
Resolving Deadlocks for Pipelined Stream Applications on Network-on-Chips

Xiaohang Wang1,2, Peng Liu1
1Department of Information Science and Electronic

Engineering, Zhejiang University
Hangzhou, Zhejiang, P. R. China, 310027

e-mail: 1baikeina@yahoo.com.cn,
1liupeng@isee.zju.edu.cn

Mei Yang2, Yingtao Jiang2
2Department of Electrical and Computer Engineering,

University of Nevada, Las Vegas, NV 89154
e-mail: 2{meiyang, yingtao}@egr.unlv.edu

Abstract—When a stream application that demands real-time
processing over continuous data streams is running on a
network-on-chip (NoC)-based multiprocessor system-on-chip
(MPSoC), two types of deadlocks may occur: (i) the routing-
dependent deadlocks, and (ii) the message-dependent
deadlocks. In this paper, we focus on the request-request type
message-dependent deadlocks, the most devastating deadlocks
in stream applications, and show that this type of deadlocks
can be avoided by a proper inclusion of virtual channels
(VCs). We first prove a sufficient condition that determines
the minimum number of VCs needed to completely avoid
request-request type message-dependent deadlocks. We then
show that the problem of finding the minimum number of
such VCs for a given application is NP-complete, and
subsequently, a mixed integral linear programming (MILP)-
based algorithm, referred as Min_VC algorithm, is introduced
to solve this problem. This Min_VC algorithm can literally be
integrated with any existing application mapping algorithm to
provide deadlock-free mapping results. The experiments
results shown that for typical stream applications, such as
multimedia applications, the number of VCs needed to avoid
deadlocks is fairly modest, typically just 1 or 2 depending on
applications. That is, with a modest price paid in terms of area
and power, stream applications can run in an NoC-based
system completely free of deadlock concerns, which is
necessary to deliver the quality of service (QoS) guarantee
required by these applications.

Keywords: network-on-chip (NoC), message-dependent
deadlock, virtual channel

I. INTRODUCTION
Network-on-chip (NoC) has been widely accepted as a

viable communication infrastructure for current and future
Multiprocessor System on Chip (MPSoC) designs [1]
tailored for stream applications. The increasing importance
of stream processing lies in the fact that many emerging
applications involve real-time processing over continuous
data streams, such as VoIP telephony, playback audio/video,
IPTV, and sensor data analysis [2].

There are unfortunately two types of deadlocks that may
occur to a pipelined stream application running on an NoC-
based architecture: 1) the routing-dependent deadlocks [1]
and 2) the message-dependent deadlocks [3, 4]. A message-
dependent deadlock is created when some of these messages
can never be consumed by the consumer task as the
consumption of these messages is mutually dependent on
each other’s arrival. For example, message X may block

message Y from arriving at the end processor/NI while Y is
simultaneously required by the consumer task to consume X.
This request-request type message-dependent deadlock can
cause devastating effects on a stream application as it may
put the whole system into a complete stall [3, 4].

To avoid or resolve message-dependent deadlocks in a
network, generally two classes of methods, reactive methods
and proactive methods, are used [3, 4, 7]. However, these
existing methods are not suitable for the stream applications
running on an NoC-based architecture, for reasons given
below. For reactive methods, typified by a deadlock
recovery mechanism referred as mDisha [7], they cannot
deliver the QoS guarantee required by stream applications,
since resolving deadlocks will cause unpredictably long
delays [4].

There exist three possible proactive methods that may
help avoid deadlocks. However, none of these methods will
be suitable for stream applications which have stringent
latency and throughput requirements.
(i). Use of network buffers with an extremely large size to

avoid deadlocks. This approach is not suitable for NoC
designs, as it involves unbearably high area and power
costs. In addition, this method, as pointed out in [4],
cannot help avoid the request-request type message-
dependent deadlocks.

(ii). Creation of multiple virtual networks with one for each
message type. This approach, unfortunately, cannot
help avoid the request-request type message-dependent
deadlocks [4].

(iii). Use of end-to-end flow control. The end-to-end flow
control protocols, such as CTC protocols [3], may
significantly increase the network latency and
communication power due to the usage of additional
reply messages for flow control [4].

