
Enyue Lu1, Mei Yang2, S.Q. Zheng3, Shankar N. Neelakrishnan2, and Ju-Yeon Jo4 

 

1Dept. of Mathematics & Computer Science, Salisbury University, Salisbury, MD 21801 

2Dept. of Electrical and Computer Engineering, University of Nevada, Las Vegas, NV 89154 

3Dept. of Computer Science, University of Texas at Dallas, Richardson, TX, 75080 

4School of Informatics, University of Nevada, Las Vegas, NV 89154 

Emails: 1ealu@salisbury.edu , 2,4{meiyang, shankarn, jo}egr.unlv.edu, 3sizheng@utdallas.edu 

 

ABSTRACT 

Applications of stable matching in switch scheduling have been proposed. However, the classical GS 

stable matching algorithm is infeasible for high-speed implementation due to its high implementation 

complexity. Instead, acyclic stable matching algorithms have been shown useful in implementing 

scheduling for high-speed switches/routers. In this paper, we model the acyclic stable matching problem 

as the dominating set problem for a rooted dependency graph, and propose a parallel algorithm for 

finding the dominating set in O(nlogn) time. We design and implement a scheduler based on the 

proposed algorithm in hardware. Simulation results show that the number of 2-input NAND gates and 

the timing of our design are proportional to n2 and n respectively, making it feasible to be implemented 

at high speed with current CMOS technologies. 

 

KEY WORDS 

Switch scheduling, stable matching, acyclic graph, dependency graph, dominating set.  

I. INTRODUCTION 

The stable marriage problem (or stable matching problem) was first introduced by Gale and Shapley 

A PARALLEL SCHEDULER BASED ON ACYCLIC STABLE MATCHING 



(GS) in 1962 [1]. Given n men, n women, and 2n ranking lists in which each person ranks all members 

of the opposite sex in the order of preference, a matching is a set of n pairs of man and woman with each 

man/woman in exactly one pair. A matching is stable if there does not exist one man and one woman 

who are not matched to each other, but each of whom strictly prefers the other to his/her current partner 

in the matching; otherwise, the matching is unstable. Gale and Shapley showed that every instance of 

the stable matching problem admits at least one stable matching, which can be computed in O(n2) 

iterations. The paper [1] sparked much interest in many aspects and variants of the classical stable 

matching problem [3].  

The solutions to the stable matching problem have been applied to switch scheduling for packet 

switches. Many GS based stable matching scheduling algorithms have been proposed for both input 

queued (IQ) switches and combined input and output queued (CIOQ) switches [1], [5]-[11]. In these 

algorithms, the man set and the woman set consist of all input ports and all output ports respectively, and 

the ranking list for each input/output is defined differently according to different performance 

requirements. For example, McKeown proposed two scheduling algorithms, GS longest queue first 

(GS-LQF) and GS oldest cell first (GS-OCF), with ranking lists based on the occupancy of the input 

queues and the waiting time of the cells at the head of input queues respectively in [7]. GS-LQF and 

GS-OCF algorithms were shown to achieve asymptotically 100% throughput under both uniform and 

non-uniform traffic for IQ switches.  

The scheduling algorithms based on general stable matchings, however, are too complex for 

high-speed implementation. It turns out that for stable matching instances with acyclic dependency 

graphs, finding stable matchings takes less time. Researchers have proposed several scheduling 

algorithms for CIOQ switches based on acyclic stable matchings. In [8] Prabhakar and McKeown 

proposed the most urgent cell first algorithm (MUCFA) for a CIOQ switch with a speedup of 4 to 

emulate an output queued (OQ) switch performance. Chuang and Stoica improved the result to a 

speedup of 2 by the critical cell first (CCF) algorithm [1] and the joined preferred matching (JPM) 



algorithm [11] independently. In [8], Nong et al. proved that with some speedup, an acyclic stable 

matching scheduling algorithm can provide QoS guarantees for both unicast and multicast traffic with 

fixed-length and variable-length packets.  

