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Abstract—When a stream application that demands real-time 
processing over continuous data streams is running on a 
network-on-chip (NoC)-based multiprocessor system-on-chip 
(MPSoC), two types of deadlocks may occur: (i) the routing-
dependent deadlocks, and (ii) the message-dependent 
deadlocks. In this paper, we focus on the request-request type 
message-dependent deadlocks, the most devastating deadlocks 
in stream applications, and show that this type of deadlocks 
can be avoided by a proper inclusion of virtual channels 
(VCs). We first prove a sufficient condition that determines 
the minimum number of VCs needed to completely avoid 
request-request type message-dependent deadlocks. We then 
show that the problem of finding the minimum number of 
such VCs for a given application is NP-complete, and 
subsequently, a mixed integral linear programming (MILP)-
based algorithm, referred as Min_VC algorithm, is introduced 
to solve this problem. This Min_VC algorithm can literally be 
integrated with any existing application mapping algorithm to 
provide deadlock-free mapping results. The experiments 
results shown that for typical stream applications, such as 
multimedia applications, the number of VCs needed to avoid 
deadlocks is fairly modest, typically just 1 or 2 depending on 
applications. That is, with a modest price paid in terms of area 
and power, stream applications can run in an NoC-based 
system completely free of deadlock concerns, which is 
necessary to deliver the quality of service (QoS) guarantee 
required by these applications. 

Keywords: network-on-chip (NoC), message-dependent 
deadlock, virtual channel 

I.  INTRODUCTION  
Network-on-chip (NoC) has been widely accepted as a 

viable communication infrastructure for current and future 
Multiprocessor System on Chip (MPSoC) designs [1] 
tailored for stream applications. The increasing importance 
of stream processing lies in the fact that many emerging 
applications involve real-time processing over continuous 
data streams, such as VoIP telephony, playback audio/video, 
IPTV, and sensor data analysis [2]. 

There are unfortunately two types of deadlocks that may 
occur to a pipelined stream application running on an NoC-
based architecture: 1) the routing-dependent deadlocks [1] 
and 2) the message-dependent deadlocks [3, 4]. A message-
dependent deadlock is created when some of these messages 
can never be consumed by the consumer task as the 
consumption of these messages is mutually dependent on 
each other’s arrival. For example, message X may block 

message Y from arriving at the end processor/NI while Y is 
simultaneously required by the consumer task to consume X. 
This request-request type message-dependent deadlock can 
cause devastating effects on a stream application as it may 
put the whole system into a complete stall [3, 4]. 

To avoid or resolve message-dependent deadlocks in a 
network, generally two classes of methods, reactive methods 
and proactive methods, are used [3, 4, 7]. However, these 
existing methods are not suitable for the stream applications 
running on an NoC-based architecture, for reasons given 
below. For reactive methods, typified by a deadlock 
recovery mechanism referred as mDisha [7], they cannot 
deliver the QoS guarantee required by stream applications, 
since resolving deadlocks will cause unpredictably long 
delays [4]. 

There exist three possible proactive methods that may 
help avoid deadlocks. However, none of these methods will 
be suitable for stream applications which have stringent 
latency and throughput requirements.  
(i). Use of network buffers with an extremely large size to 

avoid deadlocks. This approach is not suitable for NoC 
designs, as it involves unbearably high area and power 
costs. In addition, this method, as pointed out in [4], 
cannot help avoid the request-request type message-
dependent deadlocks. 

(ii). Creation of multiple virtual networks with one for each 
message type. This approach, unfortunately, cannot 
help avoid the request-request type message-dependent 
deadlocks [4]. 

(iii).  Use of end-to-end flow control. The end-to-end flow 
control protocols, such as CTC protocols [3], may 
significantly increase the network latency and 
communication power due to the usage of additional 
reply messages for flow control [4]. 

