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Recently there is a trend to broaden the usage of lower-power embedded media processor
core to build the future high-end computing machine or the supercomputer. However the
embedded solution also faces the operating system (OS) design challenge which the thread
invoking overhead is higher for fine-grained scientific workload, the message passing
among threads is not managed efficiently enough and the OS does not provide convenient
enough service for parallel programming. This paper presents a scheduler of master-slave
real-time operating system (RTOS) to manage the thread running for the distributed multi/
many-core system without shared memories. The proposed scheduler exploits the data-
driven feature of scientific workloads to reduce the thread invoking overhead. And it also
defines two protocols: (1) one is between the RTOS and application program, which is used
to reduce the burden of parallel programming for the programmer; (2) another one is
between the RTOS and networks-on-chip, which is used to manage the message passing
among threads efficiently. The experimental results show that the proposed scheduler
can manage the thread running with lower overhead and less storage requirement,
thereby, improving the multi/many-core system performance.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

One of the major challenges faced by high-end computing machines or supercomputers, which are widely used in
scientific computing area, is energy and power efficiency [1]. A promising way to improve the energy and power efficiency
is to employ the low-power architecture developed for multi-core media processor in embedded computing [2]. In order to
benefit from the rapidly improving computing power delivered by multi/many-core processors, software development plays
an important role. Particularly, an efficient operating system (OS) is the key to better utilize the computing power provided
by multi/many-core systems.

Our study is focused on the distributed multi/many-core system without shared memory and networks-on-chip (NoC)
provides the on-chip interconnection architecture for such a system. The corresponding OS shall provide service for appli-
cation programs, schedule the execution resources for efficient task/thread running and manage the message passing among
processors with lower overhead on the interconnection network, as shown in Fig. 1. The major challenges [3] faced by
designing such type of OS include: (1) the OS shall provide efficient protocol for the application programs to facilitate parallel
programming and OS task/thread scheduling or invoking; (2) if the dynamic scheduling method is applied in parallel pro-
gramming, the scheduling algorithm of OS shall guarantee the optimal system throughput at the cost of expensive context
switch; (3) if the tasks/threads are mapped onto the processors statically at compile time, for fine-grained scientific
workload, the OS shall invoke the task/thread for execution with less overhead to reduce the performance degradation which
. All rights reserved.
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Fig. 1. An example OS for distributed multi/many-core systems without shared memory.
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is caused by invoking overhead; (4) the management of message passing among processors is also important for fine-grained
scientific workload, which has great effect on the system performance. The OS shall provide efficient protocol for the inter-
connection network in support of the convenience of message passing among processors.

The target applications are the data-driven [4] fine-grained scientific workload. The dataflow graphs (DFGs) [5] is applied
to guide the parallel programming in our work. The partitioned tasks/threads are encapsulated in objects [6] which are stat-
ically mapped to the processors at compiler time. Thus, the OS needs not to dynamically schedule the objects to processors at
runtime. The OS only invokes the object for execution followed by the atomic execution of the object. As a result, expensive
context switch is eliminated. As such, in this paper the OS design mainly focuses on the following aspects: (1) providing an
efficient protocol for the application program; (2) invoking the object for execution with lower overhead; (3) offering an effi-
cient protocol for the interconnection network (NoC).

In this paper we propose a software scheduler, which is part of the master-slave RTOS, to efficiently manage the scientific
workload running in multi/many-core systems. The master-slave RTOS is an extension version of our previous RTOS – Iota
[7], as shown in Fig. 2. The RTOS includes the original Iota, a main scheduler and directors. The first two components are
situated on the control processor, which are in charge of the synergistic work of multi/many cores. On each of the cores there
is a director, also known as proxy for the scheduler, which is in charge of the management of the object execution in that
core. During runtime all the directors work together to run the objects according to the arrangement of scheduler.

