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Abstract

Due to its simplicity and scalability, the differentiated services (DiffServ) model is expected to be widely

deployed across wired and wireless networks. Though DiffServ supporting scheduling algorithms for output-

queuing (OQ) switches have been widely studied, there are few DiffServ scheduling algorithms for input-

queuing (IQ) switches in the literature. In this paper, we propose two DiffServ scheduling algorithms for

DiffServ networks with IQ switches: the dynamic DiffServ scheduling (DDS) algorithm and the hierarchical

DiffServ scheduling (HDS) algorithm. The basic idea of DDS and HDS is to schedule EF and AF traffic

according to their minimum service rates with the reserved bandwidth and schedule AF and BE traffic fairly

with the excess bandwidth. Both DDS and HDS find a maximal weight matching but in different ways. DDS

employs a centralized scheduling scheme. HDS features a hierarchical scheduling scheme that consists of

two levels of schedulers: the central scheduler and port schedulers. Using such a hierarchical scheme, the

implementation complexity and the amount of information needs to be transmitted between input ports and

the central scheduler for HDS are dramatically reduced compared with DDS. Through simulations, we show

that both DDS and HDS provide minimum bandwidth guarantees for EF and AF traffic as well as fair band-

width allocation for BE traffic. The delay and jitter performance of DDS is close to that of PQWRR, an

existing DiffServ supporting scheduling algorithm for OQ switches. The tradeoff of the simpler implemen-

tation scheme of HDS is its slightly worse delay performance compared with DDS.

Keyword: Quality of service, DiffServ, scheduling, input-queuing switches
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I. I NTRODUCTION

The rapid growth of the Internet and wireless communications has driven the demand for wired/wireless

broadband Internet access with quality of service (QoS) support. The two main approaches to provide

QoS are: Integrated Services (IntServ) [4] and Differentiated Services (DiffServ) [3]. Fine-grained QoS

guarantees can be achieved by IntServ. However, the scalability of the IntServ model is limited due to the

per-flow reservation and heavy signaling overhead [12]. The DiffServ model is proposed to meet different

QoS requirements for various types of clients and network applications. It addresses scalability by a coarse-

grain differentiation model.

The DiffServ model [3] is orientated toward edge-to-edge service across a single domain. Traffic is classi-

fied into a limited number of service classes according to the service level agreement (SLA) with the network

provider. The flow-based traffic classification and conditioning is pushed to edge routers of the domain. Core

routers of the domain do not need to maintain per-flow state information, but only need to forward packets

according to the per hop behavior (PHB) associated with each service class, which is identified by the Diff-

Serv code point (DSCP) field in the header of each packet. The DiffServ model matches the heterogeneous

feature of the Internet and it is capable of providing end-to-end QoS guarantees by bilateral agreements

between neighboring domain owners [5]. Due to its simplicity and scalability, DiffServ is expected to be

widely deployed across wired and wireless networks [2], [12].

Currently, the IETF defines a set of PHBs which include Expedited Forwarding (EF) PHB, Assured For-

warding (AF) PHB group, and Best Effort (BE) PHB. The EF PHB provides low loss, low delay, low jitter,

assured bandwidth, and end-to-end service through the DiffServ domain. The EF PHB is ideally suitable

for voice over IP (VoIP), audio-, video- streaming, and other real-time applications. The AF PHB group

provides services with minimum rate guarantee and low loss rate [9]. Four AF classes (AF1, AF2, AF3, and

AF4) are defined and each class has three levels of drop precedence [1], [9], [22]. The level of forwarding

assurance of an IP packet belonging to an AF class depends on the amount of resources allocated to the AF

class, the current load of the AF class, and the drop precedence of the packet. AF PHBs are suitable for
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network management protocols, such as Telnet, SMTP, FTP, HTTP. All data packets belonging to the BE

class are not policed and are forwarded with the best effort.

The implementation of PHBs relies much on the scheduling and queuing schemes used in DiffServ com-

pliant switches and routers. In order to provide premium service to EF traffic, packets belonging to EF

class should be served prior to packets belonging to other classes. Meanwhile, to prevent the influence

of damaging EF traffic to other traffic, the service rate (bandwidth) for EF traffic should be limited to its

peak information rate (PIR). For each AF class, a minimum service rate, referred as committed informa-

tion rate (CIR), should be guaranteed. On the other hand, to avoid starvation of BE traffic, backlogged BE

queues should be served if excess bandwidth is available. In practice, we desire those scheduling and queu-

ing schemes which are efficient in providing differentiated services for different traffic classes, with high

throughput, and simple in implementation.

