
Power-Aware Mapping for Network-on-Chip
Architectures under Bandwidth and Latency

Constraints
Xiaohang Wang1,2, Mei Yang2, Yingtao Jiang2, and Peng Liu1

1Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China, 310027
2Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, Las Vegas, NV 89154

Emails: 1{baikeina@yahoo.com.cn, liupeng@isee.zju.edu.cn}, 2{meiyang, yingtao}@egr.unlv.edu

Abstract—This paper investigates the bandwidth- and latency-
constrained IP mapping problem that maps a given set of IP
cores onto the tiles of a mesh-based Network-on-Chip (NoC)
architecture to minimize the power consumption due to inter-
core communications. By examining various applications’
communication characteristics shown in their communication
trace graphs, two distinguishable connectivity templates are
realized: the graphs with tightly coupled vertices and those with
distributed vertices. Different mapping heuristics are developed
for these templates: tightly coupled vertices are mapped onto
tiles that are close to each other while the distributed vertices are
mapped following a graph partition scheme. The proposed
template-based mapping algorithm achieves on average 15%
power saving compared with MOCA, a fast greedy-based
algorithm. Compared with a branch-and-bound algorithm, the
proposed algorithm can generate results of almost the same
quality but require much less CPU time.

Keywords-Network-on-Chip (NoC); power-aware; IP mapping;
Template-based Efficient Mapping (TEM).

I. INTRODUCTION
With the continuous scaling of CMOS technologies,

interconnects dominate both performance and power
dissipation in future System-on-Chip (SoC) designs.
Multiprocessor System on Chip (MPSoC) [2] designs have
emerged and shown to deliver high performance yet reasonably
low power consumption. Networks-on-chip (NoC) has been
considered as a viable communication infrastructure in
MPSoC [9]. Regular mesh remains the dominant NoC
architecture of choice due to its distinct features: structured
network wiring, modularity, and standard interfaces [8].

This paper focuses on mapping the IP cores onto a regular
tile-based NoC architecture and the mapping is subjected to
the latency and bandwidth constraints as imposed by many
real-time multimedia applications. In the literature, a number
of algorithms have been proposed to solve this IP mapping
problem, and they fall into four general categories:
• Branch-and-bound algorithms [8], which can generate

very high quality results. With large queue size, however,

this algorithm demands high memory depth and suffers
from long CPU time.

• Framework-based approaches, such as the ones using
simulated annealing (SA)/genetics algorithm (GA)/tabu
search (TS) [1, 6, 10, 11]. These algorithms typically
require considerably longer time than a greedy-based
mapping algorithm.

• Linear programming based schemes [13]. Computation
is time-consuming and there is no guarantee that high-
quality solutions can be always found.

• Greedy-based heuristics [5, 12, 15], which require
significantly low CPU time. The following greedy
algorithms are based on different observations.

The algorithm MOCA [15] achieves a sound balance
between the run time and the quality of solutions. The
problem of this algorithm is that the graph partition algorithm
may separate some tightly coupled regions (i.e. the regions
made of IP cores with large degrees and strongly connected)
into different sets, making the vertices in a tightly coupled
region adversely mapped onto tiles physically far apart.
Particularly, the power performance of MOCA deteriorates
drastically when latency constraints are applied.

In this paper, we propose a Template-based Efficient
Mapping (TEM) algorithm which generates high-quality
mapping results with low run time. This algorithm is designed
based on two distinguishable connectivity templates extracted
from various applications’ communication trace graphs: the
graphs with tightly coupled vertices and those with distributed
vertices. Correspondingly, different mapping strategies are
proposed for these two templates. Simulation results show that
the proposed TEM algorithm achieves better result than MOCA
[15].

The rest of the paper is organized as follows. Section II
formally defines the mapping problem. Section III introduces
the two templates derived from various applications’
communication trace graphs. The mapping algorithm based
on the two templates is presented in Section IV. Section V
presents and discusses the simulation results, and finally,
Section VI concludes the paper.

This work is in part supported by NSF under grant no. ECCS-0702168 and
NSF of China under grant no. 60873112.

II. PROBLEM FORMULATION

A. Architecture description and power model
Without loss of generality, the NoC system under

consideration is composed of NxN tiles interconnected by a 2-
D mesh network. The power model used in [8] is followed in
this study. The average power consumption for sending one
bit of data from tile ti to tile tj can be represented as

,i jt t
bitE = (1)hops Sbit hops LbitE Eη η× + − × (2)

where hopsη is the number of routers traversed from tile ti to
tile tj, ESbit is the power consumed by the switch, and ELbit is
the power consumed on the links between tiles ti and tj.