The advantage of acyclic stable matching scheduling algorithms is its feasibility for high-speed 

implementation. However, there is no hardware design and implementation of acyclic stable matching 

scheduling algorithms in the literature. In this paper, we propose a parallel algorithm for the acyclic 

stable matching problem, and present its hardware implementation. We first model the acyclic stable 

matching problem as the dominating set problem for rooted dependency graphs. We show that the root 

set and the dominating set of a rooted dependency graph are identical. We then propose a parallel 

algorithm, FIND_ROOTS, to find the root set of a rooted dependency graph in O(nlogn) time with n2 

simple processing elements (PEs). We further present hardware design and implementation of the 

proposed algorithm. Simulation results show that the number of 2-input NAND gates and the timing of 

our design are proportional to n2 and n respectively. The proposed design can be used to implement 

schedulers based on acyclic stable matching algorithms, such as those in [1],[8], [10]-[11]. 

The rest of the paper is organized as follows. In Section II, we propose our parallel algorithm 

FIND_ROOTS. In Section III we focus on the design and implementation of FIND_ROOTS in 

hardware. Section IV concludes the paper. 

II. A PARALLEL STABLE MATCHING ALGORITHM FOR ROOTED DEPENDENCY GRAPH 

A. Preliminaries 

Let M={m1, m2, …, mn} and W={w1, w2, …, wn} be the sets of n men and n women respectively. Let 

mRi={wri,1, wri,2, …, wri,n} and wRj={mrj,1, mrj,2, …, mrj,n} be the ranking lists for man mi and woman wj 

respectively, where wri,j (resp. mrj,i) is the rank of woman wj (resp. man mi), 1≤ i,j ≤ n. That is, if wri,j=k 

(resp. rj,i=k), then woman wj (resp. man mi) is the kth choice of man mi (resp. woman wj). 

Let A be a ranking matrix of size n×n, where each entry of ai,j of A is a pair of (wri,j, mrj,i) in which 



wri,j is the rank of woman wj in man ranking list mRi and mrj,i is the rank of man mi in woman ranking 

list wRj. We call wri,j (resp. mrj,i) the horizontal value (resp. vertical value) of ai,j, and denote it by ai,j
h 

(resp. ai,j
v). Example 1 shows a 4×4 ranking matrix obtained from two given ranking lists. 

Example 1. An instance of stable matching problem. 

Man ranking lists: Woman ranking lists: Ranking matrix A: 

mR1: {3,4,1,2}; wR1: {3,2,1,4}; 3,3 4,1 1,1 2,3 

mR2: {1,2,3,4}; wR2: {1,4,3,2}; 1,2 2,4 3,2 4,2 

mR3: {1,2,4,3}; wR3: {1,2,3,4}; 1,1 2,3 4,3 3,1 

mR4: {2,3,1,4}. wR4: {3,2,1,4}. 2,4 3,2 1,4 4,4 

 

Definition 1. Given an n×n ranking matrix A, a set of man-woman pairs is a matching M if any two 

pairs (mi1,wj1) and (mi2,wj2) in M are corresponding to two entries ai1,j1 and ai2,j2 in different 

rows/columns of A; M is a stable matching if there does not exist a pair (mi,wj)∉M such that ah
i,j < ah

i, k 

and av
i,j < av

l, j, where (mi,wk), (ml, wj)∈M 

 

In Example 1, by Definition 1, we know the stable matching is the set of pairs (1,3), (2,4), (3,1) and 

(4,2), whose corresponding entries in the ranking matrix are marked by underlines. 

B. Dominating Set for Dependency Graph 

Given a ranking matrix A, we define the dependency graph of A as a directed graph 
→

G  constructed as 

follows: every ai,j of A is represented by a vertex vi,j of 
→

G ; there is an edge from vi,j to vi,k if and only if 

ai,j
h<ai,k

h; there is an edge from vi,j to vl,j if and only if ai,j
v<al,j

v. A stable matching instance is acyclic if 

its corresponding dependency graph does not contain any cycle. A dominating set of dependency graph 



→

G  is a set of vertices, denoted by Vd, such that the following two conditions are satisfied: (1) for any 

two vertices in Vd, they are corresponding to two entries in different rows/columns of the ranking 

matrix; (2) for any vertex v∈V(
→

G )-Vd, there is a directed edge from a vertex in Vd to v. Since each 

vertex vi,j in 
→

G  is corresponding to a pair of man and woman (mi,wj), by the definitions of stable 

matching and dominating set, we have the following fact. 