Existing DiffServ supporting scheduling schemes for output-queuing (OQ) switches include priority queu-

ing (PQ), weighted round-robin (WRR), PQWRR [19], [25], and class-based queuing (CBQ) [11], [18].

CBQ ensures explicit rate control for each traffic class by the rate control mechanisms functioned at two

schedulers: the general scheduler and the link-sharing scheduler [8]. Compared with PQ and WRR, PQWRR

delivers the minimum delay and jitter for EF traffic and provides better bandwidth allocation for AF traffic

and BE traffic by priority scheduling of EF traffic and non-EF traffic, and weighted round-robin scheduling

of AF traffic and BE traffic. In terms of implementation, PQWRR is simple and more practical than CBQ.

Nevertheless, these schemes all assume OQ switch architectures which are not scalable for high line rates

and/or large numbers of ports due to the speed limitation of the switching fabric and memories.

Compared with OQ switches, input queuing (IQ) switches are more scalable and practical since they

only need the switching fabric and memories to run at the line rate. We hence focus our study on DiffServ

supporting scheduling algorithms for IQ switches. Many QoS supporting scheduling algorithms have been

proposed for IQ switches. Most of them are maximal weight matching (MWM) based algorithms with

different definitions of the weight, such as algorithms with the weight defined as a function of queue length
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(e.g. the successive incremental matching over multiple ports (SIMP) algorithm [23], the longest normalized

queue first (LNQF) algorithm [16], the worst-case longest port first (LPF), and prioritized LPF algorithms

[24]), algorithms with the weight defined as credits of bandwidth [13], and algorithms with the weight

defined as time difference [6]. Another noticeable QoS scheduling algorithm is the hierarchical scheduling

algorithm [15], which combines a dynamic algorithm which is used to determine input-output matchings

and a static algorithm which is used to select a request in the granted input port. However, due to the lack

of bandwidth reservation schemes, all these algorithms do not provide bandwidth or delay guarantee for

each traffic class. Although the distributed mutlilayered scheduler (DMS) [7] for multistage switches can

provide delay bounds for EF flows and guaranteed bandwidth for AF flows, the complex structure of DMS

and maintenance of per-flow queues prevent its practical use. In [10], the Adaptive Weighted Fair Queueing

with Priority (AWFQP) scheduler attempts to provide QoS guarantees to EF, AF, and BE classes with two

levels of schedulers: the Priority Queueing Scheduler and the Fair Queueing Scheduler in the first level, and

the Adaptive Queueing Scheduler in the second level.

In this paper, we propose two DiffServ scheduling algorithms for IQ switches: the dynamic DiffServ

scheduling (DDS) algorithm and the hierarchical DiffServ scheduling (HDS) algorithm, to provide dynamic

bandwidth allocation for DiffServ classes. The basic idea of DDS and HDS is to schedule EF and AF

traffic according to their minimum service rates with the reserved bandwidth and schedule AF and BE traffic

fairly with the excess bandwidth. Both DDS and HDS find a maximal weight matching but in different ways.

DDS employs a centralized scheduling scheme. HDS features a hierarchical scheduling scheme that consists

of two levels of schedulers: the central scheduler and port schedulers. Using such a hierarchical scheme,

the implementation complexity and the amount of information needs to be transmitted between input ports

and the central scheduler for HDS are dramatically reduced compared with DDS. Through simulations, we

evaluate the performance of DDS and HDS under bursty arrivals and compare them with PQWRR. We

show that both DDS and HDS provide minimum bandwidth guarantees for EF and AF traffic as well as fair

bandwidth allocation for BE traffic. DDS also achieves the delay and jitter performance for EF traffic close
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to that of PQWRR and the delay performance for AF traffic better than that of PQWRR at high loads.

The rest of the paper is organized as follows. Section II introduces the IQ switch architecture. Section III

describes the preliminaries for both algorithms. Section IV presents the DDS algorithm. Section V presents

the HDS algorithm. Section VI discusses the simulation results and comparison with PQWRR. Section VII

concludes the paper.