B. Problem Description
We assume that before IP mapping is performed, a given

application described by a set of concurrent tasks is already
bounded and scheduled onto a list of selected IP cores. As
defined below, the communication patterns between any pair
of IP cores of an application are described by its
Communication Trace Graph, whereas the NoC architecture
is modeled by its Architecture Characterization Graph.
Definition 1 A Communication Trace Graph (CTG) G=(P,
E) is an undirected graph, where a vertex/node pk ∈ P
represents an IP core (a processor, an ASIC device or a
memory unit, etc.), and an edge ei=(pk , pj)∈E represents the
communication trace between vertices pk and pj . For each
edge ei,
• ω(ei) defines the communication bandwidth request

between vertices pi and pj given in bits per second (bps).
ω(ei) sets the minimum bandwidth that should be
allocated by the network in order to meet the
performance constraints.

• σ(ei) represents the latency constraint, which is given in
number of hops instead of an absolute number in cycles
[15].

• W(ei) represents the weight of edge ei. The weight is
defined in the same way as that in [15]. Among all the
traces in the graph, let ei be the trace with the highest
bandwidth requirement, and ej be the trace with the
tightest (lowest) latency constraint. An integer K is
defined as the minimum value required to ensure that

among all the traces in the graph, ()()
() ()

ji
K K

i j

ee
e e

ωω
σ σ

≤ . Once

K is determined, each edge is assigned a weight

()W e = ()
()K

e
e

ω
σ

.

Definition 2 An Architecture Characterization Graph (ACG)
Ğ=(T, L) is an undirected graph, where each vertex ti∈T
represents a tile and each edge li∈L=(tk, tj) represents the link
between tiles tk and tj. For each link li ,
• bw(li) defines the bandwidth provided between tiles tk and

tj.

• c(li) defines the link cost of li, i.e., power consumption
for transmitting one bit data from tk to tj.
In this paper, we focus on regular NoC architectures

which have bw(li)=B, c(li)= C for each li∈L, where B and C
are constants. hk, j is the set of links forming one of the
shortest paths from tile tk to tile tj (hk, j ⊆ L). dist(hk, j)
determines the number of elements in hk, j (i.e. it is the hop
count of the shortest path between tile tk and tile tj).
Definition 3 A mapping algorithm M: P T maps each vertex
in CTG onto an available tile in ACG. M(pi) represents the
mapped tile in ACG, where pi ∈P and M(pi) ∈T.
Definition 4 A routing algorithm R: E H, finds one of the
shortest routing path between M(pk) and M(pj) for each edge
ei=(pk, pj)∈ E. The links of forming this path belongs to
set (), ()k jM p M ph .

The IP mapping problem is formulated as follows.
Given a CTG(P, E) representing the communication

pattern of an application and an ACG(T, L) representing the
target NoC architecture, where |P| ≤ |T|, find a mapping
M:P T which maps all the vertices in CTG onto available
tiles in ACG and generates a deadlock-free and minimal
routing paths for all edges in CTG, such that the total power
consumption is minimized, i.e.,

Min
(), ()

(), ()

| || |

 0 0
(,)

{ () }
M p M pk j

i k j m M p M pk j

hE

i
i m

e p p E l h

e Cω
= =

= ∈ ∈

×∑ ∑ (3)

satisfying
ip P∀ ∈ , M(ip)∈T, (4)

,i jp p P∀ ∈ and i jp p≠ , M(ip)≠ M(jp), (5)
∀ li, B ≥ (), ()

(,)
() (,)

jk
i jk

i i M p M p
e p p

e f l hω
=

×∑ (6)

∀ ie =(pk, pj), ()ieσ ≥ dist (), ()()
jkM p M ph (7)

where (), ()(,)
k ji M p M pf l h =

(), ()

(), ()

1

0
k j

k j

i M p M p

i M p M p

if l h

if l h

∈

∉

⎧⎪
⎨
⎪⎩

Similar to the definition adopted in [8], conditions given
by (4) and (5) ensure that each IP should be mapped exactly
to one tile and no tile can host more than one IP. Eqn. (6)
specifies the bandwidth constraint for every link set by the
communication bandwidth requirement, and Eqn. (7) ensures
that the latency constraint (in terms of the number of hops)
between two communicating IPs is satisfied on the mapped
tiles.

