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Efficient Scheduling for SDMG CIOQ Switches
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SUMMARY Combined input and output queuing (CIOQ)
switches are being considered as high-performance switch archi-
tectures due to their ability to achieve 100% throughput and per-
fectly emulate output queuing (OQ) switch performance with a
small speedup factor S. To realize a speedup factor S, a conven-
tional CIOQ switch requires the switching fabric and memories
to operate S times faster than the line rate. In this paper, we
propose to use a CIOQ switch with space-division multiplexing
expansion and grouped input/output ports (SDMG CIOQ switch
for short) to realize speedup while only requiring the switch-
ing fabric and memories to operate at the line rate. The cell
scheduling problem for the SDMG CIOQ switch is abstracted as
a bipartite k-matching problem. Using fluid model techniques,
we prove that any maximal size k-matching algorithm on an
SDMG CIOQ switch with an expansion factor 2 can achieve 100%
throughput assuming input line arrivals satisfy the strong law
of large numbers (SLLN) and no input/output line is oversub-
scribed. We further propose an efficient and starvation-free max-
imal size k-matching scheduling algorithm, kFRR, for the SDMG
CIOQ switch. Simulation results show that kFRR achieves 100%
throughput for SDMG CIOQ switches with an expansion factor
2 under two SLLN traffic models, uniform traffic and polarized
traffic, confirming our analysis.

key words: CIOQ switch, cell scheduling, maximal size match-
ing, speedup.

1. Introduction*

Output queuing (OQ) switches are employed for many com-
mercial switching systems today due to their ability to max-
imize throughput and provide quality of service (QoS) guar-
antees. However, OQ switches are not scalable for high line
rates and/or large numbers of ports since the switching fab-
ric and memories for an N ×N OQ switch are required to
run N times faster than the line rate. On the other hand,
input queuing (IQ) switches are scalable with their switch-
ing fabric and memories operating at the line rate, but IQ
switches have a limited throughput because of head-of-line
(HOL) blocking and cannot provide QoS guarantees. To
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reduce the speed requirement of the switching fabric and
memories of OQ switches and improve the switch perfor-
mance of IQ switches, combined input and output queuing
(CIOQ) switches are proposed. CIOQ switches are being
considered as high-performance switch architectures due to
their ability to achieve 100% throughput and even emulate
OQ switch performance with a small speedup factor [2]. Fig.
1 shows an N × N CIOQ switch. To remove head-of-line
(HOL) blocking [13], each input port Ii maintains N virtual
output queues (VOQs) with Qi,j buffering packets destined
for output port Oj . With an internal speedup larger than
1, packets need to be buffered at outputs as well.
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Fig. 1 An N ×N CIOQ switch.

In this paper, we assume that all switches we discuss
are cell based. In such a switch, variable-length packets
are segmented into fixed-size cells upon arrival, transferred
through the switching fabric, and reassembled back into
original packets before they depart the switch. Time is di-
vided into cell slots and one cell slot equals to the transmis-
sion time of a cell on the input/output line. In each cell slot,
a scheduling algorithm selects a matching between input
ports and output ports such that no input (resp. output)
port may be matched to more than one output (resp. in-
put) port. Fixed-size cells and slotted time switching make
it easier for the scheduler to configure the switching fabric
for high throughput [16].

The cell scheduling problem for VOQ based switches
can be modelled as a bipartite matching problem [16]. Al-
though maximum weight matching algorithms are proved
to achieve 100% throughput for all admissible identically
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independently distributed (i.i.d.) arrivals [17], they are in-
feasible for high speed implementation with their time com-
plexity of O(N3 log N) [25]. The most efficient maximum
size matching algorithm has a time complexity of O(N2.5)
[11], [25]. However, maximum size matching algorithms are
too complex for hardware implementation and can cause
unfairness [17]. Most practical scheduling algorithms pro-
posed, such as parallel iterative matching (PIM) [1], iSLIP
[16], dual round-robin matching (DRRM) [5], first come first
serve in round-robin matching (FIRM) [22], static round-
robin (SRR) [12], iterative ping-pong arbitration (PPA) [4]
scheme, and the round-robin priority matching (RRPM)
[14], are iterative algorithms that find a maximal size match-
ing to approximate a maximum size matching.

A switch with a speedup factor S can remove up to S
cells from each input port and deliver up to S cells to each
output port within one cell slot. Hence, an IQ switch has
a speedup of 1, an OQ switch has a speedup of N , and a
CIOQ switch has a speedup between 1 and N . It has been
shown that a CIOQ switch with a speedup of 4 or 2 can
exactly emulate an OQ switch by employing stable match-
ing [9] based algorithms, such as the most urgent cell first
algorithm (MUCFA) [21], the critical cell first (CCF) algo-
rithm [6], and the just preferred matching (JPM) algorithm
[24]. Unfortunately, these scheduling algorithms are highly
impractical due to their high time complexity (O(N2) iter-
ations).

In [8], Dai and Prabhakar proved that employing any
maximal size matching algorithm a CIOQ switch with S = 2
can achieve 100% throughput for arbitrarily distributed in-
put patterns such that input arrivals satisfy the strong law
of large numbers (SLLN) and no input/output is oversub-
scribed. Since almost all real traffic processes satisfy these
properties, this result has high practical significance for at
least two reasons. First, achieving 100% throughput is
a necessary condition for a CIOQ switch to realize OQ-
equivalent quality of service (QoS) guarantees with care-
fully designed queuing disciplines at each VOQ and at each
output queue. Second, maximal size matching algorithms
are easier to implement than maximum size matching al-
gorithms or stable matching algorithms. In addition, it is
shown that CIOQ switches with any maximal size match-
ing algorithms perform as good as OQ switches in terms of
delay under Bernoulli i.i.d. arrival traffic [23].