As we know, one trouble for multi/many-core system is the parallel programming – until now there has no effective way
to completely solve this problem [8]. The proposed scheduler of RTOS defines an efficient protocol for the application pro-
gram to release the burden of programmer, which the programmer only needs to provide the encapsulated objects and the
data flow relation among them, and do not need to care their details of execution, such as data hazard problem in commu-
nication and synchronization problem. Instead, the proposed scheduler manages these operations. The data flow principle
[9] is that any thread/object can fire (performing its computation) when (1) the input data on incoming buffer are available
and (2) its output data buffer is also available. Thus after the scheduler on control processor dispatched the objects to
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Fig. 2. A scheduler of RTOS situated in multi/many-core system.
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processors, the director on each core checks whether the input data of object are ready or not, invokes the ready object for
execution and finishes the synchronization for the validity of output data buffer. The above processes are all based on
message passing mechanism thus the control signal subnet of NoC, which specializes in transmitting the message (referring
to control signal), and its corresponding functions in director are applied to accelerate the message passing among
processors. The object is categorized according to the relation of one object to the other objects, which one object may have
inter-processor and/or intra-processor predecessors/successors. As a result the object invoking flows are also classified
according to object type in scheduler design. The above two methods efficiently reduce the object invoking overhead. The
protocol between RTOS and NoC defines how RTOS accesses the network and the corresponding hardware constructs in
NoC. The layered network and the corresponding functions in RTOS manage the message passing among objects efficiently.
Furthermore, the scheduler of RTOS is tailored for multi/many-core system, which is with limited code size and small
execution overhead to help improving system efficiency. Hence, the main contributions of this work include:

(1) The scheduler of RTOS defines an efficient protocol for the application program to amortize the difficulties in parallel
programming.

(2) By message passing acceleration and object invoking flow categorization, the scheduler invokes the objects for execu-
tion with lower overhead than ever before.

(3) The efficient protocol between RTOS and NoC is defined in the scheduler design which manages the message passing
among objects efficiently.

The rest of the paper is organized as follows: Section 2 presents an overview of the related work. Section 3 exposes the
details of the proposed scheduler of RTOS Iota. Section 4 shows the evaluation methodology, the experimental environment
and the analysis of the scientific kernels. Section 5 gives the experimental results and analysis. Finally the conclusions are
made and future work is presented.
2. Related work

In the literature, a number of previous work for OS of multi/many-core system have been done, which address the OS
design challenges in different aspects. In [10], the hardware scheduler Carbon is suggested to accelerate the task migration
among processors for the fine-grained application programs in multi-core chip system. The hardware task management unit
is proposed in [11] to find the ready threads for the following task/thread scheduling while the current thread is running.
They both use hardware scheduler to reduce the task/thread scheduling overhead. However, the hardware scheduler lacks
flexibility and its hardware cost will scale up with the number of the threads in the system. As for fine-grained scientific
workload, numerous parallel threads will result in large hardware cost. In [12], the static scheduling is proposed for the syn-
chronous data flow programs which eliminates the runtime scheduling overhead by scheduling parallel tasks/threads stat-
ically at compiler time. However, their method ignores the inter-processor communication overhead and the thread
invoking overhead, both of which have great impact on system performance of fine-grained scientific workload. In our work,
the parallel threads are encapsulated in objects and mapped to processors statically. The software scheduler is used to invoke
the objects at runtime. This approach is more flexible and helps to reduce the thread invoking and communication
overheads.

As for the protocol between OS and application program, in [13], the specification of sharing requirements for OS data,
which is specified by application program, is suggested to improve the runtime system efficiency. In [14], the related thread
id (RTID), which is provided by application program, is proposed to identify a collection of software threads to the scheduler
in order to improve the runtime system performance. In this paper, the DFG is applied to partition an application program
into many parallel threads which are statically scheduled to processors. The protocol is extended by providing the thread
allocation information, their connection information, their priorities and data transfer information.