III. DERIVATION OF MAPPING TEMPLATES
As alluded in Section 1, MOCA [15] does not perform

well when the latency constraints are considered. This
problem is illustrated in the mapping of the MPEG4 decoder,
with its CTG shown in Figure 1.

Figure 1 The CTG of MPEG4 decoder [15]. The BW request (Mbps) and
latency constraint (number of hops) of each edge is labeled on the edge.

A communication path with higher bandwidth request
should be mapped to links with fewer hop counts to reduce
power consumption as Eqn. (3) indicates. When the latency
constraint is applied, the result of MOCA deteriorates. For
example, in Figure 2(a), the hop counts of edges (1,7), (8,9),
(8,10) are greater than 1, which results in higher power
consumption.

As a matter of fact, as shown in Figure 2(b), there is a
better mapping by reducing the number of hops for these
edges. In Figure 1, vertices 1 and 8 have many edges
requesting high bandwidths or tight latency. In Figure 2(b),
these two vertices are mapped onto the two tiles with the
largest degree or maximal number of neighbor tiles (i.e., 4).
In this solution, edges with higher weights are mapped with
fewer hop counts than those edges with smaller weights.

 (a) (b)

Figure 2 (a) The mapping result of MOCA on the CTG of MPEG4dec w/
latency constraints (b) A better mapping solution on the same CTG w/ latency
constraint. The square boxes are tiles and the circles are IP cores.

From the above example, one can see that different
mapping strategies shall be adopted for CTGs with different
features. Here, we present two distinct templates derived from
various CTGs. Given a CTG(P, E), and a sorted list of edges
in decreasing order of edge weight denoted as Ê:
Definition 5 A vertex pi∈P is a hot node if
a) pi has a degree greater than or equal to 4, and
b) of the first 50% edges in the edge list Ê, there are at

least one edges that are connected to pi.
Template 1: An application’s CTG falls into Template 1
(tightly coupled) if there is at least one hot node in the CTG.
Template 2: An application falls into Template 2
(distributed) if there is no hot node in the application’s CTG.

IV. ALGORITHM DESCRIPTION
The overall structure of the TEM algorithm is shown

below. Before the template-based mapping takes place, the
edges have to be sorted in non-increasing order in terms of
the edge weight. After all the vertices are mapped, a routing

allocation routine is called to find routing paths for all pairs
of communicating vertices.

TEM (G(P,E), Ğ(T,L))
Input: (1) G: CTG of an application.

(2) Ğ: ACG of an NoC architecture
Output: none
Function: Map the application on the NoC architecture and allocate

 routing paths
Procedure body:
{

Sort_Edge(E); // E ⊂ G. Let the sorted list be Ê =eπ(1), eπ(2), …,eπ(|E|), i.e.,
 // W(eπ(1))≥W(eπ(2))≥… W(eπ((|E|)).

// Find the hot nodes if any. Check which template the application belongs to
for each vertex pi { // Definition 5

if (vertex pi has degree ≥α and pi has γ edges in the first β edges in E){
 mark pi as a hot node an place into set Ĥ
 }
}
// If G has hot nodes, it belongs to Template 1, otherwise Template 2
// Template specific algorithm
case 1: Template 1 { // Tightly coupled

 TEM_Template1(G, Ğ, Ĥ);
 break;

}
case 2: Template 2 { // Distributed

 TEM_Template2(G, Ğ);
break;

}
Route_Alloc(G, Ğ); // Find routing paths

}

A. Mapping Algorithm for Template 1
An application of template 1 (CTG has at least one hot

node) is mapped based on the following observations.
a) Hot nodes should be given a higher mapping priority;

that is, they shall be mapped before any other nodes are
mapped. All the hot nodes in a CTG will be first mapped
along with their α most significant neighbor vertices. A
hot node is better mapped onto a tile in an NoC that has
the maximum number of neighbor tiles.

b) Once all the hot nodes are mapped, the mapping
sequence of remaining unmapped non-hot nodes will be
performed based on the decreasing order of weight of
edges connecting them.

As such, TEM_Template1 procedure consists of two major
steps: (1) map hot nodes in CTG, (2) map other vertices.

