calculate Ḡ(t̂ , n)

in O(T N) time, rather than Ḡ(t, n) for all t ≥ t̂ . So the total involved calculation for
the updating procedure can be done in O(T N) time. This is important to satisfy the
requirement of real time decision making for the online case.

5.2 Online packet scheduling

The implementation of our traffic regulation policy depends on a real-time online
scheduling rule at the packet level. When each packet arrives, we need to decide
whether to send it out immediately, or the put it in the buffer for a delay. We propose
that a simple FIFO scheduling rule can be revised to support our traffic regulation
policy.
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Under our FIFO packet scheduling rule, a buffer queue is used to delay packets.
When a packet arrives, it is put at the end of the buffer queue. Each time we decide
to send a packet, the first packet in the buffer queue is sent out.

Suppose we are in a period t that starts from time st and ends at time et . The
planned maximum traffic during this period is x̂t which has been determined at the
beginning of the period. Specifically, if the period is determined to be a peak period,
then x̂t = B̄ , and if the period is determined not to be a peak period, then x̂t = x̄.

At any time τ , st ≤ τ < et , we use vτ to record the total traffic that has been
sent out from time st to time τ . Suppose that a packet is just sent out at time τ . If
the buffer queue is not empty, we check the first packet in the buffer. If the packet’s
length is l, then it takes l/B̄ time to send the packet. We send the packet immediately
if one of the following is true: (1) x̂t = B̄; (2) x̂t = x̄ and vτ + l ≤ x̄; or (3) x̂t = x̄,
vτ + l > x̄, and vτ + (et − τ)B̄ ≤ x̄. Otherwise, the packet will be delayed until time
et − (x̄ − vτ )/B̄ to ensure the packet is transmitted in a continuous way though it
may be sent in two time periods.

The above packet scheduling rule sends packets as early as possible, while guaran-
teeing that the bandwidth usage will not exceed the capacity planned for that period.

6 Extension to dual-homed ISPs

In this section, we extend our model to the case where the customer is dual-homed
to two ISPs both employing the percentile-based pricing policy. For any period, the
customer needs to determine how to distribute the traffic to each ISP and how to
delay some of the traffic. We will further discuss how to generalize the results to
multi-homed K ISPs.

6.1 Some general results

For ISP i, i = 1,2, assume that it has a bandwidth capacity B̄(i), which allows for
N(i) peak periods, and the charging point is x̄(i). Recall that N(i) is solely determined
by α(i) given that ISP i takes an α(i)-percentile pricing policy. In many cases, we may
have identical N(i) for both ISPs if they take the same α value. Here we discuss the
general case. At any period t with traffic demand dt , we need to decide the traffic
distribution to ISP i, denoted by x

(i)
t , and the traffic to be delayed, denoted by yt as

before, with the flow conservation constraint yt−1 + dt = x
(1)
t + x

(2)
t + yt .

Before presenting our algorithm, we first use an example to illustrate the benefit of
using dual-homed ISPs. The basic observation is that dual-homed ISPs may be able
to tolerate more peak periods than a single ISP. Suppose that the number of charging
periods is 100, and the traffic demand dt = t for t = 1, . . . ,100. If a single ISP is
used under a 95th percentile pricing policy with the charging volume being x̄ = 95,
then the total delay penalty is 0. Now consider the case where two identical ISPs are
used both with a 95th percentile pricing policy with x̄(1) = x̄(2) = 45. Then we can
distribute traffic to each ISP in such a way that x

(i)
t = dt/2 for t = 1, . . . ,90 and i =

1,2, x
(1)
t = dt for t = 91, . . . ,95, x

(1)
t = 0 for t = 96, . . . ,100, and x

(2)
t = dt − x(1)

for t = 91, . . . ,100. In such a solution, again we have the total delay penalty being 0.
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Assuming the cost is a linear function of the charging volume, then the user only
needs to pay the bandwidth usage for x̄(1) + x̄(2) = 90 to the two ISPs, rather than
the x̄ = 95 in the case of a single ISP. Therefore, the user can pay less for the same
service quality if the user can distribute the traffic to two ISPs.

It might be inferred from the above example that a problem with dual-homed ISPs
defined by {x̄(i), B̄(i),N(i)} can be transformed to an equivalent problem with a single
virtual ISP where x̄(0) = x̄(1)+ x̄(2), B̄(0) = B̄(1)+B̄(2) and N(0) = N(1)+N(2). Thus
the problem can be easily solved. However, this is not always true. As shown in the
following theorem, the single virtual ISP problem provides a lower bound of the total
delay penalty for the dual-homed ISP problem, and they may be equivalent under
special cases.

Theorem 3 Let Fd be the minimum total delay penalty for a problem with dual-
homed ISPs, and Fv be the minimum total delay penalty for the corresponding prob-
lem with a virtual single ISP, we have

(1) Fd ≥ Fv ; and
(2) Fd = Fv if both B̄(1) and B̄(2) are infinite.