Virtual channels (VCs) have been long employed in 
many NoC designs to help improve network routing 
performance. In this paper, we show that proper inclusion of 
VCs can also provide a practically feasible solution to 
completely avoid the request-request type message-
dependent deadlocks in an NoC design. In particular, for the 
first time, we have formally proved a sufficient condition 
that determines the minimum number of VCs actually 
needed to avoid the message-dependent deadlocks. 
Following this theory, we propose an MILP-based algorithm 
that can help quickly find this number, and this algorithm 
shall be integrated with existing application mapping 
algorithms, like the ones reported in [5], to get deadlock-free 
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mapping results. Our experiments have revealed that for 
many popular stream applications, such as networking and 
multimedia applications, the number of VCs needed to avoid 
deadlocks is fairly modest, typically just 1 or 2 depending on 
applications. That is, with a modest price paid in terms of 
area and power, stream applications can run in an NoC-
based system completely free of deadlock concerns. 

II. TARGET APPLICATION AND ARCHITECTURE MODEL 

A. Application model 
The stream applications can be modeled as a 

synchronous data flow graph. 
Definition 1[2] A synchronous data flow graph (SDFG) is a 
directed graph SDFG(A, EC), where each vertex ai ∈ A 
represents a task (to be consistent, an actor that was 
originally defined in [2] is also referred as a task in this text), 
and a directed edge eci=(ak, aj)∈EC represents the data 
communication from ak to aj. For task ak, the following 
notations are defined, 
• EX(ak) gives the worst execution time of task ak. 
• IN(ak) is the set of all ak’s predecessor tasks in SDFG.  
• OUT(ak) is the set of all ak’s successor tasks in SDFG. 

A source task is one which has no predecessor task. A 
sink task is one which has no successor task. All the tasks 
will be executed repeatedly for a number of iterations to 
process the incoming data stream. A task that needs to 
communicate with others is allowed to do so either at the 
beginning (i.e. read input data) or at the end (send output 
data) of an iteration. Let (ak aj)m denote the data (packed in 
messages) from ak to aj after ak finishes its m-th iteration. In 
this paper, we assume that all the tasks have already been 
bound to IP cores.  
Definition 2 A stream communication graph (SCG) is a 
directed acyclic graph SCG(P, E), where a vertex pk∈P 
represents an IP core, and an edge ei=(pk, pj)∈E represents 
the communication between vertices pk and pj . ω(ei) defines 
the amount of data sent from pk to pj in bits per second (bps).  

Without loss of generality, we assume that each IP core 
is allocated with one task. If multiple tasks are allocated to a 
single IP core, we can treat these tasks as one macro task.  

There are two types of buffers associated with a task: the 
input data buffers and the output data buffers. 
• For any task, one input data buffer is dedicated to 

receive the messages from just one of its predecessors 
[2]. That is, the number of input data buffers needed is 
the same as that of the task’s predecessors.  

• For  any task, messages for one of its successors will be  
stored in a dedicated output data buffer before they can 
be sent out [2]. That is, the number of output data 
buffers is the same as that of the task’s successors.  

B. Architectural model 
Fig. 1 shows the architecture model used in this paper. 

The NoC system under consideration is composed of NxN 
tiles interconnected by a 2-D mesh network. Each tile, 

indexed by its coordinate (x, y), where 0≤x≤N-1 and 0≤y≤N-
1, has one router and one processing node.  

A router, as shown in Fig. 2, implements wormhole 
switching. Each message will be broken into a number of 
fixed size packets with each carrying the needed routing 
information. Each packet will be further decomposed into 
flits. Assume each physical channel is split into V VCs, 
realized by V buffers at each input port with each buffer 
holding several flits.  

As shown in Fig. 2, each processing node is composed 
of four components: a processor, a bus, a local memory unit 
and a network interface (NI). The local memory unit holds 
the input/output data buffers that can be used by the task 
allocated to this IP core. The NI holds a number of 
receiving buffers each dedicated to holding several flits of 
the message from one of the task’s predecessors. Hence, the 
number of receiving buffers configured at the NI is the 
same as the number of the task’s predecessors.  
Definition 3 An Architecture Characterization Graph 
(ACG) Ğ=(T, L) is a directed graph, where each vertex ti∈T 
represents a tile (Fig. 1), and each edge li=(tk, tj) ∈L 
represents the link between adjacent tk and tj. For link li, 
• bw(li) defines the bandwidth provided between tiles tk 

and tj.  
• c(li,V) defines the link cost of li, i.e., power 

consumption for transmitting one bit data from tk and tj 
with a total of V VCs.  

buffer N

buffer 1

 

Figure 1 NoC architecture model. A rectangle box represents a router and a 
circle represents a processing node. 