TEM_Template1 (G(P,E), Ğ(T,L), Ĥ)
Input: (1) G: CTG of an application

(2) Ğ: ACG of an NoC architecture
(3) Ĥ: The set of hot nodes

Output: none
Function: Map the Template 1 application onto the NoC architecture
Procedure body:
{

// Step 1: find and map the hot nodes with their 4 most significant
// neighbors
for each edge eπ(i)=(pk, pj) {
 increase the counter of pk,, pj if they are hot nodes (belong to Ĥ)

if one of the vertex’s counter equals α{ // suppose pk’s counter is α
Map_Hot_Node(pk, Ê, T);

 }
}

// Step 2: map the remaining unmapped vertices
update the hop counts of edges whose terminal vertices are already
mapped;
// re-scan the edge list
for each edge eπ(i)=(pk, pj){
 Map_Edge(eπ(i), Ê, T); // T is the available tile set
}

}

Before we discuss each step in detail, the following
definitions are introduced.
Definition 6 Vertex pn is a significant neighbor of vertex pi if
there exists an edge (pi, pn) ∈E and edge (pi, pn) is within the
first 50% edges in the edge list Ê.
Definition 7 Since in a mesh structure, the maximal degree of
a tile is four, here the four most significant neighbors {pn1,…,
pn4} of a hot node pi are the four neighbors of pi that have the
highest bandwidth/tightest latency requirements among all the
neighbors of pi .
Definition 8 A center tile in a 2-D topology like mesh is a tile
that has maximal number (i.e. 4) of unmapped neighbor tiles.
Definition 9 Two vertices pk , pj are “close” if (1) edge (pk, pj)
is among the first 50% edges in the edge list or (2) a neighbor
vertex of pk (or pj) is connected with pj (or pk), and this edge
is among the first 50% edges in the edge list.

1) Map hot nodes. Procedure Map_Hot_Node maps each
hot node and its four most significant neighbor vertices. Each
hot node pi is associated with a counter ctri that counts the
number of times that vertex pi appears as a terminal vertex of
the edges in the sorted edge list.
• Case 1: the current hot node pi is not mapped yet. Check

whether this hot node is close (Definition 9) to any of
those mapped hot nodes. If yes, this hot node is mapped
to a tile with minimum hops to an already mapped hot
node. Otherwise, a center tile is selected and it is
allocated to this hot node. Next its four most significant
neighbors are mapped to the neighboring tiles if they
have not been mapped.

• Case 2: the current hot node has already been mapped
because it belongs to the first α neighbors of a previously
mapped hot node. In this case, only the four most
significant neighbor vertices need to be mapped. The
procedure Improve_Edge can be called for optimization.

2) Map other nodes. In this step, all the remaining
unmapped vertices are mapped. Procedure Map_Edge maps
the remaining unmapped vertex/vertices.

There are three cases to consider.
• Case 1: Neither of the two terminal vertices pk, pj of edge

eπ(i) = (pk, pj) is mapped. Search the edges from eπ(i)+1 to
eπ(|E|). If one of the neighbors of the two terminal vertices
is found and is mapped, then the vertex with a mapped
neighbor is mapped onto a tile that has the minimum hop
count to its mapped neighbor. On the other hand, if none
of the two terminal vertices’ neighbors is mapped, an
available tile is selected and immediately allocated to one
of the vertices, after which the other vertex is mapped
onto a tile with a minimum hop count to the just mapped
tile.

• Case 2: One of the two terminal vertices is mapped, but
the other one is not. In this case, only the unmapped
vertex needs to be mapped onto a tile with minimum hop
count to the mapped tile.

The Map_Hot_Node procedure is listed below

Map_Hot_Node(phi, Ê, T)
Input: (1) phi: A hot node

(2) Ê: The sorted edge list
(3) T: The available tile set in NoC architecture

Output: none
Function: Map hot node phi and its neighbors
Procedure body:
{

// Case 1
if (phi is unmapped){ // 1) Map the hot node phi

 check if other mapped hot nodes are close to phi ; // Definition 9
if (there is a mapped hot node phk close to hot node phi){
 map phi to a tile with minimum hop count to phi’s tile;
}
else{

map phi to tl = Find_Center_Tile();
 }

// 2) Map the four most significant neighbors
for each of phi’s four most significant neighbors {
// suppose pn is one of such neighbors

 if (pn is unmapped){
// Two criteria should be observed in mapping neighbors as
// described in text
map pn to a tile with minimum hops to phi’s tile;

 }
}

}
// Case 2
else if (phi is mapped) {

for each of phi’s four most significant neighbors {
// suppose pn is one of such neighbors
if (pn is not mapped) {

 map pn to a tile with minimum hop count to phi’s tile ;
 }
}

}
}

Figure 2(b) shows the mapping result of the CTG of

MPEG4 decoder. The complexity of TEM_Template1 is
O(|Ĥ|·(|E|+|T|)+|E|·(|E|+|T|)), which can be further simplified
as O((|E|+|T|)2) since |Ĥ|≤|P|≤|T|.