II. IQ SWITCH ARCHITECTURE

Figure 1 shows anN×N IQ switch architecture. We assume that all data packets arriving at the switch are

segmented into fixed-size cells, transmitted through the switching fabric, and reassembled back into original

data packets before they leave the switch. We also assume that time is slotted such that one cell slot is equal

to the transmission time of one cell on the input/output line. To remove head-of-line (HOL) blocking, each

input port maintainsN groups of virtual output queues (VOQs), and each group of VOQs is used to buffer

cells destined for an output port.
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Fig. 1. The IQ switch architecture.
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Fig. 2. Queuing scheme at input portIi.

A VOQ group is composed ofK VOQs, each dedicated to buffering cells of a DiffServ class. Figure 2

shows the queuing scheme used at input portIi, 1 ≤ i ≤ N , in which a separate FIFO queueQi,j,k is used

to buffer cells belonging to traffic classk, 1 ≤ k ≤ K, and destined for output portOj, 1 ≤ j ≤ N . For the
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DiffServ model, we haveK = 6 with k = 1 to 6 representing the classes of EF, AF1, AF2, AF3, AF4, and

BE respectively. When a cell arrives at an input (port), it is classified based on its DSCP field and output

port address, and buffered in the VOQ corresponding to its traffic class and output (port).

In each cell slot, a scheduling algorithm is needed to determine whichN cells in theN2K VOQs to be

transmitted through the switching fabric. In the following, we assume that scheduling in the current cell slot

is based on the VOQ status of the previous cell slot, and switching in the current cell slot is based on the

scheduling decision made by the previous cell slot.

III. PRELIMINARIES

Three factors need to be considered when designing a DiffServ supporting scheduling algorithm for IQ

switches. First, to provide minimum bandwidth guarantees for EF and AF classes, the scheduling algorithm

needs to consider the PIR for EF class and CIRs for four AF classes. Meanwhile, to avoid starvation of BE

class, backlogged queues should be served if the excess bandwidth is available. Hence, class differentiation

and bandwidth reservation and measurement schemes need to be introduced in the scheduling algorithm.

Second, the switch throughput should be kept as much as possible. Third, the scheduling algorithm should

be simple in implementation.

In the next two sections, we present the dynamic DiffServ scheduling algorithm and the hierarchical Diff-

Serv scheduling algorithm. The service discipline of DDS and HDS is the same: If the reserved bandwidth

is available, it serves EF or AF traffic first so that the PIR for EF class and the CIR for each AF class are

guaranteed; otherwise, it serves non-EF traffic fairly so that BE traffic is not starved. The difference be-

tween DDS and HDS is the scheduling scheme used to find a maximal weight matching. DDS employs a

centralized scheme, while HDS features a hierarchical scheme. Before we present each algorithm, we first

introduce the bandwidth reservation and measurement schemes at each output port.

We useL to denote the bandwidth of each output link, which is divided into two categories, reserved

bandwidth and excess bandwidth (e.g.,90% as the reserved bandwidth and10% as the excess bandwidth).

The reserved bandwidth is further divided into five parts, each corresponding to the guaranteed bandwidth
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for a non-BE DiffServ class. To provide bandwidth guarantees for AF classes in a finer granularity and

enforce smooth AF traffic, we introduce the time unit offrame, which is composed ofT time slots. Each

output portOj, 1 ≤ j ≤ N , maintains the following variables.

• Rj,k denotes the reserved (guaranteed) bandwidth for classk, where1 ≤ k ≤ K − 1. Rj,1 = PIR for

EF class,Rj,k = CIR for AF(k − 1) class,2 ≤ k ≤ K − 1, and
∑K−1

k=1 Rj,k ≤ 1.

• Cj,k denotes the cell counter for classk. Cj,1 counts the number of EF cells up to the current slot, and

Cj,k, 2 ≤ k ≤ K − 1, counts the number of AF(k − 1) cells transmitted in the current frame. We set

Cj,1 = 0 at cell slott = 0, andCj,k = 0 at cell slott mod T = 0 for 2 ≤ k ≤ K − 1.

• Sj,k denotes the bandwidth utilization status for classk. Sj,k = 1 if Cj,1/t < Rj,1 for EF class or

Cj,k/T < Rj,k for AF(k − 1) class,2 ≤ k ≤ K − 1; Sj,k = 0 otherwise.

At the beginning of each cell slot, each output portOj, 1 ≤ j ≤ N , sendsSj to the central scheduler.