To realize speedup for CIOQ switches, in the conven-
tional scheme, it requires the switching fabric and memories
to run S times faster than the line rate. Under current tech-
nology, the switching fabric can support up to 3.6Gbps line
rate [26]. On the other hand, advances in fiber-optic trans-
mission technologies have greatly pushed the increase of op-
tical transmission rate. Each individual channel now can
operate at OC-192 (10Gbps) or even OC-768 (40Gbps). Al-
though silicon technologies have advanced rapidly, the gap
between the data rate that optical transmission technology
can deliver and the switching speed that electronic switch-
ing fabric can provide is becoming wider and wider [18].
Thus it may not always be feasible to run the switching
fabric much faster than the line rate. Memories with suffi-
cient access rate are simply not available for high line rate
due to the limitation of current semiconductor technology.
Even with fast switching fabric and memories, it may not
be possible to run the cell scheduling algorithm fast enough
to realize switch speedup greater than 1. In [27], we pro-

posed pipelined maximal size matching algorithms to relax
the running time for the scheduling algorithm for CIOQ
switches with speedup. However, the running time for the
switching fabric and memories is not relaxed.

To relax the stringent timing requirement of the oper-
ation speed of the switching fabric and memories, we intro-
duce a CIOQ switch architecture with space-division multi-
plexing expansion and grouped input/output ports, short-
ened as an SDMG CIOQ switch. In an SDMG CIOQ switch,
the number of connections between each input/output port
and the switching fabric is increased, but the switching fab-
ric only needs to run as fast as the line rate. We define the
expansion factor of an SDMG CIOQ switch as the ratio of
the number of connections between an input/output port
and the switching fabric and the number of input/output
lines associated with an input/output port.

We model the cell scheduling problem for SDMG
CIOQ switches as a bipartite k-matching problem. Using
fluid model techniques, we prove that any maximal size k-
matching algorithm for an SDMG CIOQ switch with an
expansion factor 2 can achieve 100% throughput assum-
ing that input line traffic arrivals satisfy SLLN and no
input/output line is oversubscribed. We propose the k-
connection FIRM-based round-robin (kFRR) algorithm to
find maximal size k-matchings on SDMG CIOQ switches.
Through simulations, we show that the kFRR algorithm
achieves 100% throughput for SDMG CIOQ switches with
an expansion factor 2 under two SLLN traffic models: uni-
form traffic (both Bernoulli arrivals and bursty arrivals) and
polarized traffic. This confirms our analysis based on fluid
model techniques. The advantage of the proposed scheme
compared to existing schemes is that it achieves the same
performance as switches with speedup but only requires the
switching fabric and memories to operate at the same speed
as the line rate.

The remainder of this paper is organized as follows.
Section 2 presents the SDMG CIOQ switch architecture.
Section 3 defines and models the cell scheduling problem
for SDMG CIOQ switches. Section 4 gives an analysis of
the expansion factor that is sufficient for an SDMG CIOQ
switch to achieve 100% throughput. Section 5 describes
the kFRR scheduling algorithm and discusses its properties.
Section 6 presents the simulation results of kFRR. Section
7 discusses possible hardware implementation schemes for
the kFRR algorithm. Section 8 concludes the paper.

2. SDMG CIOQ Switches*

We assume all the switch architectures we discuss are cell
based. To realize the speedup required for a CIOQ switch,
we consider an alternative CIOQ switch architecture with
more connections between each input/output port and the
switching fabric. We generalize this CIOQ switch architec-
ture by grouping multiple input/output lines into one port.
The purpose of introducing grouped input/output ports is
to achieve better buffer utilization [20], improve scheduling
performance [19], and balance switch input/output loads.
We name such a CIOQ switch as a CIOQ switch with space-
division multiplexing expansion and grouped input/output
ports (SDMG CIOQ switch for short). Fig. 2 shows an
N × N SDMG CIOQ switch, where N is the number of
input/output lines.

The characteristics of the SDMG CIOQ switch are
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listed as follows.

• It has N/g (grouped) input ports denoted as Ii’s, and
N/g (grouped) output ports denoted as Oj ’s, where
1 ≤ i, j ≤ N/g. Input port Ii groups input lines Ll’s,
(i−1)g+1 ≤ l ≤ ig, and output port Oj groups output
lines Mm’s, (j−1)g+1 ≤ m ≤ jg. g is called the group
factor, 1 ≤ g ≤ N . In practice, g is selected appropri-
ately to balance the performance and implementation
complexity.

• Each input port Ii maintains N/g VOQs with Qi,j

buffering cells destined for output port Oj , 1 ≤ i, j ≤
N/g.

• Each output port Oj maintains g output queues, each
associated with an output line.

• It has an Nk/g×Nk/g switching fabric with k connec-
tions to each input/output port. We assume that the
switching fabric is non-blocking or rearrangeable non-
blocking. k is called the port connection factor, and it
is assumed that k ≥ g.

• Cells belonging to one VOQ of an input port may be
transmitted through the switching fabric simultane-
ously. The sequence of cells can be kept by appro-
priately setting the switching fabric such that the cell
order is consistent with the connection order.

• A cell in an input port can be switched to its desti-
nation output port through any of the k connections
between the input port and the switching fabric and
any of the k connections between the switching fabric
and the destination output port.
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Fig. 2 An SDMG CIOQ switch.