Proof We use {x(1)
t , x

(2)
t } to denote a feasible solution to the dual-homed ISP prob-

lem, and {x(0)
t } to denote a feasible solution to the virtual single ISP problem. We

will prove conclusion (1) by showing there is one {x(0)
t } for any given {x(1)

t , x
(2)
t },

and further prove conclusion (2) by showing there is an {x(1)
t , x

(2)
t } for any given

{x(0)
t } under the condition.
For any {x(1)

t , x
(2)
t }, we can always have {x(0)

t } by letting x
(0)
t = x

(1)
t + x

(2)
t which

is feasible because (1) x
(0)
t = x

(1)
t + x

(2)
t ≤ B̄(1) + B̄(2) = B̄(0), and (2) at any period

t , x
(0)
t is a peak period only when at least one of x

(1)
t and x

(2)
t is a peak period, and

thus the number of peak periods in {x(0)
t } is no more than the sum of number of peak

periods in {x(1)
t , x

(2)
t }. Therefore, we have conclusion (1) that Fd ≥ Fv .

Now consider the case where both B̄(1) and B̄(2) are infinite. For any {x(0)
t }, we can

have {x(1)
t , x

(2)
t } as follows. If period t is not a peak period in {x(0)

t }, i.e., x
(0)
t ≤ x̄(0),

then arbitrarily set x
(1)
t and x

(2)
t such that x

(i)
t ≤ x̄(i) for i = 1,2 and x

(1)
t + x

(1)
t =

x
(0)
t . For the N(0) peak periods in {x(0)

t }, let N(1) of them have x
(1)
t = x(0) and x

(2)
t =

0; and let N(2) other peak periods have x
(2)
t = x(0) and x

(1)
t = 0. So the total number

of peak periods in {x(1)
t , x

(2)
t } is the same as N(0). Thus we have Fd ≤ Fv when both

B̄(1) and B̄(2) are infinite. Combining with conclusion (1), we have conclusion (2)
that Fd = Fv if both B̄(1) and B̄(2) are infinite. �

The above theorem also shows that such a virtual single ISP provides more oppor-
tunity to reduce delay penalty. The reason is that the large virtual ISP allows more
flexibility to handle more peak periods, which is generally known as the risk pooling
effect (Shakkottai and Srikant 2005). In practice, however, there may not exist such
a generous ISP who allows for so many peak periods. Most ISPs on the market use
the same α in their pricing policy. As the previous example shows, in such a case,
dual-homed ISP can help to improve the system performance.
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6.2 Offline case

The offline case of dual-homed ISPs can be solved by following the similar idea for
the case of a single ISP. We see that any feasible solution can be divided into a series
of consecutive sub-horizons [t1, t2] which are defined the same as the single ISP case.
Furthermore, Theorem 2 for the case of single-homed ISP can be generalized as the
following theorem.

Theorem 4 There exists an optimal solution to the dual-ISP problem in which yt > 0
implies that for each ISP i, either x

(i)
t = x̄(i) or x

(i)
t = B̄(i).

Based on Theorem 4, we can revise the previous two-layer dynamic program-
ming algorithm to deal with the dual-homed ISP problem. For the outer layer, let
ḡ(t1, t2,m

(1),m(2)) be the minimum delay penalty for a sub-horizon [t1, t2] when
there are no more than m(i) peak periods being used for ISP i, i = 1,2. Let
Ḡ(t, n(1), n(2)) be the minimum total delay penalty from period t to T where (1)
there is no delayed traffic carried over to period t , and (2) the number of peak periods
is no more than n(i) for ISP i. Then we can use the following dynamic programming
recursion to calculate Ḡ(t, n(1), n(2)),

Ḡ(t, n(1), n(2)) = min
τ,m(1),m(2)

{ḡ(t, τ,m(1),m(2)) + Ḡ(τ + 1, n(1) − m(1), n(2) − m(2)) |

τ = t, . . . , T ,m(i) = 0,1, . . . , n(i)}, (13)

with initial condition of Ḡ(T +1, n(1), n(2)) = 0 for n(1) ≥ 0 and n(2) ≥ 0, and bound-
ary condition of Ḡ(t, n(1), n(2)) = ∞ for n(1) < 0 or n(2) < 0. The optimal solution
is given by Ḡ(1,N(1),N(2)).