Each input portIi, 1 ≤ i ≤ N , collects the waiting time of the HOL cell of each non-empty VOQQi,j,k as

wi,j,k = t − t′i,j,k, wheret′i,j,k is the entering time slot of the HOL cell. We use a mapping function to map

the weight value into the range of0 to 2bk − 1, wherebk is the number of bits used to represent the weight

range of traffic classk. In this paper, we use a saturation function which is defined as follows.

f(wi,j,k) =





wi,j,k if 0 ≤ wi,j,k < 2bk ,

2bk − 1 otherwise.
(1)

IV. T HE DDS ALGORITHM

The DDS algorithm finds a maximal weight matching in a centralized way. At the start of each cell slot,

each input portIi sends a weighted vector withNK values to the scheduler. For each VOQ groupQi,j, a

weighted request vectorVi,j is constructed as(f(wi,j,1), f(wi,j,2), · · ·, f(wi,j,K)).

A. The DDS Algorithm

The DDS algorithm works iteratively, with each iteration consisting of the following three steps.

Step 1:Request.Each unmatched inputIi sends request vectorsVi,j ’s to their corresponding outputs.
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Step 2: Grant. For each unmatched outputOj, once it receives at least one non-zero request vector, it

grants one input as follows.

• If Sj,1 = 1 or Sj,k = 1 for 2 ≤ k ≤ K − 1, it grants the input withmax{f(wi,j,k)| f(wi,j,k) >

0, 1 ≤ i ≤ N} starting fromk = 1 to K−1; otherwise, it grants the input withmax{f(wi,j,k) |

f(wi,j,k) > 0, 1 ≤ i ≤ N, 2 ≤ k ≤ K}.

• If f(wi′,j,k′) > 0 is selected for some traffic classk′ of input Ii′, it sendsIi′ a grant vector with

the k′-th entry equal tof(wi′,j,k′) and other entries equal to ‘0’, and other inputs zero grant

vectors (all entries of the vector are set as ‘0’).

Step 3: Accept. For each inputIi that receives at least one non-zero grant vector, it selects the output

with max{f(wi,j,k) | f(wi,j,k) > 0, 1 ≤ j ≤ N} starting fromk = 1 to K. The accepted output is

notified of the acceptance.

As described in the grant step, if the reserved bandwidth is available, the DDS algorithm allocates the

reserved bandwidth to EF and AF traffic by serving the request with the highest weight value of the highest

priority class; otherwise, it allocates the excess bandwidth to AF and BE traffic fairly by serving the request

with the highest weight value among AF classes and BE class. Additionally, the DDS algorithm is starvation-

free since the weight is generated based on the waiting time of the HOL cell and the excess bandwidth is

shared by AF and BE traffic fairly.

Note that in grant and accept steps, there might be ties, i.e. requests with equal weights. Ties may exist

among different traffic classes, or among different inputs/outputs. To ensure fairness, we break ties by

making selections desynchornizedly. We set the selection starting position of each output or input in the

static round-robin way. For example, at cell slott, Oj starts its selection of inputs from(j + t) mod N and

its selection of classes from(t mod (K − 1)) + 1, andIi starts its selection of outputs from(i + t) mod N .

Compared with breaking ties randomly [20], static round-robin is much easier to implement.

Figure 3 shows an example of the DDS algorithm for a4×4 switch. In the current cell slot, the bandwidth

utilization vectorSj for each outputOj is given in the second row. In the request step, each inputIi sends
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(1, 3, 0, 1, 0, 7)(0, 3, 0, 1, 3, 7)(1, 0, 3, 2, 0, 4)(0, 1, 0, 2, 3, 2)I4

(3, 1, 2, 0, 0, 2)(0, 1, 1, 2, 0, 4)(2, 1, 0, 3, 2, 0)(1, 0, 1, 0, 2, 3)I3

(0, 2, 0, 1, 0, 4)(0, 2, 1, 3, 0, 5)(3, 3, 1, 0, 0, 6)(3, 2, 1, 0, 0, 4)I2

(2, 0, 3, 1, 0, 1)(0, 0, 2, 1, 2, 0)(0, 2, 0, 1, 2, 3)(2, 3, 0, 1, 2, 0)I1

O4O3O2O1

(1, 3, 0, 1, 0, 7)(0, 3, 0, 1, 3, 7)(1, 0, 3, 2, 0, 4)(0, 1, 0, 2, 3, 2)I4

(3, 1, 2, 0, 0, 2)(0, 1, 1, 2, 0, 4)(2, 1, 0, 3, 2, 0)(1, 0, 1, 0, 2, 3)I3

(0, 2, 0, 1, 0, 4)(0, 2, 1, 3, 0, 5)(3, 3, 1, 0, 0, 6)(3, 2, 1, 0, 0, 4)I2

(2, 0, 3, 1, 0, 1)(0, 0, 2, 1, 2, 0)(0, 2, 0, 1, 2, 3)(2, 3, 0, 1, 2, 0)I1

(1, 1, 1, 1, 1)Sj

O4O3O2O1

(0, 0, 0, 0, 0, 7)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 2, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(3, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(3, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 7)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 2, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(3, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(3, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0)