We define P = k/g as the expansion factor of an SDMG
CIOQ switch. To relax the memory access rate, the inter-
face between each VOQ (or output queue) and the switch-
ing fabric is expanded to multiple copies to allow more than
one cell to be transmitted from a VOQ (or into an output
queue). Fig. 3 (a) shows a possible queuing scheme at an
input port, in which each VOQ is composed of k sub-queues.
Cells belonging to one VOQ are buffered in sub-queues fol-
lowing the order of 1, 2, · · · , k. Since k ≥ g, it is feasible for
each VOQ to receive up to g cells (one to each sub-queue)
coming from different input lines without speedup. A queue

controller (QC) is used to select up to g out of k sub-queues
to receive these incoming cells. Since up to k cells (in differ-
ent sub-queues) from one VOQ may be sent to the switching
fabric through up to k connections in one cell slot, an inter-
connection controller (IC) is used as the interface between
each VOQ and the k connections to ensure the cells are sent
in the same sequence as they arrive. Fig. 3 (b) shows a pos-
sible queuing scheme at an output port, where each output
queue is composed of k sub-queues. An IC is used as the
interface between k connections and each output queue to
ensure the cells enter the sub-queues in the same sequence
as they are transmitted on the k connections. Each output
queue is connected to its corresponding output line. In this
scheme, since in one cell slot at most one cell enters or leaves
a sub-queue, memory speedup is not needed.
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Fig. 3 (a) Queue structure at the input port. (b) Queue struc-
ture at the output port.

In [19], Obara et al. proposed a similar switch archi-
tecture to enhance the scheduling performance for an ATM
switch. Our purpose of using the SDMG CIOQ switch archi-
tecture is to achieve speedup but only require the switching
fabric and memories to operate at the same speed as the
line rate. The tradeoff of the SDMG CIOQ switch is the
increased complexity of the switching fabric and the added
QCs and ICs in input/output ports. With current semicon-
ductor technology, it is feasible to implement the SDMG
CIOQ switch with regular size g and k (for the switch sizes
discussed in Section 6).

3. Cell Scheduling for SDMG CIOQ Switches

For an SDMG CIOQ switch, the scheduling algorithm
needs to determine a conflict-free switching fabric setting
for switching cells from input ports to output ports in
each cell slot. The cell scheduling problem for the SDMG
CIOQ switch can be modelled as a bipartite k-matching
problem on the graph G = (V, E), where V = V1 ∪ V2,
V1 = {input ports}, V2 = {output ports}, | V1 |=| V2 |=
N/g, E = {connection requests from input ports to output
ports}. Let M =| E |. In each cell slot, there might be up
to k connection requests from an input port to an output
port. Therefore, G may not be a simple graph since there
may be more than one edge between one pair of nodes.

A k-matching is an edge set K ⊆ E such that no node
of G is incident by more than k edges in K, where k ≥ 1.
A matching is a special case of k-matching with k = 1. A
match is an edge (i, j) ∈ K. A perfect k-matching K is one
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that each node of G is incident by k edges in K. A maximum
size k-matching is one with the maximum number of edges.
A maximal size k-matching is one that is not contained in
any other k-matchings.

Fact 1: For a maximal size k-matching of K ⊆ G, all the
following statements are true. (1) The number of matches
between any Ii and any Oj in K is less than or equal to k.
(2) The total number of matches between any Ii and all Oj ’s
in K is less than or equal to k. (3) The number of matches
between all Ii’s and any Oj in K is less than or equal to k.
(4) If there are at least k connection requests between some
Ii and some Oj , then at least one of the following holds: (a)
Ii has k matches to some output ports, and (b) Oj has k
matches to some input ports.

Fig. 4 compares a maximum size 2-matching and a
maximal size 2-matching for a 4 × 4 SDMG CIOQ switch
with g = 1 and k = 2. With the maximum size 2-matching
shown in Fig. 4(b), Q1,1, Q1,3, Q2,2, Q2,4, and Q3,2 will be
served.
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Fig. 4 A maximum size 2-matching and a maximal size 2-
matching of a 4× 4 SDMG CIOQ switch.

As a special case of the bipartite b-matching prob-
lem [7], the maximum bipartite k-matching problem can
be transformed to a maximum-flow problem in O(M) time.
Since the transformed flow network is a unit network [25],
we can use Dinic’s algorithm to solve the corresponding
maximum-flow problem in O(

√
NM) time [25]. However,

this algorithm is too complex for hardware implementation.
Another noticeable problem with maximum size k-matching
algorithms is that they may cause unfairness. For example,
in Fig. 4, if Q1,1, Q1,3, Q2,2, Q2,4, and Q3,2 continue hav-
ing requests and other VOQs continue having no request in
successive cell slots, then Q1,2 may get starved since edge
(1, 2) does not belong to any maximum size 2-matching.

For practical use, we desire scheduling algorithms to
be fast, starvation-free, easy to implement, and of high
throughput [16]. Compared with maximum size k-matching
algorithms, maximal size k-matching algorithms are sim-
pler and possible to avoid unfairness. However, how good
the performance of maximal size k-matching algorithms can
be? In the following, we will give an analysis based on fluid
model techniques.

4. Analysis of Maximal Size k-Matching Algo-
rithms

We follow the definitions of SLLN and fluid model used in

[8]. We define A′l,m(n) as the cumulative number of cells
that have arrived from input line Ll destined for output
line Mm up to cell slot n. We assume that the arrival pro-
cesses {A′l,m(·), l, m = 1, ..., N} satisfy a strong law of large
numbers (SLLN), i.e. with probability one,

lim
n→∞

A′l,m(n)

n
= λ′l,m, l, m = 1, ..., N, (1)

where λ′l,m is called the cell arrival rate from input line Ll

to output line Mm. We also assume that no input/output
line is oversubscribed, i.e.

