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Abstract—This paper investigates the bandwidth- and latency-
constrained IP mapping problem that maps a given set of IP 
cores onto the tiles of a mesh-based Network-on-Chip (NoC) 
architecture to minimize the power consumption due to inter-
core communications. By examining various applications’ 
communication characteristics shown in their communication 
trace graphs, two distinguishable connectivity templates are 
realized: the graphs with tightly coupled vertices and those with 
distributed vertices. Different mapping heuristics are developed 
for these templates: tightly coupled vertices are mapped onto 
tiles that are close to each other while the distributed vertices are 
mapped following a graph partition scheme. The proposed 
template-based mapping algorithm achieves on average 15% 
power saving compared with MOCA, a fast greedy-based 
algorithm. Compared with a branch-and-bound algorithm, the 
proposed algorithm can generate results of almost the same 
quality but require much less CPU time.   

Keywords-Network-on-Chip (NoC); power-aware; IP mapping; 
Template-based Efficient Mapping (TEM). 

I. INTRODUCTION 
With the continuous scaling of CMOS technologies, 

interconnects dominate both performance and power 
dissipation in future System-on-Chip (SoC) designs. 
Multiprocessor System on Chip (MPSoC) [2] designs have 
emerged and shown to deliver high performance yet reasonably 
low power consumption. Networks-on-chip (NoC) has been 
considered as a viable communication infrastructure in 
MPSoC [9]. Regular mesh remains the dominant NoC 
architecture of choice due to its distinct features: structured 
network wiring, modularity, and standard interfaces [8]. 

This paper focuses on mapping the IP cores onto a regular 
tile-based NoC architecture and the mapping is subjected to 
the latency and bandwidth constraints as imposed by many 
real-time multimedia applications. In the literature, a number 
of algorithms have been proposed to solve this IP mapping 
problem, and they fall into four general categories:  
• Branch-and-bound algorithms [8], which can generate 

very high quality results. With large queue size, however, 

this algorithm demands high memory depth and suffers 
from long CPU time. 

• Framework-based approaches, such as the ones using 
simulated annealing (SA)/genetics algorithm (GA)/tabu 
search (TS) [1, 6, 10, 11]. These algorithms typically 
require considerably longer time than a greedy-based 
mapping algorithm. 

• Linear programming based schemes [13]. Computation 
is time-consuming and there is no guarantee that high-
quality solutions can be always found.  

• Greedy-based heuristics [5, 12, 15], which require 
significantly low CPU time. The following greedy 
algorithms are based on different observations. 

The algorithm MOCA [15] achieves a sound balance 
between the run time and the quality of solutions. The 
problem of this algorithm is that the graph partition algorithm 
may separate some tightly coupled regions (i.e. the regions 
made of IP cores with large degrees and strongly connected) 
into different sets, making the vertices in a tightly coupled 
region adversely mapped onto tiles physically far apart. 
Particularly, the power performance of MOCA deteriorates 
drastically when latency constraints are applied. 

In this paper, we propose a Template-based Efficient 
Mapping (TEM) algorithm which generates high-quality 
mapping results with low run time. This algorithm is designed 
based on two distinguishable connectivity templates extracted 
from various applications’ communication trace graphs: the 
graphs with tightly coupled vertices and those with distributed 
vertices. Correspondingly, different mapping strategies are 
proposed for these two templates. Simulation results show that 
the proposed TEM algorithm achieves better result than MOCA 
[15].  

The rest of the paper is organized as follows. Section II 
formally defines the mapping problem. Section III introduces 
the two templates derived from various applications’ 
communication trace graphs. The mapping algorithm based 
on the two templates is presented in Section IV. Section V 
presents and discusses the simulation results, and finally, 
Section VI concludes the paper.  

This work is in part supported by NSF under grant no. ECCS-0702168 and 
NSF of China under grant no. 60873112. 