(1, 1, 1, 1, 1) (1, 0, 1, 0, 1) (0, 0, 0, 0, 1)

Granted request

Accepted grant

Fig. 3. An example of the DDS algorithm.

a request vector to each outputOj as shown in the first vector of each cell. In the grant step,O1 grants

the EF request fromI2 since the reserved bandwidth for EF class is still available andI2 has the largest EF

request among all inputs. For the same reason,O2 grants the EF request fromI2. O3 grants the EF request

from I1 since there is no EF request toO3, the reserved bandwidth for AF1 class is used up, andI1 has the

largest AF2 request among all inputs.O4 grants the BE request fromI4 since the reserved bandwidths for

all non-BE classes are used up and the BE request fromI4 is the largest among all non-EF requests from all

inputs. The grant received at each input is shown as the second vector in each cell. In the accept step,I1

accepts the grant fromO3. Having two grants with the same value,I2 accepts one according to tie-breaking

scheme, for instance, the grant fromO2. I4 accepts the grant fromO4. In the first iteration, three pairs of

inputs and outputs are matched. More iterations can be conducted to enlarge the number of matched inputs

and outputs.

The core of the DDS algorithm is a maximal weight matching algorithm. The number of iterations needed

to converge is at mostN . Through simulations, we find that on averagelog N iterations are adequate to

achieve satisfying performance.

B. Hardware Implementation Scheme of DDS

To implement the DDS algorithm, one can use the scheduler architecture shown in Figure 4 (a), in which

each input/output is associated with an arbitration component. As shown in Figure 4 (b) and (c), each

arbitration component can be constructed byK copiesN -input comparator-trees [20], each being used to
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Fig. 4. (a) Block diagram of a DDS scheduler. (b) The grant arbitration component for outputOj . (c) The accept arbitration component for

input Ii.

find the maximum weight value for a classk, 1 ≤ k ≤ K. One more comparator-tree is needed for each grant

arbitration component to choose the maximum weight value of all classes. Each grant or accept arbitration

component hasO(log N log b)-gate delay, whereb = max{bk | 1 ≤ k ≤ K}. Such an implementation of

the DDS algorithm hasO(log2 N log b)-gate delay. Each arbitration component consumesO(NKb) gates

since each comparator tree is composed ofO(Kb) gates. The whole DDS scheduler consumesO(N2Kb)

gates.

V. THE HDS ALGORITHM

As we can see from the previous section, the construction of the DDS scheduler is complex. In order

to reduce the implementation complexity of the scheduler, we extend the idea of hierarchical scheduling

[15] and propose the hierarchical DiffServ scheduling algorithm. The HDS algorithm separates the tasks of

providing differentiated services and maximizing switch throughput by employing two levels of schedulers.
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One level is the central scheduler which is designed to maximize the switch throughput by computing a

maximal size matching (MSM) between input ports and output ports. The other level is formed by input port

schedulers which provide differentiated services by serving cells belonging to different classes dynamically.

In light of the idea of exhaustive matching [17], the central scheduler employs a three-phase exhaustive MSM

algorithm. At the granted input port, the service policy changes according to the bandwidth utilization at

the destined output port such that minimum bandwidth guarantees for EF and AF classes and fair bandwidth

allocation for BE class are provided.

In the HDS algorithm, at the start of each cell slot, each input portIi only needs to send a2N -bit vector

Pi to the central scheduler, wherePi,j = 2 if Ii has more than one EF cells in VOQ groupQi,j, Pi,j = 1 if Ii

has at least one cell in VOQ groupQi,j, andPi,j = 0 otherwise.

A. The HDS Algorithm

The HDS algorithm works in two stages.

Stage I: The central scheduler finds a maximal size matching in a three-phase exhaustive scheme itera-

tively. We assume that each input portIi has an accept pointerai indicating the accept starting position, and

each output portOj has a grant pointergj indicating the grant starting position. Each iteration of stage I

consists of the following three steps.