Virtual channels (VCs) have been long employed in
many NoC designs to help improve network routing
performance. In this paper, we show that proper inclusion of
VCs can also provide a practically feasible solution to
completely avoid the request-request type message-
dependent deadlocks in an NoC design. In particular, for the
first time, we have formally proved a sufficient condition
that determines the minimum number of VCs actually
needed to avoid the message-dependent deadlocks.
Following this theory, we propose an MILP-based algorithm
that can help quickly find this number, and this algorithm
shall be integrated with existing application mapping
algorithms, like the ones reported in [5], to get deadlock-free

93

978-1-4244-5539-3/10/$26.00 ©2010 IEEE

mapping results. Our experiments have revealed that for
many popular stream applications, such as networking and
multimedia applications, the number of VCs needed to avoid
deadlocks is fairly modest, typically just 1 or 2 depending on
applications. That is, with a modest price paid in terms of
area and power, stream applications can run in an NoC-
based system completely free of deadlock concerns.

II. TARGET APPLICATION AND ARCHITECTURE MODEL

A. Application model
The stream applications can be modeled as a

synchronous data flow graph.
Definition 1[2] A synchronous data flow graph (SDFG) is a
directed graph SDFG(A, EC), where each vertex ai ∈ A
represents a task (to be consistent, an actor that was
originally defined in [2] is also referred as a task in this text),
and a directed edge eci=(ak, aj)∈EC represents the data
communication from ak to aj. For task ak, the following
notations are defined,
• EX(ak) gives the worst execution time of task ak.
• IN(ak) is the set of all ak’s predecessor tasks in SDFG.
• OUT(ak) is the set of all ak’s successor tasks in SDFG.

A source task is one which has no predecessor task. A
sink task is one which has no successor task. All the tasks
will be executed repeatedly for a number of iterations to
process the incoming data stream. A task that needs to
communicate with others is allowed to do so either at the
beginning (i.e. read input data) or at the end (send output
data) of an iteration. Let (ak aj)m denote the data (packed in
messages) from ak to aj after ak finishes its m-th iteration. In
this paper, we assume that all the tasks have already been
bound to IP cores.
Definition 2 A stream communication graph (SCG) is a
directed acyclic graph SCG(P, E), where a vertex pk∈P
represents an IP core, and an edge ei=(pk, pj)∈E represents
the communication between vertices pk and pj . ω(ei) defines
the amount of data sent from pk to pj in bits per second (bps).

Without loss of generality, we assume that each IP core
is allocated with one task. If multiple tasks are allocated to a
single IP core, we can treat these tasks as one macro task.

There are two types of buffers associated with a task: the
input data buffers and the output data buffers.
• For any task, one input data buffer is dedicated to

receive the messages from just one of its predecessors
[2]. That is, the number of input data buffers needed is
the same as that of the task’s predecessors.

• For any task, messages for one of its successors will be
stored in a dedicated output data buffer before they can
be sent out [2]. That is, the number of output data
buffers is the same as that of the task’s successors.

B. Architectural model
Fig. 1 shows the architecture model used in this paper.

The NoC system under consideration is composed of NxN
tiles interconnected by a 2-D mesh network. Each tile,

indexed by its coordinate (x, y), where 0≤x≤N-1 and 0≤y≤N-
1, has one router and one processing node.

A router, as shown in Fig. 2, implements wormhole
switching. Each message will be broken into a number of
fixed size packets with each carrying the needed routing
information. Each packet will be further decomposed into
flits. Assume each physical channel is split into V VCs,
realized by V buffers at each input port with each buffer
holding several flits.

As shown in Fig. 2, each processing node is composed
of four components: a processor, a bus, a local memory unit
and a network interface (NI). The local memory unit holds
the input/output data buffers that can be used by the task
allocated to this IP core. The NI holds a number of
receiving buffers each dedicated to holding several flits of
the message from one of the task’s predecessors. Hence, the
number of receiving buffers configured at the NI is the
same as the number of the task’s predecessors.
Definition 3 An Architecture Characterization Graph
(ACG) Ğ=(T, L) is a directed graph, where each vertex ti∈T
represents a tile (Fig. 1), and each edge li=(tk, tj) ∈L
represents the link between adjacent tk and tj. For link li,
• bw(li) defines the bandwidth provided between tiles tk

and tj.
• c(li,V) defines the link cost of li, i.e., power

consumption for transmitting one bit data from tk and tj
with a total of V VCs.

buffer N

buffer 1

Figure 1 NoC architecture model. A rectangle box represents a router and a
circle represents a processing node.

III. MESSAGE-DEPENDENT DEADLOCK IN STREAM
APPLICATION AND MOTIVATING EXAMPLE

In this section, we provide an example to illustrate how a
request-request type message-dependent deadlock can occur,
followed by important observations how such deadlock can
be avoided.