Now we discuss how to calculate ḡ(t1, t2,m
(1),m(2)) in the inner layer. First, for a

sub-horizon with a single period, from definition we have ḡ(t1, t1,m
(1),m(2)) = 0 if

any of the following conditions is satisfied: (1) dt1 ≤ x̄(1) + x̄(2), or (2) dt1 ≤ B̄(1) +
x̄(2) and m̄(1) ≥ 1, or (3) dt1 ≤ x̄(1) + B̄(2) and m̄(2) ≥ 1, or (4) dt1 ≤ B̄(1) + B̄(2),
m̄(1) ≥ 1 and m̄(2) ≥ 1; and ḡ(t1, t1,m

(1),m(2)) = +∞ for other cases.
For ḡ(t1, t2,m

(1),m(2)) with t1 < t2, the calculation involves the inner-layer dy-
namic program. From Theorem 4 we know that for any τ , τ = t1, t1 + 1, . . . , t2 − 1,
x

(i)
τ is either x̄(i) or B̄(i) in an optimal solution. Among the periods t1, . . . , τ − 1,

if there are l(i) periods for x
(i)
t = B̄(i), then there must be τ − t1 − l(i) periods for

x
(i)
t = x̄(i), and thus the traffic delay to period τ , denoted by yτ−1(t1, l

(1), l(2)), can
be calculated as

yτ−1(t1, l
(1), l(2)) = Dt1,τ−1 −

2∑

i=1

l(i)B̄(i) −
2∑

i=1

(τ − t1 − l(i))x̄(i).

Now for τ = t1, t1 + 1, . . . , T , l(i) = 0,1, . . . ,N(i), define h(t1, τ, l
(1), l(2)) to be

the minimum delay penalty for periods t1 to τ where (1) t1 is the start time of a sub-
horizon which ends later than period τ , and (2) there are l(i) periods with x

(i)
t = B̄(i)
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among periods t1, . . . , τ . Comparing four possible cases of whether x
(i)
τ = B̄(i) or

not, we have a dynamic programming recursion

h(t1, τ, l
(1), l(2)) = min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (yτ−1(t1, l
(1), l(2)) + dτ − x̄(1) − x̄(2))

+ h(t1, τ − 1, l(1), l(2)),

f (yτ−1(t1, l
(1) − 1, l(2)) + dτ − B̄(1) − x̄(2)))

+ h(t1, τ − 1, l(1) − 1, l(2)),

f (yτ−1(t1, l
(1), l(2) − 1) + dτ − x̄(1) − B̄(2)))

+ h(t1, τ − 1, l(1), l(2) − 1),

f (yτ−1(t1, l
(1) − 1, l(2) − 1) + dτ − B̄(1) − B̄(2)))

+ h(t1, τ − 1, l(1) − 1, l(2) − 1).

We also have the boundary condition for the above equation as h(t1, τ, l
(1), l(2)) =

+∞ for yτ (t1, l
(1), l(2)) ≤ 0, which enforces that a sub-horizon ends later than τ . For

the initial condition with τ = t1, we have

h(t1, t1,0,0) =
{+∞ if dt1 ≤ x̄(1) + x̄(2),

f (dt1 − x̄(1) − x̄(2)) otherwise,

h(t1, t1,1,0) =
{+∞ if dt1 ≤ B̄(1) + x̄(2),

f (dt1 − x̄(1) − x̄(2)) otherwise,

h(t1, t1,0,1) =
{+∞ if dt1 ≤ x̄(1) + B̄(2),

f (dt1 − x̄(1) − B̄(2)) otherwise,

h(t1, t1,1,1) =
{+∞ if dt1 ≤ B̄(1) + B̄(2),

f (dt1 − B̄(1) − B̄(2)) otherwise,

and f (t1, t1, l
(1), l(2)) = +∞ for l(i) ≥ 2, i = 1,2, where the value of +∞ indicates

the violation of the definition of h(t1, t1, l
(1), l(2)).

Then we can obtain ḡ(t1, t2,m
(1),m(2)) based on h(t1, τ, l

(1), l(2)). There are four
possible cases with respect to period t2 being a peak period or not.

Case 1 For period t2 being not a peak period for either ISP, if yt2−1(t1,m
(1),m(2)) +

dt2 ≤ x̄(1) + x̄(2), then

ḡ1(t1, t2,m
(1),m(2)) = h(t1, t2 − 1,m(1),m(2)),

otherwise, ḡ1(t1, t2,m
(1),m(2)) + ∞.
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Case 2 For period t2 being a peak period for ISP 1 only, if yt2−1(t1,m
(1) −1,m(2))+

dt2 ≤ B̄(1) + x̄(2), then

ḡ2(t1, t2,m
(1),m(2)) = h(t1, t2 − 1,m(1) − 1,m(2)),

otherwise, ḡ2(t1, t2,m
(1),m(2)) = +∞.

Case 3 For period t2 being a peak period for ISP 2 only, if yt2−1(t1,m
(1),m(2) −1)+

dt2 ≤ x̄(1) + B̄(2), then

ḡ3(t1, t2,m
(1),m(2)) = h(t1, t2 − 1,m(1),m(2) − 1),

otherwise, ḡ3(t1, t2,m
(1),m(2)) = +∞.