∀1 ≤ l, m ≤ N,

N∑
m=1

λ′l,m ≤ 1,

N∑
l=1

λ′l,m ≤ 1. (2)

Equations (1) and (2) are very mild conditions. Almost
all real traffic processes satisfy these two equations. Let
D′

l,m be the departure rate of cells coming from input line
Ll to output line Mm. An SDMG CIOQ switch under a
k-matching algorithm is said to be work conserving if

lim
n→∞

∑
l
D′

l,m(n)

n
=

∑
l

λ′l,m (3)

for any (traffic) arrival satisfying Equations (1) and (2), i.e.
the long-run fraction of time that output line Mm (1 ≤ m ≤
N) is busy is equal to the cell arrival rate at the output line.
This is equivalent to saying that the SDMG CIOQ switch
can achieve 100% throughput if there is enough offered load.

We define Ai,j(n) as the cumulative number of cells ar-
rived at Qi,j (i.e. cells arriving at input port Ii and destined
for output port Oj) up to cell slot n. For arrival processes
A′l,m(·)’s satisfying Equation (1), we derive that arrival pro-
cesses {Ai,j(·), i, j = 1, ..., N/g} also satisfy SLLN since with
probability one,

lim
n→∞

Ai,j(n)

n

= lim
n→∞

∑jg

m=(j−1)g+1

∑ig

l=(i−1)g+1
A′l,m(n)

n

=

jg∑
m=(j−1)g+1

ig∑
l=(i−1)g+1

λ′l,m

= λi,j , i, j = 1, ..., N/g. (4)

We call λi,j the cell arrival rate at Qi,j . For arrival processes
A′l,m(·)’s satisfying Equation (2), no input/output port is
oversubscribed since

∀1 ≤ i, j ≤ N/g,

N/g∑
j=1

λi,j =

N∑
m=1

ig∑
l=(i−1)g+1

λ′l,m ≤ g,

N/g∑
i=1

λi,j =

N∑
l=1

jg∑
m=(j−1)g+1

λ′l,m ≤ g. (5)

Let Di,j(n) be the number of cells departing from Qi,j

up to cell slot n. We say an SDMG CIOQ switch under a
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matching algorithm is VOQ rate stable if with probability
one,

lim
n→∞

Di,j(n)

n
= λi,j , i, j = 1, ..., N/g (6)

for any arrival process satisfying Equation (4). And an
SDMG CIOQ switch is said to be port conserving if Equa-
tions (5) and (6) hold, which means that the cell arrival rate
at output port Oj satisfies

lim
n→∞

∑N/g

i=1
Di,j(n)

n
≤ g, 1 ≤ j ≤ N/g.

Let an N/g×N/g matrix Z(n) be the request matrix at
cell slot n, where Zi,j(n) denotes the number of cells in Qi,j

at the beginning of cell slot n. A maximal size k-matching
algorithm A determines a matrix π(n) in cell slot n, where
πi,j(n), 1 ≤ i, j ≤ N/g, indicating how many cells can be
transmitted from input port Ii to output port Oj during
cell slot n. Since A is a maximal size k-matching algorithm,
we have the following equations based on Fact 1.

∀1 ≤ i, j ≤ N/g, π(n)i,j ≤ k, (7)

∀1 ≤ i ≤ N/g,

N/g∑
j=1

π(n)i,j ≤ k, (8)

∀1 ≤ j ≤ N/g,

N/g∑
i=1

π(n)i,j ≤ k, (9)

∀1 ≤ i, j ≤ N/g,

N/g∑
j=1

π(n)i,j +

N/g∑
i=1

π(n)i,j ≥ k,

if Zi,j(n) ≥ k. (10)

We define TAπ (n) as the cumulative amount of time
that permutation π determined by A has been used by cell
slot n. Assuming that Π is the set of matrices determined by
A that satisfy Equations (7)-(10), the following equations
hold for the SDMG CIOQ switch:

Zi,j(n) = Zi,j(0) + Ai,j(n)−Di,j(n),

Di,j(n) =
∑
π∈Π

πi,jT
A
π (n),

∑
π∈Π

TAπ (n) = n.

where n ≥ 0 and i, j = 1, · · · , N/g.
Consider a deterministic, continuous fluid model of

the SDMG CIOQ switch shown in Fig. 2 operating un-
der the maximal size k-matching algorithm A with of-
fered arrivals satisfying Equation (4). For each t ≥ 0 and
i, j = 1, · · · , N/g, the fluid model is governed by the follow-
ing set of equations:

Zi,j(t) = Zi,j(0) + λi,jt−Di,j(t) ≥ 0, (11)

·
Di,j (t) =

∑
π∈Π

πi,j

·
T
A
π (t) > 0, (12)

TAπ (·) is nondecreasing, and
∑
π∈Π

TAπ (t) = t, (13)

where
·
f denotes the derivative of function f at t, assuming

f is differentiable at t. A solution to Equations (11)-(13)
is said to be a fluid model solution. The fluid model of an
SDMG CIOQ switch operating under a k-matching algo-
rithm is said to be VOQ weakly stable if every fluid model
solution (D, T, Z) has Z(t) = 0 for t ≥ 0.

Theorem 1: An SDMG CIOQ switch under a k-matching
algorithm is VOQ rate stable if its fluid model is VOQ
weakly stable.

For detailed proof, please refer to the proof of Theorem
3 in [8]. We only give an intuitive explanation here. By
Equation (11), we get Di,j(t) = λi,jt for Zi,j(t) = 0, t ≥ 0.

Hence limt→∞
Di,j(t)

t
= λi,j .

Before we go further, we first state a simple lemma [8].

Lemma 1: Let f : [0,∞) → [0,∞) be an absolutely con-

tinuous function with f(0) = 0. Assume that
·
f (t) ≤ 0 for

almost every t (wrt Lebesgue measure) such that f(t) > 0
and f is differentiable at t. Then f(t) = 0 for almost every
t ≥ 0.