Assume the SCG has three IP cores on which three tasks
a, b, and c are allocated, as shown in Fig. 2(a), has already
been mapped to the ACG with a 1x3 mesh using the
mapping algorithm in [3]. The three tasks (with a and b as
the producers and c as the consumer) form a pipeline.
Assume the pushing protocol [4] is applied; that is, a
producer task is allowed to continuously push all its
generated data into the network until the network is
saturated. In this example, no virtual channel is used. As

94

indicated in Section 2.1, for all three tasks to operate
properly, c cannot start a new iteration (say the i-th iteration)
until it receives the data generated in the i-th iteration of a
and b in their corresponding input data buffers. Once c starts
a new iteration, the two input data buffers must have been
cleared.

 (a) (b)

(c)

Figure 2 (a) An example of SCG with three processors mapped with three
tasks. (b) Deadlock configuration due to request-request type message-
dependency. (c) Increasing the number of virtual channels can help avoid
request-request type message-dependent deadlocks.

A serious problem, however, may happen when, for
example, b produces data at a higher rate than a and c. Fig.
2(b) illustrates such a situation. Suppose c has finished its
(n-1)-th iteration and it is now waiting for (b c)n and
(a c)n. In the following, we will show how a cyclic
dependency among the messages can be developed.
1) Flits of (b c) n+1 reserves link (1, 2), the west input

buffer of R2 and the receiving buffer of NI2 (marked
with * in Fig. 2(b)).

2) Flits of (b c)n+1 cannot proceed to the input data
buffer dedicated for b in c’s local memory since the
buffer is occupied by (b c)n which has not been
consumed (cleared) yet.

3) To consume (b c)n, (a c)n needs to arrive at the
input data buffer dedicated for a in c’s local memory to
allow c to start the n-th iteration. (This dependency is
marked as ** in Fig. 2(b)).

4) In Fig. 2(b), the arrow marked with *** denotes that
the input data buffer in c’s local memory dedicated for
a waits for the arrival of flits of (a c)n.

5) However, flits of (a c)n cannot proceed since the west
input buffer of R2 is already reserved by flits of (b c)

n+1.
6) Up to this point, a deadlock is already formed.

Above example has revealed that a devastating deadlock
can be formed. In another word, to avoid any deadlock like
the one shown in Fig. 2, some network control mechanism
should be in place to either proactively prevent any
messages generated in different iterations from blocking
others to reach their destinations, or act reactively to resolve
the deadlocks once they are detected. As a matter of fact, all
the existing deadlock avoidance methods [3, 4, 7], can
actually be viewed as a variation of such control mechanism.

As a viable alternative to the existing deadlock
avoidance methods, the request-request type message-
dependent deadlocks can be completely avoided by adding a
number of virtual channels. For the example shown in Fig.
2(a), one can see that the cycle that causes a deadlock in Fig.
2(b), is completely avoidable by employing two virtual
channels at each router (Fig. 2(c)). Since in many NoC
designs, virtual channels are used for helping improve
network routing performance [2], the hardware cost of this
approach for avoiding message-dependent deadlocks is well
justifiable.

IV. DEADLOCK AVOIDANCE USING VIRTUAL CHANNELS

A. Sufficient condition for deadlock-avoidance with
virtual channels
Assume a stream application given as an SCG (Section

2) has already been mapped to an NoC architecture modeled
by an ACG (Section 2). We also assume that (i) the routing
algorithm used is deadlock-free, and (ii) messages are
delivered in-order.
Lemma 1 For any task in a stream application allocated to
an IP core in a given SCG, after it finishes the execution of
its n-th iteration, its input data buffers are either empty or
they are holding messages from its predecessors’ (n+1)-th
iteration.
Lemma 2 For a stream application given as a SCG, there
exists one virtual path between any two communicating
tasks so that all messages will arrive at their destination
tasks, provided that 1) each link is shared by
communications less than or equal to the number of virtual
channels and 2) the number of receiving buffers at the NI of
each tile is equal to the number of predecessors of the
mapped IP core in the SCG.
Theorem 1 Consider an NoC architecture in which (i) V
VCs are used at each router and (ii) the number of receiving
buffers at the NI of each tile is set to be equal to the number
of its predecessors. If each link is shared by no more than V
communications, no request-request type message-
dependent deadlock can ever be created.

The proofs of Lemmas 1-3 and Theorem 1 are omitted
due to space limit.