III. MESSAGE-DEPENDENT DEADLOCK IN STREAM 
APPLICATION AND MOTIVATING EXAMPLE 

In this section, we provide an example to illustrate how a 
request-request type message-dependent deadlock can occur, 
followed by important observations how such deadlock can 
be avoided. 

Assume the SCG has three IP cores on which three tasks 
a, b, and c are allocated, as shown in Fig. 2(a), has already 
been mapped to the ACG with a 1x3 mesh using the 
mapping algorithm in [3]. The three tasks (with a and b as 
the producers and c as the consumer) form a pipeline. 
Assume the pushing protocol [4] is applied; that is, a 
producer task is allowed to continuously push all its 
generated data into the network until the network is 
saturated. In this example, no virtual channel is used. As 
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indicated in Section 2.1, for all three tasks to operate 
properly, c cannot start a new iteration (say the i-th iteration) 
until it receives the data generated in the i-th iteration of a 
and b in their corresponding input data buffers. Once c starts 
a new iteration, the two input data buffers must have been 
cleared.  

  
              (a)                                  (b) 

 
(c) 

Figure 2 (a) An example of SCG with three processors mapped with three 
tasks. (b) Deadlock configuration due to request-request type message-
dependency. (c) Increasing the number of virtual channels can help avoid 
request-request type message-dependent deadlocks.  

A serious problem, however, may happen when, for 
example, b produces data at a higher rate than a and c. Fig. 
2(b) illustrates such a situation. Suppose c has finished its 
(n-1)-th iteration and it is now waiting for (b c)n and 
(a c)n. In the following, we will show how a cyclic 
dependency among the messages can be developed. 
1) Flits of (b c) n+1 reserves link (1, 2), the west input 

buffer of R2 and the receiving buffer of NI2 (marked 
with * in Fig. 2(b)).  

2) Flits of (b c)n+1 cannot proceed to the input data 
buffer dedicated for b in c’s local memory since the 
buffer is occupied by (b c)n which has not been 
consumed (cleared) yet.  

3) To consume (b c)n, (a c)n needs to arrive at the 
input data buffer dedicated for a in c’s local memory to 
allow c to start the n-th iteration. (This dependency is 
marked as ** in Fig. 2(b)). 

4) In Fig. 2(b), the arrow marked with *** denotes that 
the input data buffer in c’s local memory dedicated for 
a waits for the arrival of flits of (a c)n.  

5) However, flits of (a c)n cannot proceed since the west 
input buffer of R2 is already reserved by flits of (b c) 

n+1.  
6) Up to this point, a deadlock is already formed.  

Above example has revealed that a devastating deadlock 
can be formed. In another word, to avoid any deadlock like 
the one shown in Fig. 2, some network control mechanism 
should be in place to either proactively prevent any 
messages generated in different iterations from blocking 
others to reach their destinations, or act reactively to resolve 
the deadlocks once they are detected. As a matter of fact, all 
the existing deadlock avoidance methods [3, 4, 7], can 
actually be viewed as a variation of such control mechanism.  

As a viable alternative to the existing deadlock 
avoidance methods, the request-request type message-
dependent deadlocks can be completely avoided by adding a 
number of virtual channels. For the example shown in Fig. 
2(a), one can see that the cycle that causes a deadlock in Fig. 
2(b), is completely avoidable by employing two virtual 
channels at each router (Fig. 2(c)). Since in many NoC 
designs, virtual channels are used for helping improve 
network routing performance [2], the hardware cost of this 
approach for avoiding message-dependent deadlocks is well 
justifiable. 