Please refer to the proof of Lemma 1 in [8].
Let (D, T, Z) be a fluid model solution satisfying Equa-

tions (11)-(13) with Z(0) = 0. Let Ri(t) =
∑

j
Zi,j(t) de-

note the total amount of fluid queued at input port Ii at
time t and Sj(t) =

∑
i
Zi,j(t) be the total amount of fluid

destined for output port Oj and queued at some input ports
at time t. Define Ci,j(t) = Ri(t) + Sj(t). In addition to
the fluid model Equations (11)-(13), we have the following
lemma.

Lemma 2: For an SDMG CIOQ switch with expansion
factor P = k/g operating under a maximal size k-matching
algorithm, each fluid limit must satisfy the following equa-
tion for 1 ≤ i, j ≤ N/g:

·
Ci,j (t) ≤

N/g∑
j=1

λi,j +

N/g∑
i=1

λi,j − k,

whenever Zi,j(t) > 0. (14)

Proof is given in Appendix A.

Theorem 2: For an SDMG CIOQ switch shown in Fig.
2, any maximal size k-matching algorithm with k = 2g, i.e.
P = k/g = 2, can achieve 100% throughput assuming that
input line arrivals satisfy SLLN and no input/output line is
oversubscribed.

Proof is given in Appendix B.
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5. The kFRR Scheduling Algorithm*

In this section, we focus our study on practical maximal size
k-matching algorithms, which can be developed based on it-
erative maximal size matching scheduling algorithms, such
as PIM [1], iSLIP [16], DRRM [5], FIRM [22], SRR [12], and
iterative PPA scheme [4]. Among these algorithms, round-
robin based algorithms, such as iSLIP, DRRM, and FIRM,
are more attractive than others because of their fairness and
implementation simplicity. FIRM improves iSLIP by reduc-
ing the service guarantee time from (N − 1)2 +N2 cell slots
to N2 cell slots. It is starvation-free and easy to implement
in hardware at high speed [22]. In the following, we gen-
eralize the idea of FIRM for the SDMG CIOQ switch and
present the k-connection FIRM-based round-robin (kFRR)
scheduling algorithm. Similar to FIRM, kFRR is also an
iterative and round-robin based algorithm.

For input port Ii, let ai, where 1 ≤ ai ≤ N/g, be its
accept pointer indicating the accept starting position in the
circular round-robin priority queue, and C(Ii) be the num-
ber of available connections at Ii. For output port Oj , let
gj , where 1 ≤ gj ≤ N/g, be its grant pointer indicating the
grant starting position in the circular round-robin priority
queue, and C(Oj) be the number of available connections
at Oj . Prior to the first iteration of kFRR in any cell slot,
we set C(Ii) = C(Oj) = k for all 1 ≤ i, j ≤ N/g.

In each cell slot, kFRR iteratively finds a k-matching.
It terminates after a fixed number of iterations or after
a non-profit iteration (i.e. a maximal size k-matching is
found). Each iteration of kFRR consists of the following
three steps.

Step 1: Request. ∀Ii, 1 ≤ i ≤ N/g, if Ii has any available
connection and any unresolved request (an unresolved
request is one to an output port with any available
connection), it sends all unresolved requests to their
corresponding Oj ’s.

Step 2: Grant. ∀Oj , 1 ≤ j ≤ N/g , if Oj has any avail-
able connection and receives any request, it grants
min{C(Oj), the number of requests to Oj} requests,
starting from gj . These grants are sent to their corre-
sponding Ii’s. gj is updated to the first input port that
receives Oj ’s grant but does not accept it in the Accept
phase or the first input port that does not receive Oj ’s
grant if all Oj ’s grants are accepted in the first iter-
ation, starting from gj in a circular manner (modulo
N/g) if and only if in the the first iteration. C(Oj) is
updated to the number of available connections at Oj .

Step 3: Accept. ∀Ii, 1 ≤ i ≤ N/g , if Ii has any
available connection and receives any grant, it accepts
min{C(Ii), the number of grants to Ii} grants start-
ing from ai. ai is updated to the next position to the
last output port whose grant is accepted by Ii in a cir-
cular manner (modulo N/g). C(Ii) is updated to the
number of available connections at Ii.

Fig. 5(a) shows how kFRR with one iteration works
using an example for a 4 × 4 SDMG CIOQ switch with
k = 2 under saturated load. Saturated load means at some
cell slot, ∀1 ≤ i, j ≤ 4, Qi,j > 0, and input port traffic
arrivals are maintained in such a manner that Qi,j > 0 in
the following cell slots. At the start of cell slot 0, we assume
that gj = 1 and ai = 1 for all 1 ≤ i, j ≤ 4. In the Request

step, each input port Ii sends a request to each output port
Oj , represented by an edge in the figure. In the Grant
step, each Oj grants I1 and I2 since each Oj only has two
connections available and gj = 1 for all 1 ≤ j ≤ 4. In the
Accept step, both I1 and I2 accept grants from O1 and O2

since each of them only has two connections available and
a1, a2 = 1. Finally a 2-matching of size 4 is found. a1 and
a2 are updated to 3, while a3 and a4 are not updated; g1

and g2 are updated to 3, while g3 and g4 are not updated.
Fig. 5(b) illustrates the desynchronization effect of grant
pointers of kFRR with the previous example. After cell slot
0, due to the desynchronization of grant pointers, a perfect
2-matching is obtained at cell slot 1. For the same reason,
perfect 2-matchings (with different patterns) are found in
cell slots 2 and 3.
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(b) 2-Matchings found in cell slots 1-3

Fig. 5 An example of kFRR with one iteration.

kFRR has the following properties.
Property 1: At each output port Oj , due to the prop-

erty of round-robin, the lowest priority input port is set as
the one before the first input port that receives its grant but
does not accept it in the first iteration or the input port be-
fore the first input port that does not receive Oj ’s grant if
all Oj ’s grants are accepted in the first iteration.