B. TEM Algorithm for Template 2
For a Template 2 CTG, the graph partition algorithm

proposed in [4] is followed to partition both CTG and ACG
into four smaller regions so that each region in CTG can be
mapped onto a region in ACG in a divide-and-conquer
manner.
Definition 10 A Block Trace Graph (BTG) is denoted as
G'=(B, BE), where each vertex bi∈B is a partitioned block and
bi⊂ P (P is the vertex set of CTG(P, E)), and an edge bei=(bk,
bj)∈BE exists if pkl∈bk and pjm∈bj, (pkl, pjm)∈E. For an edge
bei=(bk, bj)∈BE,
• W(bei) represents the weight of bei. The calculation is the

same as the weight of edges in CTG.
• An CTG edge (pi, pj)∈E belongs to a block bk if pi∈bk or

pj∈bk. Ei represents the set of edges belonging to bi.
The vertices in each block are classified into two types

and they are mapped differently:
1) Internal vertices. An internal vertex pintern has all its

neighbors in the same block of pintern.
2) External vertices. An external vertex pextern has at least

one of its neighbors not in the same block of pextern.
Definition 11 A Virtual ACG (VACG) is denoted as Ğ'=(R,
CH), where a vertex ri∈R represents a partitioned region and
ri ⊂ T (T is the tile set of ACG(T, L)). Each edge chi=(rk,

rj)∈CH represents that there exists direct links between tiles
in rk and rj. For each edge chi∈CH,

The TEM_Template 2 algorithm works as follows.

TEM_Template2(G(P,E), Ğ(T,L))
Input: (1) G: The CTG of an application.

(2) Ğ: The ACG of an NoC architecture
Output: none
Function: Map the Template 2 application onto the NoC architecture
Procedure body:
{

// Step 1. Obtain the BTG and VACG by partitioning the CTG into blocks
// and ACG into default regions, respectively. Map the blocks in BTG to
// the regions in VACG.
obtain BTG (G') using the graph partition algorithm to partition CTG into
4 blocks;
obtain VACG (Ğ') with default four square regions;
map the four blocks in BTG to four default regions of VACG using
Map_Edge;
Partition_VACG(G', Ğ');
// Step 2. Inside each block, map the vertices to the tiles of the
// corresponding region.
for each block bi in BTG mapped to region rx in VACG {

// 1) Map the external vertices.
// Let PEi be set of external vertices in bi;
sort external vertices in PEi in the non-increasing order of the total
weight of the external vertices. Let pΦ(1), pΦ (2), …, pΦ (|PEi|) be the
sorted list;
for each external vertex pΦ(i){

Map_External_Vertex(pΦ(i), G', Ğ');
}
// 2) Map the internal vertices
sort the edges in bi into Êi using Sort_Edge;
for each edge eψ (i) = (pk , pj)∈Êi {

Map_Edge (eψ(i), bi, rx); // described in Section 4.1
}

}
}

1) Partition. In this step, the BTG is formed using a graph

partition algorithm [4] to partition the CTG into four blocks.
The VACG is formed by partitioning the ACG into four
default regions (e.g., square regions in Figure 4. The blocks
in the BTG are mapped to the default regions in the VACG.
Based on the mapping result of BTG onto VACG, the actual
regions in the VACG are partitioned in a top-down manner.
The size of each partitioned region needs to be set equal to
the size of the corresponding block in the BTG.

2) Map inside blocks. In this step, the vertices in each
block are mapped to the tiles within its region. The external
vertices are first mapped to the border of each NoC region,
after which the internal vertices are mapped with larger
weight edge first criterion.

The overall complexity of TEM_Template2 can be
approximated by O((|E|+|T|)2) as |blki|<|P|≤|T|, |Ei|<|E|,
|Ti|<|T|.