Case 4 For period t2 being a peak period for both ISPs, if yt2−1(t1,m
(1) − 1,m(2) −

1) + dt2 ≤ B̄(1) + B̄(2), then

ḡ4(t1, t2,m
(1),m(2)) = h(t1, t2 − 1,m(1) − 1,m(2) − 1),

otherwise, ḡ4(t1, t2,m
(1),m(2)) = +∞.

Summarizing the above four cases, we have

ḡ(t1, t2,m
(1),m(2)) = min{ḡi (t1, t2,m) | i = 1,2,3,4}. (14)

Again, the time complexity of the above algorithm is dominated by the outer
layer dynamic program given in (13) where the number of states is bounded by
O(T N(1)N(2)) and each state can be evaluated in O(T N(1)N(2)) time. So the overall
time complexity of the algorithm is in O(T 2(N(1))2(N(2))2).

We will omit the implementation details for the above dynamic program as it is
similar to the single ISP case.

6.3 Online planning

We now discuss the online problem for the dual-homed ISPs.
For the online planning problem, we need to determine whether a peak period t̂

should be incurred to an ISP given yt̂−1 and dt̂ . Similar to the single ISP case, we
propose the following scheme:

• Case 1: if yt̂−1 + dt̂ ≤ x̄(1) + x̄(2), then each ISP has a non-peak period at t̂ ; other-
wise,

• Case 2: if yt̂−1 +dt̂ ≤ B̄(1) + x̄(2) and (i) ISP 1 has a planned peak period at t̂ in the
offline schedule or (ii) there are fewer peak periods incurred to ISP 1 than offline
scheduled, then t̂ is a peak period to ISP 1; otherwise,

• Case 3: if yt̂−1 +dt̂ ≤ x̄(1) + B̄(2) and (i) ISP 2 has a planned peak period at t̂ in the
offline schedule or (ii) there are fewer peak periods incurred to ISP 2 than offline
scheduled, then t̂ is a peak period to ISP 2; otherwise,
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• Case 4: if yt̂−1 + dt̂ ≤ B̄(1) + B̄(2) and both ISPs have a planned peak period at t̂

in the offline schedule, then t̂ is a peak period to ISP 1; otherwise,
• Case 5: we run an updated offline schedule for period t̂ .

For the aim of load balancing between the two ISPs, we may rotate the sequence
of Case 2 and Case 3 period by period in the above scheme.

Similar to the case of a single ISP, the time complexity of Case 5 for ob-
taining an updated schedule is O(T N(1)N(2)) because we only need to recalcu-
late Ḡ(t̂ , n(1), n(2)) which enumerates ḡ(t̂ , τ,m(1),m(2)) over τ,m(1),m(2), and all
ḡ(t̂ , τ,m(1),m(2))’s can be obtained in O(T N(1)N(2)) time.

6.4 Online packet scheduling

For online packet scheduling, an FIFO rule is modified as follows. Given a packet
to be sent out, first we need to decide which ISP to use. For load balancing purpose,
we propose a random selection scheme. We first choose one ISP based on certain
probability; if it is determined that this ISP is to delay the packet, then we try the
other ISP.

The ISP selection probability is proportional to its planned capacity for that pe-
riod. For a period t that starts from time st and ends at et , we use x̂(i) to denote the
maximum planned traffic for ISP i during a period t . We know that x̂(i) ∈ {x̄(i), B̄(i)},
depending on whether period t is determined as a peak period in the online planning.
Then the selection probability for ISP i would be x̂(i)/(x̂(1) + x̂(2)).

After an ISP i is selected, we can try to use that ISP to send the packet by following
the packet scheduling scheme for a single ISP. The details are omitted.

6.5 Multi-homed ISPs

The above approach can be generalized to multi-homed case with K available ISPs
where we develop a dynamic program by defining Ḡ(t, n(1), . . . , n(K)). However, the
number of states will become exponential with K , and thus such a dynamic program-
ming approach becomes inefficient. In fact, we can show below that the problem
becomes intractable with an arbitrary K .

Theorem 5 The decision version of the multi-homed problem with K ISPs is NP-
complete in the strong sense.

Proof We prove the theorem by a reduction from 3-PARTITION problem, a known
NP-complete problem in the strong sense.

3-PARTITION Problem: Given a set A of 3n integers {a1, a2, . . . , a3n} and an inte-
ger b, where b/4 < ai < b/2 and

∑3n
i=1 ai = nb, we ask whether A can be partitioned

into n disjoint subsets A1, . . . ,An such that
∑

ai∈At
= b for t = 1, . . . , n.

Given an instance of the 3-PARTITION problem, we can construct an instance of
the decision version of the multi-homed problem with K ISPs as follows. Let there
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be K = 3n ISPs where each ISP i has a charging point x̄(i) = b, allowable peak
period N(i) = 1, and capacity B̄(i) = b + ai . Let there be T = n time periods, where
the traffic demand dt = (3n + 1)b for t = 1, . . . , n. Obviously the above problem
construction procedure takes polynomial time. The question is to ask whether there
exists a solution to such a multi-homed problem with zero delay penalty.