B. Minimum virtual channel algorithm
MinVC problem: Given an ACG(T, L) that a SCG(P, E) is
mapped onto, for each communication ei in SCG, find a

95

routing path in ACG among all the possible minimal routing
paths such that the number of virtual channels needed at
each router is minimized, i.e.,

Min {V},
satisfying,

∀ lm, V≥ (), ()
(,)

(,)
k j

i k j

m M p M p
e p p E

g l h
= ∈
∑ (1)

 ∀ lm, B ≥ (), ()
(,)

() (,)
k j

i k j

i m M p M p
e p p E

e g l hω
= ∈

×∑ (2)

where M(p) is the tile that p is mapped to, and

(), ()(,)
k ji M p M pg l h =

(), ()

(), ()

1

0
k j

k j

i M p M p

i M p M p

if l h

if l h

∈

∉

⎧⎪
⎨
⎪⎩

.

The conditions given by (1) ensure that each link l in
ACG is shared by at most V communication flows, while the
condition given by (2) ensure that the total bandwidth
requirement of all communication flows sharing each link l
does not exceed the capacity of link l.

 Next we will first show that the MinVC problem is NP-
complete. Then we will present an ILP-based solution.
Theorem 2 The decision version of the MinVC problem is
NP-complete.

The proof sketch is listed below.
The decision version of the MinVC problem is to decide

whether there exist the minimal routing paths in the ACG
for all communications in the SCG, while all the resource
constraints are satisfied and no more than V VCs are needed
at each router.

We will prove this theorem restricting the decision
version of the MinVC problem to its instances with ω(ei)=1
for all ei, and V=B. Thus, conditions (1) and (2) of the
MinVC problem are algebraically identical. This restriction,
from general MinVC to its restricted version, takes
O(|L|+|E|) time, where |L| is the number of links in the ACG.
The restricted MinVC problem is equivalent to finding the
minimum cost unsplittable flows [8] for a set of |E|
communication flows {1, …, |E|}, each flow sending from a
source node si to its destination node di with demand ω(ei)
for i∈{1, …, |E|}. The knapsack [9] problem can thus be
viewed as a special case of the restricted MinVC problem, as
shown in Fig. 3.

In Fig. 3, for each item in knapsack problem [9], there is
a corresponding flows i (i.e., an edge ei in the SCG) whose
demand ω(ei) is equal to the size of each item. The cost of
each direct edge from node s to di is set to wi/si where wi and
si represent the weight and size of the i-th item, respectively.
Costs of all the other edge are set to 0. The capacity of the
edge from nodes s to v is equal to the capacity of the
knapsack while assuming all other edges have infinite
capacity. Therefore, the minimum cost flows from all si to di,
i∈{1, …, |E|}, upon satisfying all the demands, lead to an
optimal solution to the knapsack problem and vice versa.

The knapsack problem is NP-complete [9], and so is the
MinVC problem which can be transformed to the knapsack
problem.

2

2

w
s

1

1

w
s

| |

| |

E

E

w
s

| | 1

| | 1

E

E

w
s

−

−

Figure 3 Formulation of the Knapsack problem [9] as the restricted MinVC

problem.

The MinVC problem can be approximated by
formulating it as a mixed integer linear programming
problem given below. Here, MPi is the set of all minimal
paths between the two tiles mapped by the two IP cores of
edge ei, and PATHi,j is the j-th minimal path in MPi. fi,k

=
1

0

 iif e

otherwise

takes the k th minimum path−⎧
⎨
⎩

. Eqn. (2) sets a

constraint that only one of the minimal paths will be
allocated for each communication. Eqn. (3) sets that each
link will not accommodate more than V communications.
Eqn. (4) represents the bandwidth constraint of each link.

Our experiment has shown that when lp_solve [10] is
used to solve Min_VC, the running time is less than 0.1sec
for a 6×6 mesh-based NoC (obtained from a PC with one
Intel Core2 P8600 2.4GHz processor and 2GB RAM).
Min_VC(M, MP)
Input: (1) M: a mapped result
 (2) MP: a set of all minimum paths for all communication flows
Output: (1) V: the number of VCs needed for all routers
 (2) { ,i kf }: the set of minimal paths for all ei
Procedure body:
{
 call lp_solve to solve the following equations:
Objective: min V (1)
Constraints:

,
| |

1,
i

i k i
k MP

f e
∈

= ∀∑ (MPi is the set of all minimal path set for ei); (2)

,

,
, | |

,
i i j i

i k
e l PATH k MP

f V link l
∈ ∈

≤ ∀∑ ∑ ; (3)

,

,() ,
i i j

i i k
e l PATH

e f B link lω
∈

× ≤ ∀∑ ∑ ; (4)

}

V. EXPERIMENTS
In our experiments, the mapping process is based on an

existing mapping algorithm [5].