V. PERFORMANCE EVALUATION
To evaluate the performance of the TEM algorithm, both

TEM_Template 1 and TEM_Template2 are implemented and
simulated. The brand-and-bound (BNB) [8] and MOCA [15]
algorithms are also implemented and the mapping results of
all three algorithms are compared. To isolate the effects of
different routing algorithms, the XY routing and odd-even
routing algorithms are selected. Multimedia benchmarks from
[7] and [15]. The Noxim simulator [14] is modified and used

in our simulations to obtain the total communication power
after the mapping and the routing path allocation steps.

The simulations are performed on a PC with one Intel
Core2 P8600 2.4GHz processor and 2GB RAM. The run
times of both TEM and MOCA range from 0.01sec~1sec for
different network sizes.

Multimedia benchmarks of both Template 1 and Template
2 are tested on a mesh-based NoC. Table I lists these
benchmarks. For benchmarks of both templates, we compare
the degradation of TEM compared to BNB (i.e. the increase
in power consumption of mapping results from the TEM
compared to that from BNB) and the degradation of MOCA
compared to BNB. The power consumption is normalized.

TABLE I. MULTIMEDIA BENCHMARKS AND THEIR TEMPLATES.

Benchmark Template
MPEG4 1
263enc 1
263enc+MP3enc 1
263enc+MP3dec 1
263enc+263dec 1
Multimedia Systems (MMS) 1
VOPD 2
MP3enc 2
MP3enc+MP3dec 2

Table II shows the result of benchmarks of Template 1

with and without latency constraints. When the latency
constraints are not considered, the result of TEM is
comparable with that of MOCA. When the latency constraints
are considered, the TEM algorithm outperforms MOCA for
most media programs. The degradation of TEM vs. BNB is
within 10% with odd-even routing. The reduction in power
consumption of TEM compared to MOCA is over 15%. For
MPEG4dec, the degradation of TEM is only 6% compared to
that of MOCA 45%.

The Multi-Media System (MMS) benchmark [8] is also
simulated on a 5x5 mesh-based NoC. Table III shows the
reduction in power consumption of TEM over MOCA
(normalized).

Table IV shows the result of benchmarks of Template 2
with and without latency constraints. Without latency
constraints, the result of TEM is comparable with that of
MOCA. On average, the degradation of TEM over BNB is
within 10% for both XY routing and odd-even routing. With
latency constraints, the power consumption of mapping result
from TEM is slightly lower than that from MOCA for VOPD
and MP3enc. For MP3enc+MP3dec, TEM achieves
significant reduction in power consumption compared to
MOCA. This is due to the fact that the TEM algorithm for
applications of Template 2 uses a divide-and-conquer
approach. Inside each partitioned block, TEM first maps
external vertices to the border of the block and the remaining
edges with larger weight first criterion. Thus larger weight
edges are mapped first inside each block.

Evaluation of TEM on random applications is also
conducted. Detailed results are presented in [16].

TABLE II. COMPARISON OF POWER CONSUMPTION (NORMALIZED) OF TEM AND MOCA OVER BNB ON BENCHMARKS OF TEMPLATE 1.

Benchmarks With latency constraint Without latency constraint
TEM MOCA BNB TEM MOCA BNB
XY Odd-even XY Odd-even

MPEG4 1.05 1.05 1.45 1 1.01 1.01 1.06 1
263 enc 1.07 1 1.11 1 1.4 1.03 1 1
263enc+MP3enc 1.14 1.11 1.27 1 1.01 1 1 1
263enc+MP3dec 1.06 1.01 1.28 1 1.04 1.01 1 1
263enc+263dec 1.06 1.01 1.9 1 1.06 1.02 1 1

TABLE III. COMPARISON OF POWER CONSUMPTION (NORMALIZED) OF TEM OVER MOCA ON MMS (TEMPLATE 1).

Benchmarks With latency constraint Without latency constraint
TEM MOCA TEM MOCA

XY Odd-even XY Odd-even
MMS 0.9 0.84 1 0.97 0.91 1

TABLE IV. COMPARISON OF POWER CONSUMPTION (NORMALIZED) TEM AND MOCA OVER BNB ON BENCHMARKS OF TEMPLATE 2.