II. PROBLEM FORMULATION 

A. Architecture description and power model 
Without loss of generality, the NoC system under 

consideration is composed of NxN tiles interconnected by a 2-
D mesh network. The power model used in [8] is followed in 
this study. The average power consumption for sending one 
bit of data from tile ti to tile tj can be represented as 

,i jt t
bitE = ( 1)hops Sbit hops LbitE Eη η× + − ×             (2) 

where hopsη  is the number of routers traversed from tile ti to 
tile tj, ESbit is the power consumed by the switch, and ELbit is 
the power consumed on the links between tiles ti and tj. 

B. Problem Description 
We assume that before IP mapping is performed, a given 

application described by a set of concurrent tasks is already 
bounded and scheduled onto a list of selected IP cores. As 
defined below, the communication patterns between any pair 
of IP cores of an application are described by its 
Communication Trace Graph, whereas the NoC architecture 
is modeled by its Architecture Characterization Graph.  
Definition 1 A Communication Trace Graph (CTG) G=(P, 
E) is an undirected graph, where a vertex/node pk ∈ P 
represents an IP core (a processor, an ASIC device or a 
memory unit, etc.), and an edge ei=(pk , pj)∈E represents the 
communication trace between vertices pk and pj . For each 
edge ei, 
• ω(ei) defines the communication bandwidth request 

between vertices pi and pj given in bits per second (bps). 
ω(ei) sets the minimum bandwidth that should be 
allocated by the network in order to meet the 
performance constraints. 

• σ(ei) represents the latency constraint, which is given in 
number of hops instead of an absolute number in cycles 
[15]. 

• W(ei) represents the weight of edge ei. The weight is 
defined in the same way as that in [15]. Among all the 
traces in the graph, let ei be the trace with the highest 
bandwidth requirement, and ej be the trace with the 
tightest (lowest) latency constraint. An integer K is 
defined as the minimum value required to ensure that 

among all the traces in the graph, ( )( )
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Definition 2 An Architecture Characterization Graph (ACG) 
Ğ=(T, L) is an undirected graph, where each vertex ti∈T 
represents a tile and each edge li∈L=(tk, tj) represents the link 
between tiles tk and tj. For each link li , 
• bw(li) defines the bandwidth provided between tiles tk and 

tj.  
 
 

• c(li) defines the link cost of li, i.e., power consumption 
for transmitting one bit data from tk to tj. 
In this paper, we focus on regular NoC architectures 

which have bw(li)=B, c(li)= C for each li∈L, where B and C 
are constants. hk, j is the set of links forming one of the 
shortest paths from tile tk  to tile tj (hk, j ⊆ L). dist(hk, j) 
determines the number of elements in hk, j (i.e. it is the hop 
count of the shortest path between tile tk and tile tj). 
Definition 3 A mapping algorithm M: P T maps each vertex 
in CTG onto an available tile in ACG. M(pi)  represents the 
mapped tile in ACG, where pi ∈P and M(pi) ∈T. 
Definition 4 A routing algorithm R: E  H, finds one of the 
shortest routing path between M(pk) and M(pj) for each edge 
ei=(pk, pj)∈ E. The links of forming this path belongs to 
set ( ), ( )k jM p M ph . 

The IP mapping problem is formulated as follows. 
Given a CTG(P, E) representing the communication 

pattern of an application and an ACG(T, L) representing the 
target NoC architecture, where |P| ≤ |T|, find a mapping 
M:P T which maps all the vertices in CTG onto available 
tiles in ACG and generates a deadlock-free and minimal 
routing paths for all edges in CTG, such that the total power 
consumption is minimized, i.e.,  
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Similar to the definition adopted in [8], conditions given 
by (4) and (5) ensure that each IP should be mapped exactly 
to one tile and no tile can host more than one IP. Eqn. (6) 
specifies the bandwidth constraint for every link set by the 
communication bandwidth requirement, and Eqn. (7) ensures 
that the latency constraint (in terms of the number of hops) 
between two communicating IPs is satisfied on the mapped 
tiles. 