Fact 1. Let 
→

G  be a dependency graph. Vd is the vertex subset corresponding to a stable matching if and 

only if Vd is a dominating set of
→

G . 
By Fact 1, the problem of finding a stable matching is reduced to the problem of finding a 

dominating set. In general, the dominating set for a dependency graph may not be unique, and finding 

one is time consuming. However, we find that the problem of finding dominating sets for a special class 

of dependency graphs, named rooted dependency graphs, is much easier. A rooted dependency graph is 

defined recursively as follows: an empty graph is a rooted dependency graph; a non-empty dependency 

graph 
→

G  is a rooted dependency graph if (1) it contains one or more roots, each being a vertex without 

any incoming edge; (2) the reduced subgraph, which is obtained from 
→

G  by removing all vertices in 

the same rows/columns as the roots and all outgoing edges from these removed vertices, is also a rooted 

dependency graph. The root set of a rooted dependency graph 
→

G  is a set that consists of all roots of 
→

G  

and its reduced subgraphs recursively generated from 
→

G . 

Fact 2. Let 
→

G  be the dependency graph of a ranking matrix A where each entry ai,j=(wri,j, mrj,i). For 

any vertex vi,j, the number of incoming edges coming from the vertices in row i is equal to wri,j-1 and the 

number of incoming edges coming from the vertices in column j is equal to mrj,i-1.  

By Fact 2, we know that a vertex with corresponding entry (1,1) is a root since it has no incoming edge. 

By Fact 1 and Fact 2 we have the following theorem. 



Theorem 1. For a rooted dependency graph
→

G , the root set is the same as the dominating set, which is 

unique for 
→

G . 

co
lu

m
ns

1

2

3

4

1 2 3 4

co
lu

m
ns

1

GG "G’

rows rows
4321

4

3

2

1

2

32
rows

co
lu

m
ns

1

4

3

4

m

4,22,4

3,3 4,1 1,1 2,3

1,2 2,4 3,2 4,2

1,1 2,3 4,3 3,1

2,4 3,2 1,4 4,4 3,2

( a )

iteration 4
4

3

2

1

m

m

m

iteration 3iteration 2iteration 1 iteration 5

( b )

4,2

4,4

w

w

w

w

4

3

2

1

m

m

m

m 1

4

3

2

1

m

m

m

m

4

3

2

m

m

m

4

3

2

1

w

w

w

w

m 4

3

2

1

w

w

w

w

4

3

2

1 w

m

m

m

m

4

3

2

1

w

w

w

1

4

3

2

1

w

w

w

w

4

3

2

 

Figure 1.  (a) A rooted dependency graph 
→

G and its reduced subgraph 
→

'G  and 
→

"G . The roots of 
→

G  are v1,3, and v3,1. 

The roots of 
→

'G and 
→

"G are v4,2 and v2,4 respectively. The root set is {v1,3, v3,1, v4,2, v2,4}, and each root is marked as a dark 

circle. (b) The stable matching is found by GS algorithm in 5 iterations. In the each iteration, new proposals are marked as 

light lines and the kept proposals are marked as dark lines.  

Example 2. Figure 1(a) shows the dependency graph 
→

G  for the ranking matrix in Example 1. The 

horizontal value and vertical value of each entry in the ranking matrix are shown in each corresponding 

vertex. From the figure, clearly, neither of two vertices v1,3 and v3,1, which are marked as dark circles in 

→

G ,  has incoming edge since each of them corresponds to an entry (1,1) in the ranking matrix. Hence, 

→

G  has two roots, v1,3 and v3,1. After removing all vertices in rows 1 and 3 and columns 1 and 3 and their 

outgoing edges in
→

G , we get the reduced subgraph
→

G , which has root v4,2 marked as dark circle in 
→

'G . 



After removing all vertices in row 4 and column 2 and their outgoing edges in
→

'G , we get the reduced 

subgraph
→

"G , which contains only one vertex v2,4 that is also a root of 
→

"G .  By the definition, we know 

→

G  is a rooted dependency graph. It is easy to verify that the root set, {v1,3,v3,1,v4,2,v2,4}, is the 

dominating set of 
→

G . By Theorem 1, the dominating set corresponds to the stable matching of Example 

1, which is {(1,3),(3,1),(4,2),(2,4)}. 