Step 1:Request.EachIi sends a request to everyOj for which it has a queued cell.

Step 2:Grant. If an unmatchedOj receives any request, it selects one request to grant starting from the

input port thatgj points to in a round-robin manner. Forthe first iteration, if Pi,j = 2 for someIi,

gj is updated toi, otherwise,gj is updated to one beyond the granted input port.

Step 3: Accept. If an unmatchedIi receives any grant, it selects one grant to accept starting from the

output port thatai points to in a round-robin manner.ai is updated to the accepted output port.

After Stage I finishes, the central scheduler will send to each input portIi anN -bit grant vectorGi, and

Sj if there existsGi,j = 1 for somej.
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Stage II: For each inputIi that receives a non-zero grant vector (assuming thatGi,j = 1), if

∑K−1
k=1 Sj,kf(wi,j,k) 6= 0, then it will selectQi,j,k such thatSj,k = 1 starting fromk = 1 to K − 1; otherwise,

it will selectQi,j,k with max{f(wi,j,k) | f(wi,j,k) > 0, 2 ≤ k ≤ K}.

Figure 5 illustrates an example of the exhaustive scheduling algorithm used at stage I for a4 × 4 switch.

At the beginning of the cell slot, grant pointers are set asg1 = 1, g2 = 3, g3 = 3, andg4 = 2, and accept

pointers are set asa1 = 2, a2 = 4, a3 = 3, anda4 = 1. Given the request matrixP , in the request step,

each input portIi sends a request to each outputOj with Pi,j > 0 for 1 ≤ i, j ≤ 4 as shown in Fig. 5 (a).

As shown in Fig. 5 (b), in the grant step, each output grants one request starting from its grant pointer and

updates its grant pointer accordingly. Notice thatO3 grants the request fromI3 and letg3 stay atI3 since

P3,3 = 2. In the accept step, each input port accepts one grant starting from its accept pointer and updates

its accept pointer to the accepted output port as shown in Fig. 5 (c). The generated grant matrixG is shown

in the figure. Using such a pointer updating scheme, in the next cell slot, request from VOQ groupQ3,3 will

continue to be favored, thereby serving EF traffic with the highest priority.
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Fig. 5. An example of the exhaustive scheduling algorithm used at the central scheduler.

Similar to the DDS algorithm, the HDS algorithm also finds a maximal weight matching. However,

different from the DDS algorithm, the HDS algorithm distributes the selection of the highest weight request

to each input port, hence simplifies the operation at the central scheduler. In each cell slot, the central

scheduler only needs to find a maximal size matching. As one can understand, the tradeoff of the two-level

scheduling is that the maximal weight matching found by the HDS algorithm may not be as good as the one
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found by the DDS algorithm in terms of the total weight.

B. Hardware Implementation Scheme of HDS

To implement the central scheduler, one can use the scheduler architecture shown in Figure 6 (a), in

which each input/output is associated with an arbiter, which is responsible for selecting one out ofN re-

quests. Each arbiter can be implemented by the parallel round-robin arbiter (PRRA) proposed in [26], which

hasO(log N)-gate delay and consumesO(N) gates. We find through simulations that on averagelog N

iterations are adequate to achieve satisfying performance. Hence, the first stage of the HDS algorithm can

be implemented inO(log2 N)-gate delay andO(N2) gates.
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Fig. 6. (a) Block diagram of the central scheduler. (b) Block diagram of a port scheduler.

As shown in Figure 6 (b), each port scheduler majorly consists ofK N -input multiplexers, oneK-input

multiplexer, and oneK-input comparator-tree, which is responsible for selecting the maximum weight value

among all traffic classes of the same VOQ group. Each port scheduler hasO(log N +log K log b)-gate delay,
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whereb = max{bk | 1 ≤ k ≤ K}, and consumesO(NK + Kb) gates.

The total delay of such an implementation of the HDS algorithm isO(log2 N + log K log b)-gate delay,

which is faster than the implementation of the DDS algorithm,O(log2 N log b)-gate delay. The total number

of gates needed for the HDS scheduler isO(N2K + NKb), which is also smaller than that of the DDS

scheduler,O(N2Kb) gates.