A. Simulation results
Fig. 4 shows a synthetic application. The execution time

of each stage is modeled by a random process with the mean
and variance are chosen randomly. For the mapping result in
Fig. 4(b), it has been found that 2 VCs are needed to
completely avoid any deadlocks.

The CMMS system in Fig. 5 is composed of both a
video/audio encoder and a video/audio decoder. The video
and audio encoders are synchronized, and so are the video
and audio decoders. The tasks in the video codec are

96

synthesized as follows. The mean, variance and the Hurst
parameter of the execution time of each stage are from [11]
We assume that the target platform runs QCIF format video
which has 99 macro blocks in one frame. The video
processing part is pipelined at the macro block level and is
synchronized with the audio processing at the end of each
frame. For this application, 1 VC is found sufficient to avoid
deadlocks.

 (a) (b)

Figure 4 (a) The SCG of synthetic application. (b) The mapping result.

(a)

(b)

Figure 5 (a) The SCG of CMMS. (b) The mapping of result.

Table I shows the power and area results for each

application with the number of VCs needed to avoid
deadlocks. The results shown are normalized with respect to
a baseline design where no VC is used. Of the three
applications, the maximum number of VCs needed to avoid
deadlocks is 2. In the worst scenario, the power and area
penalties are 16% and 17%, respectively, which is tolerable
for gaining the benefit of avoiding message-dependent
deadlocks that otherwise will have devastating effects on
stream applications. With these numbers of VCs, the
applications have no routing dependent and message
dependent deadlocks observed.

TABLE I. THE AREA AND POWER OVERHEAD TO AVOID DEADLOCKS FOR
THE THREE APPLICATIONS.

Application VC required Power Area
Synthetic 2 1.16x 1.17x
CMMS 1 1x 1x

VI. CONCLUSION
In this paper, we presented a practical method to avoid

the request-request type message-dependent deadlock
problem that can seriously impact the performance of a
pipelined stream application running on an NoC
architecture. We showed that the request-request type
message-dependent deadlocks can be avoided by adding the
right number of virtual channels (VCs) and formally proved
a sufficient condition which determines the minimum
number of VCs actually needed to obtain such a deadlock-
free NoC designs. We further showed the problem of finding
the minimum number VCs is NP-complete and thus
proposed an ILP-based solution which can be and should be
integrated into any mapping algorithms whenever a
deadlock-free design is desired. Experiments based on three
stream applications confirmed that deadlocks have been
avoided with a modest increase of power and area.

REFERENCES
[1] M. Palesi, R. Holsmark, S. Kumar, and V. Catania, "Application

specific routing algorithms for Networks on Chip," IEEE Trans
Parallel and Distributed Systems, vol. 20, no. 3, pp. 316-330, 2009.

[2] N. K. Kavaldjiev, "A run-time reconfigurable Network-on-Chip for
streaming DSP applications," Phd thesis, University of Twente, 2007.

[3] N. Concer, L. Bononi, M. Soulié, R. Locatelli, and L. P. Carloni,
"CTC: An end-to-end flow control protocol for multi-core systems-
on-chip," in Proc 3rd ACM/IEEE Int'l Symp on Networks-on-Chip,
2009, pp. 193-202.

[4] A. Hansson, K. Goossens, and A. Radulescu, "Avoiding message-
dependent deadlock in network-based Systems-on-Chip," VLSI
Design, vol. 2007, no., pp. 1-10, 2007.

[5] G. Ascia, V. Catania, and M. Palesi, "Mapping cores on network-on-
chip," Int'l J Computational Intelligence Research, vol. 1, no. 2, pp.
109-126, 2005.

[6] X. Wang, M. Yang, Y. Jiang, and P. Liu, "A power-aware mapping
approach to map ip cores onto nocs under bandwidth and latency
constraints," to appear in ACM Trans. Architecture and Code
Optimization.

[7] Y. H. Song and T. M. Pinkston, "A progressive approach to handling
message-dependent deadlock in parallel computer systems," IEEE
Trans Parallel and Distributed Systems, vol. 14, no. 3, pp. 259-275,
2003.

[8] M. Skutella, "Approximating the single source unsplittable min-cost
flow problem," Mathematical Programming, vol. 91, no. 3, pp. 493-
514, 2002.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-completeness: Freeman San Francisco,
1979.

[10] lp solve 5.5. [Online]. Available: lpsolve.sourceforge.net/5.5/.
[11] C. Lampert, M. Militzer, and P. Ross. XviD MPEG4 core library.

97