A rooted dependency graph may not be acyclic (i.e. the graph may have a directed cycle). In 

Example 2, 
→

G  contains a cycle (v1,1,v4,1,v4,2,v3,2,v2,2,v2,3,v2,4,v1,4)  (see Figure 1 (a), in which edges in 

the cycle are marked as dark edges). However, an acyclic graph always has at least one root, and its 

reduced subgraph is also acyclic. Thus, we have the following fact. 

Fact 3.  An acyclic dependency graph is a rooted dependency graph, but a rooted dependency graph 

may not be an acyclic dependency graph.  

In the following, we propose a parallel algorithm for finding the root set (i.e. the stable matching) in a 

rooted dependency graph.  

C. The Algorithm 

Given a rooted dependency graph 
→

G  constructed from an n×n ranking matrix A, we first find the 

roots of 
→

G . If the reduced subgraph 
→

'G  of 
→

G  is not empty, we continue to find remaining vertices in 

the root set of 
→

G  recursively until the total number of found roots equals to n. The algorithm for 

finding the root set of a rooted dependency graph, FIND_ROOTS, is described in the following. 

Algorithm FIND_ROOTS 

 Begin 

G=
→

G    /* 
→

G  is the dependency graph */ 



Vr:=Ø  /*  Vr is the root set  */ 

while there exists a root in G do 

Step 1: find the set of roots Vr' of G and let Vr:=Vr∪Vr' 

Step 2: find the reduced subgraph G' of G and let G:=G' 

 End 

 Based on Theorem 1 and Fact 1, the set of roots obtained from FIND_ROOT is corresponding to the set 

of man-woman pairs in the stable matching. We analyze the time complexity of FIND_ROOTS using n2 

PEs as follows. The n2 PEs are placed as an n×n array, and the n PEs in the same row/column are fully 

connected. 

Each PEi,j is corresponding to a vertex vi,j  of 
→

G  and has a pair of horizontal (h for short) and 

vertical (v for short) values set as (wri,j, mrj,i) initially. Since the total number of roots in root set of 
→

G  

is equal to n, FIND_ROOTS runs in at most n iterations. Each iteration of FIND_ROOTS consists of 

two steps. Based on Fact 2, we know step 1 can be done in O(1) time by each PEi,j checking if its 

(h,v)=(1,1). Conceptually, step 2 contains 2 substeps. In substep 1, each root vertex vi,j found in step 1 

sets its (h,v)=(0,0) and marks all vertices in row i and column j as the vertices to be deleted. Since all 

PEs in the same row/column are fully connected, this substep takes O(1) time. In substep 2, each 

undeleted vertex vi,j decreases its h (resp. v) value by k if its h (resp. v) value is greater than that of k 

deleted vertices in row i (resp. column j). Since there are at most n deleted vertices in each row/column, 

this substep can be done in O(log n) time. Therefore, based on the above discussion, we have the 

following theorem. 

Theorem 2 Given any instance of stable matching problem, if its corresponding dependency graph is a 

rooted dependency graph (including acyclic dependency graph), we can find the stable matching in 

O(nlog n) time on n2 PEs.  



D. Comparison with GS Algorithm 

Gale and Shapley proposed an algorithm for solving the stable matching problem in [1]. The GS 

algorithm works in the following way. Each man first proposes to his most favorite woman; each 

woman will keep the proposal proposed by the man who has the highest rank in her ranking list among 

those who have proposed to her, and reject all the rest proposals. Each rejected man then proposes to his 

next favorite woman on his ranking list. The GS algorithm will continue this process until all women get 

proposals. When GS algorithm stops, each woman and man whose proposal the woman keeps become a 

pair of partners. All pairs of these partners form a stable matching. GS showed that a stable matching 

always exists and can be found in O(n2) iterations. Due to the dependency in GS algorithm, the number 

of iterations can not be easily reduced by parallelism regardless of the number of PEs used. The running 

time of parallel GS algorithm is O(n2logn) time on n PEs since each iteration takes O(logn) time to find 

the minimum from at most n distinct numbers.  