Suppose that the 3-PARTITION problem has a YES solution {A1, . . . ,An}. Then
we can have a solution to the above multi-homed problem where in each period t all
ISPs are first assigned by a traffic up to the charging point b, then for the three ISPs
corresponding to the three integers ai in At , each is assigned by an extra traffic of
ai . In such a solution, there incurs only one peak period to each ISP, and there is no
traffic delay at any time period.

Suppose that there exists a YES solution to the above multi-homed problem with
zero delay penalty. In such a solution, for any period t there must be peak periods
incurred to exactly three ISPs because (1) each ISP cannot have one peak period, and
(2) the traffic demand at each period requires peak periods incurred to at least three
ISPs. Therefore, we have a YES solution to the 3-PARTITION problem where the
three ISPs with their peak periods incurred in the same time period t correspond to
the three integers in a subset At . �

7 Problem decomposition

When the charging horizon is long, for example, one month or even longer, the above
two dynamic programming algorithms become inefficient with respect to both com-
putation time and memory usage. In this section, we discuss how the problem with
a large charging horizon can be decomposed into a series of smaller problems with
a small charging horizon. We only discuss the case with the capacity constraint. The
easier case without the capacity constraint can be handled in the same way.

We first observe that in practice the traffic demand actually has some periodic
pattern over days. In particular, the daily traffic demand is high during day time,
and low after midnight (Fukuda et al. 2003). If the traffic demand is always below a
given x̄ during certain time for each day, then the problem with multiple days can be
decomposed into multiple problems each for a single day. For example, if we know
that the traffic demand is lower than x̄ during 3am–4am each day, then we can fairly
assume that in an optimal solution to the problem with long time periods, there is
no traffic demand being delayed to 4am. This implies that the optimal schedule for
one day (starting from 4am) is independent of the optimal schedule for the following
days. Therefore, we can solve the problem on a daily base.

If each day has the same traffic demand pattern, then the problem is trivially solved
by such a decomposition because we only need to solve a single-day problem and
then repeat the single-day solution day by day. In practice, however, we often see that
the daily traffic demand varies. For example, the traffic demand is low on weekend,
and high on weekdays. The immediate consequence of such a phenomenon is that
each day needs a different schedule. Furthermore, we need to assign different number
of peak periods to different days. There are in total N = (1 − α)T peak periods in a
charging horizon, but it does not necessarily mean that we will evenly allocate these
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N peak periods to different days. For example, we may allocate more peak periods
to weekdays than weekends. Therefore, we face the problem of how to determine the
number of peak periods for each day for the problem decomposition.

Suppose that the whole charging horizon contains m days, and each day contains
T̂ periods. If it is decided that there are Ns peak periods for day s, s = 1, . . . ,m, and
N1 + . . .+ Nm = N , then the entire problem is decomposed into m smaller problems
each with Ns peak periods; each smaller problem s can be solved with T̂ total periods
and Ns peak periods; and a delay penalty Ĝs(Ns) can be obtained. Note that we can
obtain Ĝs(Ns) for different values of Ns in a single run of the dynamic program (7).
The only problem left is how to determine the values of Ns .

We now propose another dynamic programming algorithm to optimally assign the
number of peak periods. Let F(s, θ) be the minimum total delay penalty from day s

to the end of the charging horizon, given that there are θ peak periods allowed starting
from day s. Then we have a dynamic programming recursion as follows.

F(s, θ) = min
Ns

{Ĝs(Ns) + F(s + 1, θ − Ns)|0 ≤ Ns ≤ θ}, (15)

where the initial condition is F(m,θ) = Ĝm(θ). The optimal allocation of the peak
periods can then be obtained from F(1,N).

The time complexity for such a problem decomposition is analyzed as follows.
All Ĝs(Ns)’s can be calculated in O(mT̂ 2N2) time, then the dynamic program (15)
is performed in (mN2) time. So the overall time complexity is in O(mT̂ 2N2) time.

For the case of dual-homed ISPs, the problem decomposition can be performed
as follows. Let F(s, θ(1), θ (2)) be the minimum total delay penalty from day s to the
end of the charging horizon, given that there are θ(i) peak periods allowed by ISP i

starting from day s. Then we have a dynamic programming recursion as follows.

F(s, θ(1), θ (2)) = min
N

(1)
s ,N

(2)
s

{Ĝs(N
(1)
s ,N(2)

s ) + F(s + 1, θ(1) − N
(1)
i , θ (2) − N

(2)
i ) |

0 ≤ N(i)
s ≤ θ(i)},

where the initial condition is F(m,θ(1), θ (2)) = Ĝm(θ(1), θ (2)). The optimal alloca-
tion of the peak periods can then be obtained from F(1,N(1),N(2)). Similarly, the
time complexity for the decomposition would be in O(mT̂ 2(N(1))2(N(2))2).