IV. DEADLOCK AVOIDANCE USING VIRTUAL CHANNELS 

A. Sufficient condition for deadlock-avoidance with 
virtual channels 
Assume a stream application given as an SCG (Section 

2) has already been mapped to an NoC architecture modeled 
by an ACG (Section 2). We also assume that (i) the routing 
algorithm used is deadlock-free, and (ii) messages are 
delivered in-order.  
Lemma 1 For any task in a stream application allocated to 
an IP core in a given SCG, after it finishes the execution of 
its n-th iteration, its input data buffers are either empty or 
they are holding messages from its predecessors’ (n+1)-th 
iteration.   
Lemma 2 For a stream application given as a SCG, there 
exists one virtual path between any two communicating 
tasks so that all messages will arrive at their destination 
tasks, provided that 1) each link is shared by 
communications less than or equal to the number of virtual 
channels and 2) the number of receiving buffers at the NI of 
each tile is equal to the number of predecessors of the 
mapped IP core in the SCG.  
Theorem 1 Consider an NoC architecture in which (i) V 
VCs are used at each router and (ii) the number of receiving 
buffers at the NI of each tile is set to be equal to the number 
of its predecessors. If each link is shared by no more than V 
communications, no request-request type message-
dependent deadlock can ever be created. 

The proofs of Lemmas 1-3 and Theorem 1 are omitted 
due to space limit. 

B. Minimum virtual channel algorithm 
MinVC problem: Given an ACG(T, L) that a SCG(P, E) is 
mapped onto, for each communication ei in SCG, find a 
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routing path in ACG among all the possible minimal routing 
paths such that the number of virtual channels needed at 
each router is minimized, i.e.,  

Min {V},  
satisfying,  

∀ lm, V≥ ( ), ( )
( , )

( , )
k j

i k j

m M p M p
e p p E

g l h
= ∈
∑                         (1) 

 ∀ lm, B ≥ ( ), ( )
( , )

( ) ( , )
k j

i k j

i m M p M p
e p p E

e g l hω
= ∈

×∑              (2)                     

where M(p) is the tile that p is mapped to, and 

( ), ( )( , )
k ji M p M pg l h =

( ), ( )

( ), ( )

1  

0  
k j

k j

i M p M p

i M p M p

if l h

if l h

∈

∉

⎧⎪
⎨
⎪⎩

. 

The conditions given by (1) ensure that each link l in 
ACG is shared by at most V communication flows, while the 
condition given by (2) ensure that the total bandwidth 
requirement of all communication flows sharing each link l 
does not exceed the capacity of link l. 

 Next we will first show that the MinVC problem is NP-
complete. Then we will present an ILP-based solution. 
Theorem 2 The decision version of the MinVC problem is 
NP-complete. 

The proof sketch is listed below. 
The decision version of the MinVC problem is to decide 

whether there exist the minimal routing paths in the ACG 
for all communications in the SCG, while all the resource 
constraints are satisfied and no more than V VCs are needed 
at each router.  

We will prove this theorem restricting the decision 
version of the MinVC problem to its instances with ω(ei)=1 
for all ei, and V=B. Thus, conditions (1) and (2) of the 
MinVC problem are algebraically identical. This restriction, 
from general MinVC to its restricted version, takes 
O(|L|+|E|) time, where |L| is the number of links in the ACG. 
The restricted MinVC problem is equivalent to finding the 
minimum cost unsplittable flows [8] for a set of |E| 
communication flows {1, …, |E|}, each flow sending from a 
source node si to its destination node di with demand ω(ei) 
for i∈{1, …, |E|}. The knapsack [9] problem can thus be 
viewed as a special case of the restricted MinVC problem, as 
shown in Fig. 3. 

In Fig. 3, for each item in knapsack problem [9], there is 
a corresponding flows i (i.e., an edge ei in the SCG) whose 
demand ω(ei) is equal to the size of each item. The cost of 
each direct edge from node s to di is set to wi/si where wi and 
si represent the weight and size of the i-th item, respectively. 
Costs of all the other edge are set to 0. The capacity of the 
edge from nodes s to v is equal to the capacity of the 
knapsack while assuming all other edges have infinite 
capacity. Therefore, the minimum cost flows from all si to di, 
i∈{1, …, |E|}, upon satisfying all the demands, lead to an 
optimal solution to the knapsack problem and vice versa.  

The knapsack problem is NP-complete [9], and so is the 
MinVC problem which can be transformed to the knapsack 
problem.                   
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Figure 3 Formulation of the Knapsack problem [9] as the restricted MinVC 

problem. 