Property 2: Under saturated load, all VOQs with a
common output port have the same throughput because the
grant pointer at the output port moves to each requesting
input port in a fixed order (every N

kg
cell slots).

Property 3: No connection request is starved. This
property comes from the following theorem.

Theorem 3: kFRR serves an existing connection request
within no more than ( N

gk
)2 cell slots.

Proof: The worse case service scenario of kFRR is the situ-
ation where a request from input port Ii to output port Oj

has to wait all other N/g − k input ports to be served by
Oj , i.e. for some cell slot n, Zi′,j(n) > 0 (i.e. the number of
cells in Qi′j at cell slot n) for all Ii′ ’s and gj = ((i+1) mod
N/g), where i′ 6= i. The delay between posting a request
and serving the request consists of the delay for the request
to be granted and the delay for the grant to be accepted.
The delay for the request from Ii to Oj to be granted is
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( N
gk
− 1) N

gk
cell slots since it takes N

gk
− 1 cell slots for Oj to

grant requests from other N/g − k input ports and it takes
at most N

gk
cell slots for each grant to be accepted. After

the grant to Ii is issued, it also takes N
gk

cell slots to get it

accepted. Thus totally it takes ( N
gk
−1) N

gk
+ N

gk
= ( N

gk
)2 cell

slots to serve an existing connection request.
Property 4: kFRR finds a maximal size k-matching in

at most N/g − k + 1 iterations, i.e. kFRR converges in at
most N/g − k + 1 iterations.

The reason is explained as follows. The size of a maxi-
mal size k-matching is at most Nk/g. If finding a maximal
size k-matching takes more than 1 iteration, the first iter-
ation finds at least k2 matches, the last iteration finds at
least 1 match, and other iterations find at least k matches.
Thus, the total number of iterations needed is at most

bNk/g−k2−1
k

c + 2, which is given by N/g − k + 1. We fur-
ther conjecture that under uniform traffic arrivals kFRR
converges in O(log N) iterations on average.

Fig. 6 shows an example of the number of iterations
needed for kFRR to converge for an 8 × 8 SDMG CIOQ
switch with k = 2 under saturated load. In cell slot 0, kFRR
takes 4 iterations to converge. It takes 3 and 2 iterations for
kFRR to converge in cell slots 1 and 2 respectively. After
cell slot 3, all grant pointers are totally desynchronized and
kFRR converges in a single iteration.
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Fig. 6 Example of the number of iterations needed for kFRR
to converge for an 8 × 8 SDMG CIOQ switch under saturated
load.

6. Performance Evaluation*

In Section 4, we proved that any maximal size k-matching
algorithms can achieve 100% throughput for SDMG CIOQ
switches with an expansion factor 2. Nevertheless, in prac-
tice, the number of iterations allowed in one cell slot may
not be sufficient for finding a maximal size k-matching. In
this section, we evaluate the performance of kFRR with the
number of iterations allowed in each cell slot is limited on
SDMG CIOQ switches with an expansion factor 2 in terms
of the average queuing delay. The queuing delay is defined
as the cell’s queuing delay at input and output ports counted
in the number of cell slots.

Two traffic models are used in our simulations: uni-
form traffic and polarized traffic. For uniform traffic, we
consider both Bernoulli arrivals and bursty arrivals. The
polarized traffic is defined as follows [3]. Given the geo-
metric progression factor q ≥ 1.00, the proportion of traffic
arriving at input line Ll destined for output line Mm should
satisfy

dl,m =
q(l+m) mod N · (q − 1)

qN − 1

such that,

∀l ∈ [1..N ],
∑N

m=1
dl,m = 1 and

∀m ∈ [1..N ],
∑N

l=1
dl,m = 1.

Polarized traffic with q = 1.00 is uniform traffic. One
can verify that both uniform traffic and polarized traf-
fic satisfy the SLLN condition without oversubscribed in-
put/output lines. Simulations have been performed for the
kFRR algorithm for SDMG CIOQ switch sizes of 16 × 16,
32× 32, 64× 64, and 128× 128 with different group factors
(g), different port connection factors (k), different polariza-
tion factors (q), and different number of iterations. In the
following, we present simulation results with the example
of a 32× 32 SDMG CIOQ switch. Without loss of general-
ity, in our simulations, all pointers in kFRR are initialized
randomly.

6.1 Bernoulli Arrivals

Fig. 7 shows the average cell delay vs. load of kFRR with
1, 2, and 4 iterations, g = 1, k = 2, and q = 1.00, 1.50, and
2.00 for a 32× 32 SDMG CIOQ switch under Bernoulli ar-
rivals. In the figure, “x-y” represents the case of kFRR with
q = x and the number of iterations being equal to y. kFRR
achieves 100% throughput for all polarization factors. The
performance of kFRR improves when the polarization factor
increases. We observe that the difference in the number of
iterations does not affect much of the performance of kFRR
under Bernoulli arrivals.