8 Experimental results

In this section, we report the experimental results. The purposes of the experiments
are (1) to understand the tradeoff between the cost and service quality, (2) to study the
benefit of dual-homed ISPs, and (3) to investigate the effectiveness of our proposed
policies for the online case.

Our experiments are conducted based on the data from an Internet trace (NLANR
and NLANR PMA 2005). Reading in the raw data from the trace file, we make a
transformation so that a series of traffic demand is obtained for every five minutes
during a single day period, which implies that T = 288 and N = 14. In the data
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Fig. 1 Tradeoff between cost and delay for a single ISP

set, the maximum traffic demand for one period is 53.2GB , the minimum demand is
9.8GB , and the total traffic demand over the entire day is 5658.4GB . We also note
that the 14-th largest traffic demand is 46.2GB , the value that would be used as the
charging volume if the user does not take any action under a large enough bandwidth
capacity. We use f (y) = y as the delay penalty function for delayed traffic y.

We first study the tradeoff between the cost and service quality. For the given traffic
demand series, we have investigated three different cases with capacity B̄ = 55G,
50G, and 45G, respectively (for simplicity, we shorten GB as G in all figures). For
each B̄ , different values of x̄ are used. For the service quality evaluation, in order
to have a more meaningful result, we report the average delay penalty rather than
the absolute total delay penalty that is used in the model. Specifically, we define the
average delay penalty as the ratio of total delay penalty over the total traffic demand,
a value that can be interpreted as the percentage of traffic demand that is delayed by
one time period. The results are given in Fig. 1.

In Fig. 1, we see that the delay percentage increases when the charging volume
x̄ decreases for all B̄ values, indicating the deteriorative service quality (in terms of
delay) caused by cost saving. For example, when the capacity B̄ = 55G, the delay
percentage is below 1% with x̄ = 40G. Note that if the user does not take any action,
the charging volume is 46.2G with zero delay because the maximum traffic is 53.2G

and the 14-th largest traffic demand is 46.2G. Assuming the pricing is approximately
linear with the charging volume, this implies that we can reduce the cost by about
1 − 40/46.2 ∼= 13% with the delay performance being worse by no more than 1%.
Similarly, we see that the delay percentage is below 5% with x̄ = 36G, implying that
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Fig. 2 Tradeoff between cost and delay for dual-homed ISPs

we can reduce the cost by about 1 − 36/46.2 ∼= 22% with the delay performance
being worse by no more than 5%. This shows the benefit of traffic regulation.

We also notice that the delay performance gets worse with the decrease of capacity
B̄ . For a given charging volume x̄, a large capacity can help to reduce delayed traffic.
For example, at x̄ = 40G, the delay is below 1% with B̄ = 55G, about 2% with
B̄ = 50G, and about 16% with B̄ = 45G. If the pricing scheme solely depends on
the percentile charging volume, or the capacity cost is a one-time expense, then it is
better to set up a large capacity in order to reduce delay.

Now we show the case of using dual-homed ISPs in Fig. 2. We assume that the
two ISPs are with the same maximum capacity, and given the same charging volume
x̄(1) = x̄(2). In the figure, the horizontal axis is the sum of two charging volumes
x̄(1) + x̄(2); for example, the total charging volume 40G means x̄(1) = x̄(2) = 20G.
The total charging volume indicates the cost that the user needs to pay under the
assumption of a linear cost function of the charging volume.

While Fig. 2 clearly shows the tradeoff between delay and cost for dual-homed
ISPs, it is more interesting to compare it with the case of a single ISP under the same
charging volume. For example, at the charging volume 35G, the user has started to
experience significant delay under a single ISP, but under the dual-homed ISP, the
delay is still very small until the total charging volume is smaller than 30G. This
shows the benefit of using dual-homed ISPs.

In Fig. 2, we assume a given charging volume is evenly shared by two ISPs, which
seems to be an intuitively reasonable scheme because these two ISPs have identical
capacity and use the same percentile charging policy. However, as we are to present
in Fig. 3, this is not the best allocation.
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Fig. 3 Charging volume allocation for dual-homed ISPs

In Fig. 3, we assume the total charging volume is 32G which is to be allocated
to two ISPs, where we use the horizontal axis to represent the charging volume for
ISP 1. The figure shows that when the capacity is small, the even allocation, 16G to
each ISP, has a larger delay percentage than other cases. It is better to set a higher
charging volume to one ISP and a lower charging volume to another ISP. While this
is not an intuitive result, it can be explained as by an example with B̄1 = B̄2 = 45G.
Suppose at a period t we have yt−1 + dt = 63G. If the charging volume for each ISP
is evenly set as 16G, then both ISPs have to be with peak periods in order not to
delay any traffic to period t + 1; if x̄(1) = 13G, x̄(2) = 19G, then we can assign 45G

to ISP 1 and 18G to ISP 2 without any traffic delay to period t + 1. However, under
such allocation, there is only one peak period, which is occurred to ISP 1. Therefore,
one peak period is saved for later periods to reduce delay. This example shows that
an uneven assignment of charging volume can bring more flexibility to reduce traffic
delay.