In addition, the amount of information to be transmitted between each input port and the central scheduler

in the HDS algorithm is much less than in the DDS algorithm. In each cell slot, in the HDS algorithm, each

input port only needs to send2N bits to the central scheduler and the central scheduler only needs to send

N + K bits back to each input port, while in the DDS algorithm, each input port needs to sendNKb bits

to the scheduler and the scheduler needs to send backNK bits to each input port. Table I summaries the

difference of implementation complexity between HDS and DDS.

Algorithm Time Area Bits sent from Bits sent back

(gate delay) (number of gates) each input to each input

HDS O(log2 N + log K log b) O(N2K + NKb) 2N N + K

DDS O(log2 N log b) O(N2Kb) NKb NK

TABLE I

COMPARISON OF THE IMPLEMENTATION COMPLEXITY OFHDS AND DDS.

VI. PERFORMANCEEVALUATION

We evaluate the performance of the DDS and HDS algorithms in two aspects: fairness and efficiency,

where fairness is measured by the received bandwidth and efficiency is measured by the average cell delay

and delay jitter. The cell delay is the queuing delay that a cell encounters in the switch. For EF traffic, we

also consider its delay jitter performance, which is defined as the difference between the cell delays of two

consecutive cells. To validate our evaluation, we compare the performance of the DDS and HDS algorithms

with that of the PQWRR algorithm for OQ switches.
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A cell-based simulator is developed and simulations have been conducted assuming that all queue sizes

are infinite. In our simulations, we consider bursty traffic arrivals using 2-state modulated Markov-chain

sources [21]. Each source alternately generates a burst of full cells (all with the same destination) followed

by an idle period of empty cells. The number of cells in each burst or idle period is geometrically distributed.

Let E(B) andE(D) be the average burst length and the average idle length in terms of the number of cells

respectively. Then, we haveE(D) = E(B)(1− ρ)/ρ, whereρ is the load of each input source. We assume

that the destination of each burst is uniformly distributed.

In all the simulations, we assume that the average cell arrival rates of EF class and AF classes to each

output link are18%, 24%, 20%, 16%, and12% respectively by default. To ensure guaranteed service to

EF traffic, we set its PIR a little more than its arrival rate [11], e.g.Rj,1 = 18% × 1.1 = 19.8%. The

CIRs for AF1 through AF4 to each output port are24%, 20%, 16%, and12% respectively. In the following

simulations, we assume the frame size is 1000 andbk = 4 for all 1 ≤ k ≤ K.
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Fig. 7. Received bandwidth using PQWRR.
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A. Bandwidth Allocation

First, we evaluate the effectiveness of the DDS and HDS algorithms supporting dynamic bandwidth al-

location when a link is overloaded. We assume a4 × 4 switch, the average burst lengthE(B) = 32, and

the number of iterations allowed for DDS and the Stage I of HDS is 4. We assume that output link 1 is the
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Fig. 9. Received bandwidth using HDS.
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Fig. 10. Delay performance of EF traffic.

overloaded link and we vary the load to each VOQ group destined for output link 1 from 0.1 to 1.0.

Figures 7 to 9 show the received bandwidth of each traffic class for PQWRR, DDS, and HDS respectively.

For a load below0.25, the received bandwidth of each traffic class is able to keep up with its arrival rate

for three schemes. However, for a load beyond0.25, the received bandwidth of EF traffic by PQWRR

still follows the arrival rate without regarding to the limitation of its PIR. For a load beyond0.30, due to the

influence of damaging EF traffic, the received bandwidth of AF traffic by PQWRR is degrading dramatically,

and BE traffic cannot get any service at all.

On the other hand, DDS and HDS guarantee but limit the received bandwidth of EF traffic to its PIR,

19.8%, assure the CIR for each AF traffic, and avoid the starvation of BE traffic when the load is greater

than0.25. For example, when the load is at0.40, the bandwidth received by EF, AF1, AF2, AF3, AF4, and

BE traffic for DDS is19.8%, 25.70%, 21.37%, 16.60%, 12.92%, and3.6% respectively, while for HDS is

19.8%, 25.45%, 21.76%, 17.10%, 12.89%, and3.0% respectively. Such bandwidth distributions conform to

the design goal of DDS and HDS, which is to provide minimum bandwidth guarantees for non-BE classes

and fair bandwidth allocation for BE class.
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B. Delay Performance

Next, we examine the delay performance of DDS and HDS using simulations of a16 × 16 switch under

bursty arrivals assumingE(B) = 32 and the destination of each burst uniformly distributed. The number of

iterations allowed for DDS and HDS is set as 4. Figure 10 shows the average cell delay vs. load of EF traffic

for DDS, HDS, and PQWRR. The average cell delay of EF traffic using DDS is very close to that using

PQWRR. The average cell delay of EF traffic using HDS is not as good as that using DDS and PQWRR.