For stable matching problems with rooted dependency graphs, GS algorithm does not work as fast 

as FIND_ROOTS. As shown in Figure 1, to find the stable matching for Example 1, GS algorithm needs 

5 iterations while FIND_ROOTS only needs 3 iterations. This means that O(n) iterations are not 

sufficient for GS algorithm to find the stable matching for rooted dependency graphs. Furthermore, O(n) 

iterations are not sufficient for GS algorithm to find the stable matching for acyclic dependency graphs. 

Figure 2 shows an example of an acyclic dependency graph. To find the stable matching of this 

example, GS algorithm needs 6 iterations and FIND_ROOTS needs 3 iterations. 

 



G

3

"
G

4
rows

co
lu

m
ns

co
lu

m
ns

1

2

3

4

1 2 3 4
rows

2
co

lu
m

ns

1

2

3

4

1 2 3 4
rows

1

2

3

4

1

G
’

iteration 2

( b )

iteration 1 iteration 5 iteration 6

2

1,1 3,1 2,3 4,3

1,2 4,2

m

4

3

2

1

m

m

m

4

3

1,1

2

1

m

m

m

m

4

3

2

4,2

4,4 1,2

1

m

m

m

m

( a )

iteration 4iteration 3

3,1

4,4

3

2,2 3,1

2,3 4,3 3,4

2,4 4,4 3,4 1,2

1

m

m

m

m

4

3

2

1

m

m

m

m

4

1

w

w

w

w

4

3

2

1

m

m

m

m

4

3

2

4

3

2

1

w

w

w

w

4

3

2

w

w

w

w

4

3

2

1

w

w

w

w 1 1

w

w

w

w

4

3

2

1

w

w

w

w

4

3

2

 

Figure 2 (a) An acyclic dependency graph 
→

G  and its reduced subgraph 
→

'G and
→

"G . The roots of 
→

G  are v1,1, and v3,3. The 

roots of 
→

'G and 
→

"G are v2,4 and v4,2 respectively. The root set is v1,1, v3,3,v2,4,v4,2, and each root is marked as a dark circle. (b) 

GS algorithm finds the stable matching in 6 iterations. In each iteration, the new proposed proposals are marked as light lines 

and the kept proposals are marked as dark lines. 

Based on the above discussion, we know that the parallel GS algorithm finds the stable matching for 

a rooted dependency graph and an acyclic dependency graph in O(n2logn) time. However, 

FIND_ROOTS finds the stable matching for a rooted dependency graph and an acyclic dependency 

graph in O(nlogn) time. Thus, the speedup for worst time complexity of FIND_ROOTS to GS algorithm 

is O(n). Both FIND_ROOTS and GS algorithms take n man/woman ranking lists as inputs and every list 

contains n numbers, each with length of logn bits (In this paper, all logarithms are in base 2). Thus, the 

needed spaces for both algorithms are the same. Table 1 compares the parallel GS algorithm and the 

parallel FIND_ROOTS algorithm for finding the stable matching in any rooted dependency graph or 

acyclic dependency graph with respect to time, the number of PEs and memory space (in bits). 

 



Algorithm Time PEs Space 

GS O(n2logn) n O(n2log n) 

FIND_ROOTS O(nlogn) n2 O(n2log n) 

 

Table 1 Comparison of algorithms for finding a stable  

III. IMPLEMENTING THE SCHEDULER 

One of the objectives of our work is to design a scheduler that is feasible to implement. In this 

section, we present the hardware design and implementation of the scheduler based on the 

FIND_ROOTS algorithm. An n×n scheduler has n2 pairs of inputs as (wr1,1, mr1,1),… ,(wrn,n, mrn,n), and 

n pairs of outputs as the indices of n roots, s1, s2, …, sn. The circuit consists of n2 nodes arranged as an 

n×n array. Each node corresponds to an entry in a ranking matrix A and a vertex of A's dependency 

graph. We use 2n buses to interconnect n2 nodes such that node ni,j, where 1≤ i, j ≤ n, is connected to the 

ith row bus, ri, and the jth column bus, cj. Each bus is logn-bit wide. The first bit line of all n row buses 

are connected to a controller, which is used to select one out of possibly multiple bus requests (in the 

case of multiple root nodes exist in a graph). Each node ni,j has 2 inputs for reading its (h,v) pair, and one 

output to send out its index. Figure 3 shows the scheduler block diagram, circuit structure, and node 

block diagram of a 4×4 scheduler.  