III. DERIVATION OF MAPPING TEMPLATES 
As alluded in Section 1, MOCA [15] does not perform 

well when the latency constraints are considered. This 
problem is illustrated in the mapping of the MPEG4 decoder, 
with its CTG shown in Figure 1.  

 



 
Figure 1 The CTG of MPEG4 decoder [15]. The BW request (Mbps) and 
latency constraint (number of hops) of each edge is labeled on the edge. 

A communication path with higher bandwidth request 
should be mapped to links with fewer hop counts to reduce 
power consumption as Eqn. (3) indicates. When the latency 
constraint is applied, the result of MOCA deteriorates. For 
example, in Figure 2(a), the hop counts of edges (1,7), (8,9), 
(8,10) are greater than 1, which results in higher power 
consumption. 

As a matter of fact, as shown in Figure 2(b), there is a 
better mapping by reducing the number of hops for these 
edges. In Figure 1, vertices 1 and 8 have many edges 
requesting high bandwidths or tight latency. In Figure 2(b), 
these two vertices are mapped onto the two tiles with the 
largest degree or maximal number of neighbor tiles (i.e., 4). 
In this solution, edges with higher weights are mapped with 
fewer hop counts than those edges with smaller weights. 

 

       
        (a)                                          (b) 

Figure 2 (a) The mapping result of MOCA on the CTG of MPEG4dec w/ 
latency constraints (b) A better mapping solution on the same CTG w/ latency 
constraint. The square boxes are tiles and the circles are IP cores. 

From the above example, one can see that different 
mapping strategies shall be adopted for CTGs with different 
features. Here, we present two distinct templates derived from 
various CTGs. Given a CTG(P, E), and a sorted list of edges 
in decreasing order of edge weight denoted as Ê: 
Definition 5 A vertex pi∈P is a hot node if  
a) pi has a degree greater than or equal to 4, and 
b) of the first 50% edges in the edge list Ê,  there are at 

least one edges that are connected to pi. 
Template 1: An application’s CTG falls into Template 1 
(tightly coupled) if there is at least one hot node in the CTG. 
Template 2: An application falls into Template 2 
(distributed) if there is no hot node in the application’s  CTG. 

IV. ALGORITHM DESCRIPTION 
The overall structure of the TEM algorithm is shown 

below. Before the template-based mapping takes place, the 
edges have to be sorted in non-increasing order in terms of 
the edge weight. After all the vertices are mapped, a routing 

allocation routine is called to find routing paths for all pairs 
of communicating vertices.  

TEM (G(P,E), Ğ(T,L)) 
Input: (1) G: CTG of an application.   

(2) Ğ: ACG of an NoC architecture  
Output: none 
Function: Map the application on the NoC architecture and allocate  

    routing paths 
Procedure body: 
{ 

Sort_Edge(E);  // E ⊂ G. Let the sorted list be Ê =eπ(1), eπ(2), …,eπ(|E|), i.e., 
      // W(eπ(1))≥W(eπ(2))≥… W(eπ((|E|)). 

// Find the hot nodes if any. Check which template the application belongs to
for each vertex pi { // Definition 5  

if (vertex pi has degree ≥α and pi has γ edges in the first β edges in E){  
    mark pi as a hot node an place into set Ĥ 
 } 
} 
// If G has hot nodes, it belongs to Template 1, otherwise Template 2 
// Template specific algorithm 
case 1: Template 1 { // Tightly coupled 

 TEM_Template1(G, Ğ, Ĥ);  
 break; 

} 
case 2: Template 2 { // Distributed 

 TEM_Template2(G, Ğ);  
break; 

} 
Route_Alloc(G, Ğ); // Find routing paths 

}  
 

A. Mapping Algorithm for Template 1 
An application of template 1 (CTG has at least one hot 

node) is mapped based on the following observations.  
a) Hot nodes should be given a higher mapping priority; 

that is, they shall be mapped before any other nodes are 
mapped. All the hot nodes in a CTG will be first mapped 
along with their α most significant neighbor vertices. A 
hot node is better mapped onto a tile in an NoC that has 
the maximum number of neighbor tiles.  

b) Once all the hot nodes are mapped, the mapping 
sequence of remaining unmapped non-hot nodes will be 
performed based on the decreasing order of weight of 
edges connecting them.  