Figure 11 shows the jitter distribution of EF traffic at load0.90 for DDS, HDS, and PQWRR. For DDS and

HDS, over90% EF traffic has jitter less than 1 cell slot, which is comparable to PQWRR.
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Fig. 11. EF jitter distribution.
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Fig. 12. Delay performance of AF1 and AF2 traffic.

Figure 12 shows the average cell delay vs. load of AF1 and AF2 traffic for DDS, HDS, and PQWRR.

Figure 13 shows the average cell delay vs. load of AF3 and AF4 traffic for DDS, HDS, and PQWRR. The

average cell delay of each AF class using DDS is close to that using PQWRR for loads below 0.95. For loads

over 0.95, DDS performs even better than PQWRR. The reason is that DDS uses a function of the waiting

time as the weight but PQWRR uses the queue length as the weight. In Figure 13, for loads lower than 0.60,

HDS performs close to PQWRR. With loads going up, the performance of HDS is degrading. Figure 14

shows the average cell delay vs. load of BE traffic for DDS, HDS, and PQWRR. For loads lower than 0.90,

HDS performs better than DDS and PQWRR. In general, DDS outperforms HDS in delay performance. This
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Fig. 13. Delay performance of AF3 and AF4 traffic.
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Fig. 14. Delay performance of BE traffic

is consistent with our intuition that using a centralized scheme DDS tends to find a larger weight maximal

weight matching than HDS.

In the worst case,N iterations are needed for DDS to find a maximal weight matching. Similarly, at most

N iterations are needed for the central scheduler of HDS to find a maximal size matching. However, the

number of iterations allowed in one cell slot is limited in reality. Figures 15 and 16 show the effect of the

number of iterations allowed on the average cell delay of AF1 traffic using DDS and HDS respectively. We

can see that DDS or HDS with 2 iterations achieves significant performance improvement over DDS or HDS

with 1 iteration. The performance of DDS or HDS with 4 iterations is very close to the performance of DDS

or HDS with 16 iterations. That is why we set the number of iterations allowed as 4 for previous simulations

on16× 16 switches.

The purpose of using frame is to smooth bandwidth sharing of AF traffic in a finer way. As we can

understand, the smaller the frame size, the finer bandwidth sharing. However, smaller frame size may

introduce longer cell delay. Figure 17 and Figure 18 show the influence of different frame sizes to the

average cell delay of AF classes for DDS and HDS respectively. It shows that the performance of classes

AF1 and AF2 improves, while the performance of classes AF3 and AF4 degrades as the frame size increasing

from 1000 to 10000. In the previous simulations, we set the frame size at 1000.



20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
1

10
2

10
3

10
4

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (

ce
ll 

sl
ot

s)

1 iteration
2 iterations
4 iterations
16 iterations

Fig. 15. Delay performance of AF1 traffic with different

number of iterations allowed using DDS.
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Fig. 16. Delay performance of AF1 traffic with different

number of iterations allowed using HDS.
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Fig. 17. Delay performance of AF1 traffic vs. different

frame sizes using DDS.
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frame sizes using HDS.

VII. C ONCLUSION

In this paper, we proposed the dynamic DiffServ scheduling (DDS) algorithm and the hierarchical Diff-

Serv scheduling (HDS) algorithm, to support dynamic bandwidth allocation for DiffServ classes on IQ

switches. With bandwidth measurement scheme at output ports, both DDS and HDS provide minimum

bandwidth guarantees for EF and AF traffic with the reserved bandwidth as well as fair bandwidth allocation

for BE traffic with the excess bandwidth. We show that DDS is starvation-free since it generates the weight
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based on the waiting time of the head-of-line cell instead of the queue length. Compared with DDS, the

advantage of HDS is that the implementation complexity and the amount of information needs to be trans-

mitted between each input port and the central scheduler are much reduced by using a hierarchical scheme.

The tradeoff of HDS is its slightly worse delay performance compared with DDS, as shown in the simulation

results. Since IQ switches are more scalable than OQ switches, HDS and DDS are very useful to implement

DiffServ model and other differentiated service models, such as the Olympic service [9].
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