Fig. 8 compares the average queuing delay vs. load
of one-iteration kFRR with k = g (solid curve) and k = 2g
(dotted curve) for g = 1, 2, and 4 for a 32×32 SDMG CIOQ
switch under uniform Bernoulli arrivals. In the figure, “x-y”
represents the case of kFRR with g = x and k = y. kFRR
with k = 2g improves the performance of kFRR with k = g
dramatically. For k = 2g, larger group factor yields better
performance.
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Fig. 7 Delay performance of kFRR with g = 1, k = 2, and
different number of iterations under Bernoulli arrivals.
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Fig. 8 Delay performance of one-iteration kFRR with different
g’s and different k’s under uniform Bernoulli arrivals.
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Fig. 9 Delay performance of kFRR with g = 1, k = 2, and
different number of iterations under bursty arrivals.
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Fig. 10 Delay performance of one-iteration kFRR with differ-
ent g’s and different k’s under bursty arrivals.
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Fig. 11 Delay performance one-iteration kFRR with P = 2
and one-iteration FIRM with S = 2 for g = 1 under Bernoulli
and bursty arrivals.
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Fig. 12 Delay performance of one-iteration kFRR with differ-
ent switch sizes under bursty arrivals.
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6.2 Bursty Arrivals*

To show the performance of the proposed scheme under real
traffic, such as multimedia traffic which tends to be bursty,
we study the performance of kFRR under bursty traffic us-
ing 2-state markov-chain modulated on-off arrival processes
[15], [16]. Each input line alternately generates a burst of
full cells (all with the same destination) followed by an idle
period of empty cells. The number of cells in each burst or
idle period is geometrically distributed. Let E(B) and E(I)
be the average burst length and the average idle length in
the number of cells respectively. E(I) = E(B)(1 − ρ)/ρ,
where ρ is the load of each input line. We assume the des-
tination of each burst is uniformly distributed. As a matter
of fact, Bernoulli traffic can be considered as a special case
of bursty traffic with E(B) = 1.

Fig. 9 illustrates the average queuing delay vs. load
of kFRR with 1, 2, and 4 iterations, g = 1, and k = 2 for
a 32 × 32 SDMG CIOQ switch under bursty arrivals with
E(B) = 16, 32, 64, 128, and 256 respectively. In the figure,
“x-y” represents the case of kFRR with E(B) = x and the
number of iterations being equal to y. kFRR achieves 100%
throughput with all average burst length settings. The dif-
ference in the number of iterations does not affect much of
the average queuing delay of kFRR under bursty arrivals.

Fig. 10 compares the average queuing delay vs. load
of one iteration kFRR with k = g (solid curve) and k = 2g
(dotted curve) for g = 1, 2, and 4 for a 32 × 32 SDMG
CIOQ switch under bursty arrivals with E(B) = 64. In
the figure, “x-y” represents the case of kFRR with g = x
and k = y. As shown in Fig. 10, kFRR with k = 2g
improves the performance of kFRR with k = g dramatically.
The performance of kFRR improves when the group factor
increases.

Figure 11 compares the performance of one-iteration
kFRR with P = 2 (solid curve) and one-iteration FIRM
with S = 2 (dotted curve) for g = 1 of a 32 × 32 SDMG
CIOQ switch under Bernoulli arrivals, bursty arrivals with
E(B) = 64 and E(B) = 128. As we can see, under all cases,
the performance of kFRR with expansion factor 2 achieves
the same performance as FIRM with speedup factor 2.

6.3 With Different Switch Sizes

To evaluate the scalability of the SDMG CIOQ switch ar-
chitecture and the kFRR algorithm, we have conducted the
simulations for different switch sizes. Figure 12 shows the
performance of kFRR with g = 1 and k = 2 for SDMG
CIOQ switch sizes of 16×16, 32×32, 64×64, and 128×128.
As shown in the figure, the delay performance of kFRR in-
creases slightly with larger switch sizes. This confirms that
the SDMG CIOQ switch architecture and the kFRR algo-
rithm scale well as the switch size increases.

7. Hardware Implementation of kFRR Algo-
rithm*

An important property of an efficient scheduling algorithm
is simple to implement. In this section, we show that kFRR
is ready to be implemented in hardware. Fig. 13 shows a
possible design of a kFRR scheduler, which consists of 2N/g
port arbitration components, a state update logic, and a

state memory. Each port arbitration component (PAC) is
responsible for selecting k out of Nk/g requests in a round-
robin manner.
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Fig. 13 Block diagram of a kFRR scheduler for an N ×N
SDMG CIOQ switch.

We discuss three possible designs of a PAC. The first
design is employing the programmable priority encoder
(PPE) proposed in [10]. The second design is using the
parallel round-robin arbiter (PRRA) proposed in [29]. Since
either the PPE or the PRRA can only make one selection
each time, we have to run the PPE or PRRA k times to
make k selections. The time needed for one-iteration kFRR
using these two designs is 2k times the delay of an N/g-input
PPE or PRRA. The third design is using the programmable
k-selector proposed in [30]. The advantage of using pro-
grammable k-selectors is that the timing performance is in-
dependent of k. The time needed for one-iteration kFRR
using such a design is 2 times the delay of an Nk/g-input
programmable k-selector.

For an N ×N SDMG CIOQ switch, the scheduler re-
ceives an N/g×log k-bit request vector from each input port
at the start of each cell slot. Then, taking the example of
one-iteration kFRR scheduler, it works as follows:

Step 1: Each grant PAC selects up to k requests and
sends them to N/g accept PACs.

Step 2: Each accept PAC selects up to k grants and
sends them to the decision register, the state memory and
update logic, where the grant pointers are updated.

For an iterative kFRR scheduler, the PACs used are al-
most identical to those used for a one-iteration kFRR sched-
uler except the following differences. (1) The request matrix
should be updated after each iteration. (2) The number of
available connections at each PAC should be updated after
each iteration. (3) Once an input/output port has no avail-
able connection, its PAC should be disabled in subsequent
iterations of the same cell slot. These three modifications
make an iterative kFRR scheduler slightly more complex
than a one-iteration kFRR scheduler.