As such, TEM_Template1 procedure consists of two major 
steps: (1) map hot nodes in CTG, (2) map other vertices. 

 
TEM_Template1 (G(P,E), Ğ(T,L), Ĥ) 
Input: (1) G: CTG of an application   

(2) Ğ: ACG of an NoC architecture 
(3) Ĥ: The set of hot nodes 

Output: none 
Function: Map the Template 1 application onto the NoC architecture 
Procedure body: 
{ 

// Step 1: find and map the hot nodes with their 4 most significant  
// neighbors 
for each edge eπ(i)=(pk, pj) { 
 increase the counter of pk,, pj if they are hot nodes (belong to Ĥ) 

if one of the vertex’s counter equals α{ // suppose pk’s counter is α 
Map_Hot_Node(pk, Ê, T); 

 } 
} 
 
// Step 2: map the remaining unmapped vertices 
update the hop counts of edges whose terminal vertices are already 
mapped; 
// re-scan the edge list 
for each edge eπ(i)=(pk, pj){  
 Map_Edge(eπ(i), Ê, T);  // T is the available tile set 
} 

}  



Before we discuss each step in detail, the following 
definitions are introduced. 
Definition 6 Vertex pn is a significant neighbor of vertex pi if 
there exists an edge (pi, pn) ∈E and edge (pi, pn) is within the 
first 50% edges in the edge list Ê. 
Definition 7 Since in a mesh structure, the maximal degree of 
a tile is four, here the four most significant neighbors {pn1,…, 
pn4} of a hot node pi are the four neighbors of pi that have the 
highest bandwidth/tightest latency requirements among all the 
neighbors of pi .  
Definition 8 A center tile in a 2-D topology like mesh is a tile 
that has maximal number (i.e. 4) of unmapped neighbor tiles.  
Definition 9 Two vertices pk , pj are “close” if (1) edge (pk, pj) 
is among the first 50% edges in the edge list or (2) a neighbor 
vertex of pk (or pj) is connected with pj (or pk), and this edge 
is among the first 50% edges in the edge list.  

1) Map hot nodes. Procedure Map_Hot_Node maps each 
hot node and its four most significant neighbor vertices. Each 
hot node pi is associated with a counter ctri that counts the 
number of times that vertex pi appears as a terminal vertex of 
the edges in the sorted edge list. 
• Case 1: the current hot node pi is not mapped yet. Check 

whether this hot node is close (Definition 9) to any of 
those mapped hot nodes. If yes, this hot node is mapped 
to a tile with minimum hops to an already mapped hot 
node. Otherwise, a center tile is selected and it is 
allocated to this hot node. Next its four most significant 
neighbors are mapped to the neighboring tiles if they 
have not been mapped.  

• Case 2: the current hot node has already been mapped 
because it belongs to the first α neighbors of a previously 
mapped hot node. In this case, only the four most 
significant neighbor vertices need to be mapped. The 
procedure Improve_Edge can be called for optimization. 

2) Map other nodes. In this step, all the remaining 
unmapped vertices are mapped. Procedure Map_Edge maps 
the remaining unmapped vertex/vertices. 