There are other observations for the charging volume allocation. First, while an
uneven allocation may be better than an even allocation, the benefit may not be pro-
portional to the allocation difference between the ISPs. When the difference becomes
too large, the traffic delay starts to increase again. Second, the delay curve is not con-
vex to the allocation to one ISP, implying that it is not easy to find the best allocation.
Finally, the capacity plays an important role in the allocation. When the capacity is
very large, say 55G, different allocation virtually makes no difference.

We now test our online policy. As we have mentioned, we model the online traffic
demand as the offline estimation plus a random error. In our computation, we generate
the random error from a normal distribution N(0, σ 2) with the standard deviation
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Fig. 4 Performance of the online problem for a single ISP

σ = 0.1G,0.5G,1G,3G,5G, and 10G. To evaluate the effectiveness of our policy,
for any given B̄ and x̄, we compare the average delay obtained from our online policy
with the ideal optimal solution if the real traffic demand is known in advance. Note
that such an ideal solution represents the lower bound of the average delay for any
online policy.

We report the comparison in Fig. 4 for the case of a single ISP, which shows
the extra delay in our online policy subject to the ideal solution. We see that the
difference is below 1% even when the standard deviation of the real traffic demand
σ = 5G, which is about 10% of the maximum traffic estimation. This evidences the
effectiveness of our online policy. Not surprisingly, the performance of our online
policy becomes worse when σ increases. When σ is larger than 10G, which is about
20% of the maximum traffic estimation, our online policy may cause a large traffic
delay, and become not effective. These cases, however, have violated our assumption
that the traffic demand is relatively stable subject to a known pattern.

We also find in Fig. 4 that the performance of our online policy is not sensitive
to the capacity B̄ and predetermined charging volume x̄ when the deviation σ is
small. This indicates the robustness of our policy in certain sense. When σ is large,
our online policy will perform relatively better under a compact capacity B̄ = 50G.
When B̄ is large, it brings more optimization room for the ideal solution, thus our
online policy may become less competitive.

At last, we report the online performance under dual-homed ISPs, which is shown
in Fig. 5. Similar to the single ISP case, we see that our online policy is very sta-
ble subject to a small traffic deviation σ , e.g., σ ≤ 3G. However, when the traffic
deviation is large, the online performance for the dual-homed ISP becomes worse
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Fig. 5 Performance of the online problem for dual-homed ISPs

more quickly than the single ISP case, which brings more challenging problems for
handling dual-homed ISPs.

9 Conclusion

In this paper, we have discussed how a customer can balance cost and packet buffer
delay facing a percentile-based pricing scheme. The main contribution is about how
a customer can save the Internet accessing cost without too much sacrifice of the
service quality by strategically delaying some traffic demand. We optimally solve the
problem for the offline case, and develop a dynamic scheduling policy for the online
case which uses the offline solution as a reference. We also extend our results to the
case of dual-homed ISPs.

We believe that the work can be further extended in several different ways. In par-
ticular for the online case, more sophisticated policy may be desired for the case that
the traffic demand does not have a stable pattern, or the case with multi-homed ISPs.

Appendix 1: Algorithm implementation for the case without capacity
constraint

We now discuss the details of the implementation of the dynamic program given in
(6). Besides the total delay penalty that can be obtained from G(1,N), the implemen-
tation also needs a backward tracking procedure to find the optimal traffic for each
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Fig. 6 Algorithm for the case
without capacity constraint

begin
//calculating g(t1, t2)

for t1=1 to T do
g(t1, t1) = 0; z(t1, t1) = 0;
for t2 = t1 + 1 to T do

calculate z(t1, t2), g(t1, t2), and δ(t1, t2)

end for//t2
end for //t1

//calculating G(t,n)

initialize G(T + 1, n) = 0 for n = 0,1, . . . ,N

for t = T downto 1 do
for n = 1 to N do
G(t,n) = ∞
for τ = t to T do

if G(t,n) > g(t, τ ) + G(τ + 1, n − δ(t, τ )) then
G(t,n) = g(t, τ ) + G(τ + 1, n − δ(t, τ ))

S(t, n) = τ

end if
end for //τ

end for //n
end for //t

//solution output
t = 1; n = N ;
while t < T do

τ = S(t, n)

if δ(t, τ ) = 1 then period τ is peak period
n = n − δ(t, τ ), t = τ+1

end while
end

period. In particular, we need to know which periods are peak periods. This can be
done by recording how each G(t,n) is obtained from (6). Specifically, we can use a
solution table S(t, n) to denote the optimal τ that leads to the minimum G(t,n), i.e.,
S(t, n) = τ ∗ where τ ∗ is the last period of a sub-horizon in the optimal solution, and
τ ∗ satisfies

g(t, τ ∗) + G(τ + 1, n − δ(t, τ ∗)) = min
τ

{g(t, τ ) + G(τ + 1, n − δ(t, τ )) |
τ = t, t + 1, . . . , T }.