The operation of an n×n scheduler has n iterations. Initially, each node ni,j sets its (h,v)=(wri,j,mrj,i). 

Each iteration operates as follows. For each node ni,j, if it finds its (h,v)=(1,1) (i.e. it is a root node), it 

will send a ‘request_signal’ on its row bus. If the controller detects that there are more than one buses 

requesting, it will confirm the bus with the minimum row index and send back a ‘grant_signal’ to the 

bus. Once a root node ni,j gets the ‘grant_signal’ from its row bus, it will send a ‘mask_signal’ on row 

bus ri and column bus cj to eliminate all nodes on row i and column j; meanwhile, it will update its 

(h,v)=(0,0) and send out its index. Once a node on row i (resp. column j) receives a ‘mask_signal’, it 



will send out its v (resp. h) value on its column (resp. row) bus. If a node with its h (resp. v) value is 

greater than the h (resp. v) value received from its row bus (resp. column bus), it will subtract its h (resp. 

v) value by 1. 

Scheduler

( a )

1

2

3

4s3

s1

s2

s3

s4

s2

wri,j

mrj,i

4

s s

. . . to/from ri

to/from cj

( c )( b )

C
on

tr
ol

le
r

cc c c

r

r

r

1 2 3

r4

wr1,1 mr1,1

1

wr4,4 mr4,4

ni,j

 

Figure 3 A 4×4 scheduler design. (a) Scheduler block diagram (b) Circuit structure (c) Node block diagram.  

The major advantage of this design is its simplicity. We only use 2nlogn-bit buses to broadcast 

signals to nodes of the same row or the same column, and one logn-bit priority encoder functioning as a 

controller for bus arbitration. Although n2 nodes are used, the logic of each node is simple, which mainly 

includes two logn-bit registers used to store its h and v values, one logn-bit comparator, and one logn-bit 

adder. We conducted simulations of the scheduler design on Synopsys's design tools. We wrote the 

VHDL [4] code, compiled and synthesized it on Synopsys's design_analyzer [12] using its library TSMC 

.18um. The design_analyzer was directed to minimize the area cost of the design. Table 1 depicts the 

timing results (in terms of ns) and the area results (in terms of the number of 2-input NAND gates) of 

the scheduler design for n=2,4,6,8,10,12. The timing and the number of 2-input NAND gates are 

proportional to n and n2 respectively, making the design feasible to be implemented with current CMOS 

technologies. 

Size N=4 N=6 N=8 N=10 N=12 

Timing 10.32 16.68 26.88 36.8 45.6 

Area 3392 7540 16634 25990 37426 



Table 2 Timing and area results of the scheduler design 

Another advantage of the design is its compatibility. Our scheduler design works well for real 

applications, including the case that ranks in some ranking lists are not distinct (e.g. cells with the same 

priority), the case that the lengths of some ranking lists are not equal to n (e.g. in some input queue, 

there is no cell destined for some output port), and the case that the sizes of man set and woman set are 

not equal (e.g. the number of input queues is not equal to the number of output queues). 

IV. CONCLUSION 

In this paper, we addressed the acyclic stable matching problem and proposed a parallel algorithm 

to solve the stable matching problem for rooted dependency graphs, which contains all acyclic 

dependency graphs as special cases. We designed a hardware scheduler based on the proposed 

algorithm. Simulation results show that the proposed scheduler design is feasible with current CMOS 

technologies. To the best of our knowledge, the scheduler design is the first hardware design for acyclic 

stable matching algorithms. It is very useful for switch controls of high-speed switches/routers. Future 

work includes hardware design optimization to achieve different application requirements. 

REFERENCES 

[1] S. T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching output queuing with a combined 

input/output-queued switch”, IEEE Journal on Selected Areas in Communications, vol. 17, no. 6, pp. 

1030-1039, Jun. 1999. 

[2] D. Gale and L.S. Shapley, “College admissions and the stability of marriage”, American 

Mathematical Monthly, vol. 69, pp. 9-15, 1962. 

[3] D. Gusfield and R.W. Irving, The stable marriage problem structure and algorithms, MIT Press, 

1989.  

[4] IEEE Standards Board, IEEE Standard VHDL Language Reference Manual, 2002. 