There are three cases to consider. 
• Case 1: Neither of the two terminal vertices pk, pj of edge 

eπ(i) = (pk, pj) is mapped. Search the edges from eπ(i)+1 to 
eπ(|E|). If one of the neighbors of the two terminal vertices 
is found and is mapped, then the vertex with a mapped 
neighbor is mapped onto a tile that has the minimum hop 
count to its mapped neighbor. On the other hand, if none 
of the two terminal vertices’ neighbors is mapped, an 
available tile is selected and immediately allocated to one 
of the vertices, after which the other vertex is mapped 
onto a tile with a minimum hop count to the just mapped 
tile.  

• Case 2: One of the two terminal vertices is mapped, but 
the other one is not. In this case, only the unmapped 
vertex needs to be mapped onto a tile with minimum hop 
count to the mapped tile.   
 

The Map_Hot_Node procedure is listed below 

Map_Hot_Node(phi, Ê, T) 
Input: (1) phi: A hot node  

(2) Ê: The sorted edge list  
(3) T: The available tile set in NoC architecture  

Output: none 
Function: Map hot node phi and its neighbors  
Procedure body: 
{ 

// Case 1 
if (phi is unmapped){ // 1) Map the hot node phi 

 check if other mapped hot nodes are close to phi ;  // Definition 9 
if (there is a mapped hot node phk close to hot node phi){ 
   map phi to a tile with minimum hop count to phi’s tile; 
} 
else{ 

map phi to tl = Find_Center_Tile();  
      } 

// 2) Map the four most significant neighbors 
for each of phi’s four most significant neighbors {  
// suppose pn is one of such neighbors 

    if (pn is unmapped){ 
// Two criteria should be observed in mapping neighbors as  
// described in text 
map pn to a tile with minimum hops to phi’s tile; 

    } 
} 

}  
// Case 2 
else if (phi is mapped) { 

for each of phi’s four most significant neighbors { 
// suppose pn is one of such neighbors 
if (pn is not mapped) { 

  map pn to a tile with minimum hop count to phi’s tile ; 
    }         
} 

} 
}  

 
Figure 2(b) shows the mapping result of the CTG of 

MPEG4 decoder. The complexity of TEM_Template1 is 
O(|Ĥ|·(|E|+|T|)+|E|·(|E|+|T|)), which can be further simplified 
as O((|E|+|T|)2) since |Ĥ|≤|P|≤|T|. 

B. TEM Algorithm for Template 2 
For a Template 2 CTG, the graph partition algorithm 

proposed in [4] is followed to partition both CTG and ACG 
into four smaller regions so that each region in CTG can be 
mapped onto a region in ACG in a divide-and-conquer 
manner.  
Definition 10 A Block Trace Graph (BTG) is denoted as 
G'=(B, BE), where each vertex bi∈B is a partitioned block and 
bi⊂ P (P is the vertex set of CTG(P, E)), and an edge bei=(bk, 
bj)∈BE exists if pkl∈bk and pjm∈bj, (pkl, pjm)∈E. For an edge 
bei=(bk, bj)∈BE,  
• W(bei) represents the weight of bei. The calculation is the 

same as the weight of edges in CTG. 
• An CTG edge (pi, pj)∈E belongs to a block bk if pi∈bk or 

pj∈bk. Ei represents the set of edges belonging to bi. 
The vertices in each block are classified into two types 

and they are mapped differently: 
1) Internal vertices. An internal vertex pintern has all its 

neighbors in the same block of pintern. 
2) External vertices. An external vertex pextern has at least 

one of its neighbors not in the same block of pextern. 
Definition 11 A Virtual ACG (VACG) is denoted as Ğ'=(R, 
CH), where a vertex ri∈R represents a partitioned region and 
ri ⊂ T (T is the tile set of ACG(T, L)). Each edge chi=(rk, 



rj)∈CH represents that there exists direct links between tiles 
in rk and rj. For each edge chi∈CH, 

The TEM_Template 2 algorithm works as follows. 
 
TEM_Template2(G(P,E), Ğ(T,L)) 
Input: (1) G: The CTG of an application.   