Benchmarks With latency constraint Without latency constraint
TEM MOCA BNB TEM MOCA BNB
XY Odd-even XY Odd-even

VOPD 1.02 1.02 1.1 1 1.02 1.02 1.08 1
MP3enc 1.1 1.1 1.12 1 1 1 1 1
MP3enc+MP3dec 1.14 1.11 1.41 1 1.08 1.07 1.08 1

VI. CONCLUSION
This paper presented a template-based greedy algorithm to

address the IP mapping problem under the bandwidth and
latency constraints. An application falls into Template 1, if
there are one or more hot nodes which demand either higher
communications bandwidths or tighter latency. In this case,
TEM maps the hot nodes first along with their four most
significant neighbors, after which the remaining IP cores are
mapped in descending order based on the edge weights. On
the other hand, an application is categorized as Template 2, if
the communications are nearly evenly distributed among the
vertices. In this case, TEM divides the NoC into regions and
CTG into blocks; then it maps the IP cores inside each block
in a divide-and-conquer manner. The experiments on
multimedia and random benchmarks show that TEM
generates high quality mapping results with low run times.

VII. REFERENCES

[1] G. Ascia, V. Catania, and M. Palesi, "Multi-objective mapping for mesh-

based NoC architectures," in Proc. 2nd IEEE/ACM/IFIP Int'l Conf
Hardware/Software Codesign and System Synthesis, 2004, pp. 182-187.

[2] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini,
and G. De Micheli, "NoC synthesis flow for customized domain specific
multiprocessor Systems-on-Chip," IEEE Trans. Parallel And Distributed
Systems, pp. 113-129, 2005.

[3] R. P. Dick, D. L. Rhodes, and W. Wolf, "TGFF: task graphs for free," in
Proc. 6th Int'l workshop on Hardware/software Codesign, 1998, pp. 97-
101.

[4] C. M. Fiduccia and R. M. Mattheyses, "A Linear-time heuristic for
improving network partitions," in Proc. 19th IEEE Conf. Design
Automation, 1982, pp. 175-181.

[5] A. Hansson, K. Goossens, and A. Rǎ dulescu, "A unified approach to
constrained mapping and routing on network-on-chip architectures," in
Proc. 3rd IEEE/ACM/IFIP Int'l Conf Hardware/Software Codesign and
System Synthesis, 2005, pp. 75-80.

[6] H. M. Harmanani and R. Farah, "A method for efficient mapping and
reliable routing for NoC architectures with minimum bandwidth and
area," in Proc. Conf. Circuits and Systems and TAISA, 2008, pp. 29-32.

[7] J. Hu and R. Marculescu, "Energy-aware mapping for tile-based NoC
architectures under performance constraints," in Proc Conf. Asia South
Pacific Design Automation, 2003, pp. 233-239.

[8] J. Hu and R. Marculescu, "Energy-and performance-aware mapping for
regular NoC architectures," IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, pp. 551-562, 2005.

[9] A. Jantsch and H. Tenhunen, Networks on Chip. New York, NY: Kluwer
Academic Publishers, 2003.

[10] Z. Lu, L. Xia, and A. Jantsch, "Cluster-based simulated annealing for
mapping cores onto 2D mesh networks on chip," in Proc. Design and
Diagnostics of Electronic Circuits and Systems (DDECS), 2008, pp. 1-6.

[11] C. A. M. Marcon, E. I. Moreno, N. L. V. Calazans, and F. G. Moraes,
"Evaluation of algorithms for low energy mapping onto NoCs," in Proc.
IEEE Int'l Symp. Circuits and Systems(ISCAS), 2007, pp. 389-392.

[12] A. Mehran, S. Saeidi, A. Khademzadeh, and A. Afzali-Kusha, "Spiral: a
heuristic mapping algorithm for network on chip," J. IEICE Electronics
Express, vol. 4, pp. 478-484, 2007.

[13] S. Murali and G. De Micheli, "Bandwidth-constrained mapping of cores
onto NoC architectures," in Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2004, pp. 896-901.

[14] Noxim, Available at: http://sourceforge.net/projects/noxim.
[15] K. Srinivasan and K. S. Chatha, "A technique for low energy mapping

and routing in network-on-chip architectures," in Proc. 2005 Int'l Symp.
Low Power Electronics and Design, 2005, pp. 387-392.

[16] X. Wang, M. Yang, Y. Jiang and P. Liu, "A power-aware mapping
approach to map IP cores onto NoCs under bandwidth and latency
constraints," to appear in ACM Trans. Architecture and Code
Optimization.