[5] A. C. Kam, K. Y. Siu, R. A. Barry, and E. C. Swanson, “A cell switch WDM broadcast LAN with 

bandwidth guarantee and fair access”, IEEE Journal of lightwave technology, vol. 16, no. 12, pp. 

2265-2280, Dec. 1998. 

[6] A. C. Kam and K.-Y. Siu, “Linear complexity algorithms for QoS support in input-queued switches 

with no speedup”, IEEE Journal on Selected Areas in Communications, vol. 17, no. 6, pp. 

1040-1056, June 1999. 

[7] N. McKeown, “Scheduling algorithms for input-buffered cell switches”, Ph.D. Thesis, University 

California at Berkeley, 1995. 

[8] G. Nong and M. Hamdi, “On the provision of integrated QoS guarantees of unicast and multicast 

traffic in input-queued switches”, Proceedings of IEEE Globecom 1999, vol. 3, pp. 1742-1746, 

1999. 

[9] G. Nong and M. Hamdi, “On the provision of quality-of-service guarantees for input queued 

switches”, IEEE Communications Magazine, vol. 38, no. 12, pp. 62-69, Dec. 2000. 

[10] B. Prabhakar and N. McKeown, “On the speedup required for combined input and output-queued 

switching”, Automatica, vol. 35, no. 12, pp. 1909-1920, Dec. 1999. 

[11] I. Stoica and H. Zhang, “Exact emulation of an output queueing switch by a combined input output 

queueing switch”, Proceedings of the 6th IEEE/IFIP IWQoS'98, Napa Valley, CA, pp. 218-224, 

May 1998.  

[12] Synopsys Design Analyzer Datasheet, available at  

http://www.synopsys.com/products/logic/deanalyzer\_ds.html, 1997. 

Enyue Lu received the PhD degree in computer science from the University of Texas 
at Dallas in 2004. Currently, she is an assistant professor in the Mathematics and 
Computer Science Department at Salisbury University, Maryland. Dr. Lu’s main 
research interests include parallel processing and computing, computer and 
communication networks, algorithm design and analysis, computer architectures, and 
combinatorics and graph theory. She earned a Best Paper Award at the 14th IASTED 
International Conference on Parallel and Distributed Computing and Systems in 2002.  

 



 

Mei Yang received her PhD degree in Computer Science from the University of 
Texas at Dallas in Aug. 2003. She is currently an Assistant Professor in the 
Department of Electrical and Computer Engineering at University of Nevada, Las 
Vegas (UNLV). Before she joined UNLV, she was an Assistant Professor in the 
Department of Computer Science at Columbus State University from Aug. 2003 to 
Aug. 2004. Her current research interests include wireless sensor networks, mobile 
ad hoc networks, computer architectures, and embedded systems.   

 
S.Q. Zheng received the PhD degree from the University of California, Santa 
Barbara, in 1987. After being on the faculty of Louisiana State University for 11 
years, he joined the University of Texas at Dallas in 1998, where he is currently a 
professor of computer science, computer engineering, and telecommunications 
engineering. Dr. Zheng’s research interests include algorithms, computer 
architectures, networks, parallel and distributed processing, telecommunications, 
and VLSI design. He has published approximately 200 papers in these areas. He 
served as the program committee chairman of numerous international conferences 

and the editor of several professional journals. He is a senior member of the IEEE.  
 

 

Shankar N. Neelakrishnan received his B.E. in Electrical and Electronics 
Engineering from University of Madras, India in 2004. He has been working for 
Infosys, India from 2004 to 2006. Currently he is a master student in the 
Department of Electrical and computer engineering at University of Nevada, Las 
Vegas. His main research interests are digital circuit design and network on chip. 
 

 
Ju-Yeon Jo received her PhD degree in computer science from Case Western 
Reserve University, Cleveland, Ohio. She is an assistant professor of school of 
informatics at the University of Nevada, Las Vegas where she joined in Aug. 2006. 
From 2003 to 2006, she was an assistant professor of computer science department 
at California State University, Sacramento. Prior to that, she spent several years in 
communication networking and software industry. She was a member of technical 
staff at Lucent Technologies, Bell Labs, in Homdel, New Jersey, and a software 
engineer at Coree Networks, a New Jersey based start-up company. Her current 

research interests include information security, network security, networking protocol design and 
performance analysis, and Internet traffic characterization. 
 