(2) Ğ: The ACG of an NoC architecture 
Output: none 
Function: Map the Template 2 application onto the NoC architecture 
Procedure body: 
{ 

// Step 1. Obtain the BTG and VACG by partitioning the CTG into blocks 
// and ACG into default regions, respectively. Map the blocks in BTG to 
// the regions in VACG. 
obtain BTG (G') using the graph partition algorithm to partition CTG into
4 blocks; 
obtain VACG (Ğ') with default four square regions; 
map the four blocks in BTG to four default regions of VACG using  
Map_Edge; 
Partition_VACG(G', Ğ'); 
// Step 2. Inside each block, map the vertices to the tiles of the  
// corresponding region. 
for each block bi in BTG mapped to region rx in VACG { 

// 1) Map the external vertices.  
// Let PEi be set of external vertices in bi; 
sort external vertices in PEi in the non-increasing order of the total
weight of the external vertices. Let pΦ(1), pΦ (2), …, pΦ (|PEi|) be the 
sorted list; 
for each external vertex pΦ(i){ 

Map_External_Vertex(pΦ(i), G', Ğ'); 
}   
// 2) Map the internal vertices 
sort the edges in bi into Êi using Sort_Edge; 
for each edge eψ (i) = (pk , pj)∈Êi { 

Map_Edge (eψ(i), bi, rx); // described in Section 4.1 
} 

} 
}  
 
1) Partition. In this step, the BTG is formed using a graph 

partition algorithm [4] to partition the CTG into four blocks. 
The VACG is formed by partitioning the ACG into four 
default regions (e.g., square regions in Figure 4. The blocks 
in the BTG are mapped to the default regions in the VACG. 
Based on the mapping result of BTG onto VACG, the actual 
regions in the VACG are partitioned in a top-down manner. 
The size of each partitioned region needs to be set equal to 
the size of the corresponding block in the BTG. 

2) Map inside blocks. In this step, the vertices in each 
block are mapped to the tiles within its region. The external 
vertices are first mapped to the border of each NoC region, 
after which the internal vertices are mapped with larger 
weight edge first criterion.  

The overall complexity of TEM_Template2 can be 
approximated by O((|E|+|T|)2) as |blki|<|P|≤|T|, |Ei|<|E|, 
|Ti|<|T|.  

V. PERFORMANCE EVALUATION 
To evaluate the performance of the TEM algorithm, both 

TEM_Template 1 and TEM_Template2 are implemented and 
simulated. The brand-and-bound (BNB) [8] and MOCA [15] 
algorithms are also implemented and the mapping results of 
all three algorithms are compared. To isolate the effects of 
different routing algorithms, the XY routing and odd-even 
routing algorithms are selected. Multimedia benchmarks from 
[7] and [15]. The Noxim simulator [14] is modified and used 

in our simulations to obtain the total communication power 
after the mapping and the routing path allocation steps.  

The simulations are performed on a PC with one Intel 
Core2 P8600 2.4GHz processor and 2GB RAM. The run 
times of both TEM and MOCA range from 0.01sec~1sec for 
different network sizes.  

Multimedia benchmarks of both Template 1 and Template 
2 are tested on a mesh-based NoC. Table I lists these 
benchmarks. For benchmarks of both templates, we compare 
the degradation of TEM compared to BNB (i.e. the increase 
in power consumption of mapping results from the TEM 
compared to that from BNB) and the degradation of MOCA 
compared to BNB. The power consumption is normalized.  

TABLE I. MULTIMEDIA BENCHMARKS AND THEIR TEMPLATES. 