8. Concluding Remarks*

The major contributions of this chapter include: (1) We
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introduced the SDMG CIOQ switch, which features space-
division multiplexing expansion and grouped input/output
ports to eliminate the speedup requirement of the switch-
ing fabric and memories of CIOQ switches. (2) We modelled
the cell scheduling problem for the SDMG CIOQ switch as
a bipartite k-matching problem. (3) Using fluid model tech-
niques, we proved that any maximal size k-matching algo-
rithm for the SDMG CIOQ switch with an expansion factor
2 can achieve 100% throughput so long as input line arrivals
satisfy SLLN and no input/output line is oversubscribed.
(4) We proposed an efficient and starvation-free distributed
scheduling algorithm for the SDMG CIOQ switch, kFRR,
for finding maximal size k-matchings. (5) Through simu-
lations, we showed that kFRR achieves 100% throughput
for the SDMG CIOQ switch with an expansion factor 2
for two SLLN traffic arrivals: uniform traffic and polarized
traffic. (6) We proposed three hardware implementation
schemes for the kFRR algorithm. In conclusion, the SDMG
CIOQ switch provides an alternative solution to the CIOQ
switch with speedup and kFRR is an efficient and practical
scheduling algorithm for the SDMG CIOQ switch. Future
work includes study of efficient scheduling algorithms sup-
porting QoS differentiation for different types of traffic on
the SDMG CIOQ switch.
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Appendix A: Proof of Lemma 2

Proof : Proving Equation (14) is equivalent to showing that,
if Zi,j(n) ≥ k, then

Ci,j(n + 1)− Ci,j(n)
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≤
N/g∑
j=1

(Ai,j(n + 1)−Ai,j(n)) +

N/g∑
i=1

(Ai,j(n + 1)−Ai,j(n))− k. (A· 1)

Let Vi,j denote the set of all VOQs holding cells arriv-
ing at input port Ii or destined for output port Oj . Then
Ci,j(n + 1) − Ci,j(n) is the difference between the number
of arrivals to Vi,j at cell slot n+1 and the number of depar-
tures from Vi,j at cell slot n. The number of arrivals to Vi,j

at cell slot n + 1 equals to
∑N/g

j=1
(Ai,j(n + 1) − Ai,j(n)) +∑N/g

i=1
(Ai,j(n + 1)−Ai,j(n)).

Since Zi,j(n) ≥ k and the switch employs a maximal
size k-matching algorithm, it follows from Equation (10)
that

N/g∑
j=1

π(n)i,j +

N/g∑
i=1

π(n)i,j ≥ k.

That is to say that at least k cells are removed from
those VOQ’s in Vi,j . Thus, we get the bound on the right
side of Equation (A· 1).

Appendix B: Proof of Theorem 2

Proof : To prove the theorem, we first show that the SDMG
CIOQ switch is VOQ rate stable. In light of Theorem 1, this
is equivalent to showing that the corresponding fluid model
is VOQ weakly stable, i.e. every fluid solution (D, T, Z) has
Z(t) = 0 for t ≥ 0.

Let E be the N/g×N/g matrix with each entry being
1. We have

C(t) = EZ(t) + Z(t)E, t ≥ 0 (A· 2)

Define f(t) = 〈Z(t), C(t)〉, where 〈A, B〉 =∑
i,j

Ai,jBi,j . Then we have f(t) ≥ 0 for t ≥ 0 and

f(0) = 0. It is also true that f(t) = 0 implies that Z(t) = 0.
We observe that

f(t) =
∑
i,j

Zi,j(t)Ci,j(t)

=
∑
i,j

Zi,j(t)(
∑

k

Zi,k(t) +
∑

k

Zk,j(t))

=
∑
i,j,k

(Zi,j(t)Zi,k(t) + Zi,j(t)Zk,j(t)).

Therefore,

·
f (t) =

∑
i,j,k

·
Zi,j (t)Zi,k(t) +

∑
i,j,k

Zi,j(t)
·
Zi,k (t) +

∑
i,j,k

·
Zi,j (t)Zk,j(t) +

∑
i,j,k

Zi,j(t)
·
Zk,j (t)

= 2
∑
i,j,k

Zi,j(t)
·
Zi,k (t) + 2

∑
i,j,k

Zi,j(t)
·
Zk,j (t)

= 2
∑
i,j

Zi,j(t)
·
Ci,j (t)

≤ 0, (A· 3)

since from Lemma 2 and Equation (5),

·
Ci,j (t) ≤

N/g∑
j=1

λi,j +

N/g∑
i=1

λi,j − k ≤ g + g − 2g = 0.

According to Lemma 1, f(t) = 0 because f(t) ≥ 0 and
·
f (t) ≤ 0. Hence Z(t) = 0 for t ≥ 0, i.e. the fluid model
is VOQ weakly stable. By Theorem 1, the SDMG CIOQ

is VOQ rate stable, i.e., limn→∞
Di,j(n)

n
= λi,j . Also from

Equation (5), the SDMG CIOQ switch is port conserving.
We then show that the SDMG CIOQ is work conserv-

ing. In fact, limn→∞
Di,j(n)

n
is equal to the scheduled cell

arrival rate from input port Ii to output port Oj , for any
1 ≤ i, j ≤ N/g. Then we have the total scheduled cell
arrival rate at output port Oj equals to

N/g∑
i=1

lim
n→∞

Di,j(n)

n
=

N/g∑
i=1

λi,j =

N∑
l=1

jg∑
m=(j−1)g+1

λ′l,m.

Therefore, the scheduled cell arrival rate at output line Mm,
where (j − 1)g + 1 ≤ m ≤ jg for any 1 ≤ j ≤ N/g, is given
by

lim
n→∞

∑
l
D′

l,m(n)

n
=

N∑
l=1

λ′l,m ≤ 1

based on Equation (2). Hence the SDMG CIOQ is work
conserving, i.e. it can achieve 100% throughput if input
line arrivals are sufficient.