The MinVC problem can be approximated by 
formulating it as a mixed integer linear programming 
problem given below. Here, MPi is the set of all minimal 
paths between the two tiles mapped by the two IP cores of 
edge ei, and PATHi,j is the j-th minimal path in MPi. fi,k 

=
1  

0 

     iif e

otherwise

takes the k th minimum path−⎧
⎨
⎩

. Eqn. (2) sets a 

constraint that only one of the minimal paths will be 
allocated for each communication. Eqn. (3) sets that each 
link will not accommodate more than V communications. 
Eqn. (4) represents the bandwidth constraint of each link. 

Our experiment has shown that when lp_solve [10] is 
used to solve Min_VC,  the running time is less than 0.1sec 
for a 6×6 mesh-based NoC (obtained from a PC with one 
Intel Core2 P8600 2.4GHz processor and 2GB RAM). 
Min_VC(M, MP) 
Input: (1) M: a mapped result 
           (2) MP: a set of all minimum paths for all communication flows 
Output: (1) V: the number of VCs needed for all routers 
               (2) { ,i kf }: the set of minimal paths for all ei 
Procedure body: 
{ 
    call lp_solve to solve the following equations: 
Objective: min V                                                                     (1) 
Constraints: 

,
| |

1,
i

i k i
k MP

f e
∈

= ∀∑ (MPi is the set of all minimal path set for ei );  (2) 

  
,

,
, | |

,  
i i j i

i k
e l PATH k MP

f V link l
∈ ∈

≤ ∀∑ ∑ ;                                        (3) 

  
,

,( ) ,  
i i j

i i k
e l PATH

e f B link lω
∈

× ≤ ∀∑ ∑ ;                           (4) 

}  

V. EXPERIMENTS 
In our experiments, the mapping process is based on an 

existing mapping algorithm [5]. 

A. Simulation results 
Fig. 4 shows a synthetic application. The execution time 

of each stage is modeled by a random process with the mean 
and variance are chosen randomly. For the mapping result in 
Fig. 4(b), it has been found that 2 VCs are needed to 
completely avoid any deadlocks.  

The CMMS system in Fig. 5 is composed of both a 
video/audio encoder and a video/audio decoder. The video 
and audio encoders are synchronized, and so are the video 
and audio decoders. The tasks in the video codec are 
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synthesized as follows. The mean, variance and the Hurst 
parameter of the execution time of each stage are from [11] 
We assume that the target platform runs QCIF format video 
which has 99 macro blocks in one frame. The video 
processing part is pipelined at the macro block level and is 
synchronized with the audio processing at the end of each 
frame. For this application, 1 VC is found sufficient to avoid 
deadlocks. 

           
        (a)                                                  (b) 

Figure 4 (a) The SCG of synthetic application. (b) The mapping result. 
 

 
(a) 

 
(b) 

Figure 5 (a) The SCG of CMMS.  (b) The mapping of result. 
 
Table I shows the power and area results for each 

application with the number of VCs needed to avoid 
deadlocks. The results shown are normalized with respect to 
a baseline design where no VC is used. Of the three 
applications, the maximum number of VCs needed to avoid 
deadlocks is 2. In the worst scenario, the power and area 
penalties are 16% and 17%, respectively, which is tolerable 
for gaining the benefit of avoiding message-dependent 
deadlocks that otherwise will have devastating effects on 
stream applications. With these numbers of VCs, the 
applications have no routing dependent and message 
dependent deadlocks observed. 

TABLE I.  THE AREA AND POWER OVERHEAD TO AVOID DEADLOCKS FOR 
THE THREE APPLICATIONS. 

Application  VC required Power  Area  
Synthetic  2 1.16x 1.17x 
CMMS 1 1x 1x 

 

VI. CONCLUSION 
In this paper, we presented a practical method to avoid 

the request-request type message-dependent deadlock 
problem that can seriously impact the performance of a 
pipelined stream application running on an NoC 
architecture. We showed that the request-request type 
message-dependent deadlocks can be avoided by adding the 
right number of virtual channels (VCs) and formally proved 
a sufficient condition which determines the minimum 
number of VCs actually needed to obtain such a deadlock-
free NoC designs. We further showed the problem of finding 
the minimum number VCs is NP-complete and thus 
proposed an ILP-based solution which can be and should be 
integrated into any mapping algorithms whenever a 
deadlock-free design is desired. Experiments based on three 
stream applications confirmed that deadlocks have been 
avoided with a modest increase of power and area.  
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