Benchmark Template 
MPEG4 1  
263enc 1 
263enc+MP3enc 1 
263enc+MP3dec 1 
263enc+263dec 1 
Multimedia Systems (MMS) 1 
VOPD 2 
MP3enc 2 
MP3enc+MP3dec 2 

 
Table II shows the result of benchmarks of Template 1 

with and without latency constraints. When the latency 
constraints are not considered, the result of TEM is 
comparable with that of MOCA. When the latency constraints 
are considered, the TEM algorithm outperforms MOCA for 
most media programs. The degradation of TEM vs. BNB is 
within 10% with odd-even routing. The reduction in power 
consumption of TEM compared to MOCA is over 15%. For 
MPEG4dec, the degradation of TEM is only 6% compared to 
that of MOCA 45%.  

The Multi-Media System (MMS) benchmark [8] is also 
simulated on a 5x5 mesh-based NoC. Table III shows the 
reduction in power consumption of TEM over MOCA 
(normalized). 

Table IV shows the result of benchmarks of Template 2 
with and without latency constraints. Without latency 
constraints, the result of TEM is comparable with that of 
MOCA. On average, the degradation of TEM over BNB is 
within 10% for both XY routing and odd-even routing. With 
latency constraints, the power consumption of mapping result 
from TEM is slightly lower than that from MOCA for VOPD 
and MP3enc. For MP3enc+MP3dec, TEM achieves 
significant reduction in power consumption compared to 
MOCA. This is due to the fact that the TEM algorithm for 
applications of Template 2 uses a divide-and-conquer 
approach. Inside each partitioned block, TEM first maps 
external vertices to the border of the block and the remaining 
edges with larger weight first criterion. Thus larger weight 
edges are mapped first inside each block.  

Evaluation of TEM on random applications is also 
conducted. Detailed results are presented in [16].  

 



  
TABLE II. COMPARISON OF POWER CONSUMPTION (NORMALIZED) OF TEM AND MOCA OVER BNB ON BENCHMARKS OF TEMPLATE 1. 

Benchmarks With latency constraint Without latency constraint 
TEM MOCA BNB TEM MOCA BNB 
XY  Odd-even XY  Odd-even 

MPEG4 1.05 1.05 1.45 1 1.01 1.01 1.06 1 
263 enc 1.07 1 1.11 1 1.4 1.03 1 1 
263enc+MP3enc 1.14 1.11 1.27 1 1.01 1 1 1 
263enc+MP3dec 1.06 1.01 1.28 1 1.04 1.01 1 1 
263enc+263dec 1.06 1.01 1.9 1 1.06 1.02 1 1 

TABLE III. COMPARISON OF POWER CONSUMPTION (NORMALIZED) OF TEM OVER MOCA ON MMS (TEMPLATE 1). 

Benchmarks With latency constraint Without latency constraint 
TEM MOCA TEM MOCA 

XY  Odd-even  XY  Odd-even  
MMS 0.9 0.84 1 0.97 0.91 1 

TABLE IV.  COMPARISON OF POWER CONSUMPTION (NORMALIZED) TEM AND MOCA OVER BNB ON BENCHMARKS OF TEMPLATE 2. 

Benchmarks With latency constraint Without latency constraint 
TEM MOCA BNB TEM MOCA BNB 
XY  Odd-even XY  Odd-even 

VOPD 1.02 1.02 1.1 1 1.02 1.02 1.08 1 
MP3enc 1.1 1.1 1.12 1 1 1 1 1 
MP3enc+MP3dec 1.14 1.11 1.41 1 1.08 1.07 1.08 1 

VI. CONCLUSION 
This paper presented a template-based greedy algorithm to 

address the IP mapping problem under the bandwidth and 
latency constraints. An application falls into Template 1, if 
there are one or more hot nodes which demand either higher 
communications bandwidths or tighter latency. In this case, 
TEM maps the hot nodes first along with their four most 
significant neighbors, after which the remaining IP cores are 
mapped in descending order based on the edge weights. On 
the other hand, an application is categorized as Template 2, if 
the communications are nearly evenly distributed among the 
vertices. In this case, TEM divides the NoC into regions and 
CTG into blocks; then it maps the IP cores inside each block 
in a divide-and-conquer manner. The experiments on 
multimedia and random benchmarks show that TEM 
generates high quality mapping results with low run times.  