After calculating G(1,N), we can determine all peak periods from t = 1 based
on the information given in S(t, n). We start from t = 1 and n = N , repeatedly find
period τ = S(t, n) that leads to G(t,n), until the end of the charging horizon. These
periods are the last periods in all sub-horizons and they divide the charging horizon
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Fig. 7 Algorithm for the case
with capacity constraint begin

//calculate yτ−1(t1,m)

for t1 = 1 to T do
for τ = t1+1 to T do

for m = 0 to N do
yτ−1(t1,m) = Dt1,τ−1 − (mB̄ + (τ − t1 − m)x̄)

end for //m
end for //τ

end for //t1

//calculate h(t1, τ,m
′)

for t1 = 1 to T do
for τ = t1 to T do

for m′ = 0 to N do
calculate h(t1, τ,m

′) and h̄(t1, τ,m
′)

end for //m′
end for //τ

end for //t1

//calculate ḡ(t1, t2,m)

for t1 = 1 to T do
for t2 = t1 to T do

for m = 0 to N do
calculate ḡ(t1, t2,m) and S̄(t1, t2,m)

end for //m
end for //t2

end for //t1

//calculate Ḡ(t, n)

for t = T downto 1 do
for n = 0 to N do

calculate G(t,n), τ ∗(t, n) and m∗(t, n)

end for //n
end for //t

//output Solution
t = 1, n = N

while t < T do
τ = τ ∗(t, n), m = m∗(t, n)

output peak periods in S̄(τ,m)

t = τ + 1, n = n − m

end while
end
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into sub-horizons. According to the description in Sect. 4.1, only these periods can
be peak periods. By checking δ(t, τ ) for τ = S(t, n), we can find out if τ is a peak
period or not. The overall algorithm is given in Fig. 6.

Appendix 2: Algorithm implementation for the case with capacity constraint

The implementation of the algorithm for the case with capacity constraint needs the
following steps. First, calculate all yτ−1(t,m

′) for t = 1, . . . , T , τ = t, . . . , T and
m′ = 0, . . . ,N ; second, calculate all h(t1, τ,m

′) for t1 = 1, . . . , T , τ = t1, . . . , T and
m′ = 0, . . . ,N ; third, calculate all ḡ(t1, t2,m) for t1 = 1, . . . , T , t2 = t1, . . . , T , and
m = 0, . . . ,N ; and finally, calculate Ḡ(t, n) from ḡ(t1, t2,m), obtain the minimum
total delay penalty from Ḡ(1,N), and output all peak periods.

We also need a backward tracking procedure to find those peak periods in an
optimal solution. For any ḡ(t1, t2,m), we define a set S̄(t1, t2,m) that records the
peak periods for ḡ(t1, t2,m). Then in calculating Ḡ(t, n) from (7), we use τ ∗(t, n)

and m∗(t, n) to denote the τ and m that minimize Ḡ(t, n), i.e.,

ḡ(t, τ ∗(t, n),m∗(t, n)) + Ḡ(τ ∗(t, n) + 1, n − m∗(t, n))

= min
τ,m

{ḡ(t, τ,m) + Ḡ(τ + 1, n − m) | τ = t, . . . , T ,m = 0,1, . . . , n}.

After calculating Ḡ(1,N), we can determine all peak periods starting from t = 1 and
n = N where S̄(τ ∗(t, n),m∗(t, n)) gives all peak periods during t and τ ∗(t, n); then
we update t = τ ∗(t, n) + 1 and n = n − m∗(t, n); repeat the above steps until t > T .

In order to get S̄(t1, t2,m), we need to maintain a three-dimensional array
h̄(t1, τ,m

′) associated with the calculation of each h(t1, τ,m
′), indicating whether

period τ should be a peak period. When h(t1, τ,m
′) is obtained from the second term

of (9) or (11), we set h̄(t1, τ,m
′) = 1; for other cases, we set h̄(t1, τ,m

′) = 0. After
obtaining ḡ(t1, t2,m), we will be able to get the peak periods for ḡ(t1, t2,m) from
h̄(t1, τ,m

′) as follows. Let τ = t2 and m′ = m. If ḡ(t1, t2,m) is equal to the first term
of (12), period τ is not peak; otherwise, period τ is not peak, and let m′ = m′ − 1.
Then repeat the following until τ = t1: Let τ = τ − 1; if h(t1, τ,m

′) = 1, period τ is
peak; let m′ = m′ − h(t1, τ,m

′).
The detailed steps for the algorithm is described in Fig. 7.
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