 
VII. REFERENCES 

 
[1] G. Ascia, V. Catania, and M. Palesi, "Multi-objective mapping for mesh-

based NoC architectures," in Proc. 2nd IEEE/ACM/IFIP Int'l Conf 
Hardware/Software Codesign and System Synthesis, 2004, pp. 182-187. 

[2] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, 
and G. De Micheli, "NoC synthesis flow for customized domain specific 
multiprocessor Systems-on-Chip," IEEE Trans. Parallel And Distributed 
Systems, pp. 113-129, 2005. 

[3] R. P. Dick, D. L. Rhodes, and W. Wolf, "TGFF: task graphs for free," in 
Proc. 6th Int'l workshop on Hardware/software Codesign, 1998, pp. 97-
101. 

[4] C. M. Fiduccia and R. M. Mattheyses, "A Linear-time heuristic for 
improving network partitions," in Proc. 19th IEEE Conf. Design 
Automation, 1982, pp. 175-181. 

[5] A. Hansson, K. Goossens, and A. Rǎ dulescu, "A unified approach to 
constrained mapping and routing on network-on-chip architectures," in 
Proc. 3rd IEEE/ACM/IFIP Int'l Conf Hardware/Software Codesign and 
System Synthesis, 2005, pp. 75-80. 

[6] H. M. Harmanani and R. Farah, "A method for efficient mapping and 
reliable routing for NoC architectures with minimum bandwidth and 
area," in Proc. Conf. Circuits and Systems and TAISA, 2008, pp. 29-32. 

[7] J. Hu and R. Marculescu, "Energy-aware mapping for tile-based NoC 
architectures under performance constraints," in Proc Conf. Asia South 
Pacific Design Automation, 2003, pp. 233-239. 

[8] J. Hu and R. Marculescu, "Energy-and performance-aware mapping for 
regular NoC architectures," IEEE Trans. Computer-Aided Design of 
Integrated Circuits and Systems, vol. 24, pp. 551-562, 2005. 

[9] A. Jantsch and H. Tenhunen, Networks on Chip. New York, NY: Kluwer 
Academic Publishers, 2003. 

[10] Z. Lu, L. Xia, and A. Jantsch, "Cluster-based simulated annealing for 
mapping cores onto 2D mesh networks on chip," in Proc. Design and 
Diagnostics of Electronic Circuits and Systems (DDECS), 2008, pp. 1-6. 

[11] C. A. M. Marcon, E. I. Moreno, N. L. V. Calazans, and F. G. Moraes, 
"Evaluation of algorithms for low energy mapping onto NoCs," in Proc. 
IEEE Int'l Symp. Circuits and Systems(ISCAS), 2007, pp. 389-392. 

[12] A. Mehran, S. Saeidi, A. Khademzadeh, and A. Afzali-Kusha, "Spiral: a 
heuristic mapping algorithm for network on chip," J. IEICE Electronics 
Express, vol. 4, pp. 478-484, 2007. 

[13] S. Murali and G. De Micheli, "Bandwidth-constrained mapping of cores 
onto NoC architectures," in Proc. Design, Automation and Test in Europe 
Conference and Exhibition (DATE), 2004, pp. 896-901. 

[14] Noxim, Available at: http://sourceforge.net/projects/noxim.  
[15] K. Srinivasan and K. S. Chatha, "A technique for low energy mapping 

and routing in network-on-chip architectures," in Proc. 2005 Int'l Symp. 
Low Power Electronics and Design, 2005, pp. 387-392. 

[16] X. Wang, M. Yang, Y. Jiang and P. Liu, "A power-aware mapping 
approach to map IP cores onto NoCs under bandwidth and latency 
constraints," to appear in ACM Trans. Architecture and Code 
Optimization. 

  