Some previous researches are focused on the communication protocols among processors. In [15] the NTU ICPC protocol,
which cooperates with the hardware buffer, is proposed to reduce the data communication overhead among processors.
However, for fine-grained scientific workload, data communication is more complicated. The communication protocols shall
be modified to meet the requirement. In our previous work, the direct memory access (DMA) based protocol is suggested in
OS design for data transmission among processors [6], which is also insufficient for the scientific workload. Other researches
[16–18] are mainly concerned about the runtime OS scheduling algorithms which assure the maximum system throughput
with expensive system cost.
3. Scheduler of RTOS Iota

3.1. Application model and execution model

Before describing the proposed scheduler, the application model and execution model are firstly introduced. The tasks in
scientific workload will be executed once or iteratively according to threshold and each task will consume and produce cer-
tain amount of data. The tasks of a data-driven scientific workload can be modeled as a data flow graph.
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Definition 1. A data flow graph (DFG) [5] is a directed graph DFG(V, E, D), where each node ni2V represents a task and a
directed edge ek = (ninj)2E represents the communication between nodes ni and nj. Each edge e2E is associated with a
nonnegative integer weight D(e), representing a delay count between the iterations.

The data produced and consumed by node n in DFG can be specified a priori and DFG is an efficient representation of
iterative computations like scientific workload. All tasks are executed in a self-timed manner [9] as follows: a task can be
invoked if (1) it receives the data from all its predecessors and (2) its output data buffers are valid. Thus there are two types
of buffer associated with each task: the input data buffers and the output data buffers: (1) the input data buffers are
dedicated to receive data from its predecessors; (2) the task’s produced data will be send to the output data buffers for the
successors. In this paper, we assume that these buffers only exist in local memories of processors and the NoC just manages
the data transmissions among them. Hence the synchronization for the buffers just happens among processors and the
output data buffers of one task are just the input data buffers of its successors.

A task that needs to communicate with others is only allowed either at the beginning (i.e. read input data) or at the end
(send produced data) of execution in one iteration. Thus the tasks are executed atomically and in this paper we define the
atomic task as object.

By removing all edges of nonzero delays (D(e) > 0) from the graph, the DFG is converted to the task graph which extracts
the iterative kernel from the application program [5]. Then the task scheduling algorithm can be applied to map the tasks to
a finite set P of processors. In this paper, we assume that all the tasks have already been mapped to processors at compile
time. We define A as the mapping of tasks V to processors P. Based on mapping A, we can get the execution graph.
Definition 2. An execution graph (EG) [19] is a directed graph EG(M, E), where each node mi2M represents a mapped object
associated with a message passing operation, and a directed edge ek = (mi,mj)2 E represents the communication edge (solid
line) between processors or program edge between nodes (dashed line) that are within one processor, as shown in Fig 3.
For object mi,

– w(mi) gives the worst execution time of object mi

– f(mi) gives the invoking overhead of object mi

Each communication edge is associated with a communication delay c(ek) while the communication delay of program
edge is zero for the memory sharing among intra-processor objects.
Definition 3. On the execution graph, the critical path CP is the longest path which determines the program’s overall runtime
of one iteration. It is the sum of communication delays of communication edge, the worst execution time and invoking over-
heads of object on the CP. The CP can be identified by the following two observations: (1) it cannot contain program edges
leading to receive node that incurs a blocking wait time; (2) it cannot contain communication edges which lead to receive
node that incurs a blocking wait time. Fig. 3 shows the critical path of the execution graph.
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where the ml represents the objects on the CP, �k indicates the communications among objects on the CP and the constant N
stands for the number of iterations. Eq. (1) shows that the program’s overall runtime is determined by the three costs on the
critical path. Thus the objective of scheduler design is to minimize t to obtain higher system performance.

As mentioned before, a task will be invoked if its input data and output data buffers are both available. The overhead of
invoking a task mainly includes two parts (1) the overhead of checking the readiness of input data from its predecessors; (2)
the overhead of synchronizing with its successors to confirm the availability of output data buffers. The predecessor/succes-
sor of one task may be mapped to the same or different processor that the task is mapped to. Hence, the process of checking
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the readiness of input data relies on the message sent from the processor that the task’s predecessor is mapped to. So does
the synchronization process with the processor that the successor is mapped. Thus the invoking overhead of one task is
mainly decided by the efficiency of message passing and its corresponding invoking flow.

Another important feature in data-driven scientific workload is that the data transmissions between the processors are
complicated. There are four types of data transmission: block data transmission, broadcasting transmission, word transmis-
sion and gathering transmission. The communication delay is mainly decided by the efficiency of managing the four types of
data transmission.

In order to reduce the invoking overhead, realize efficient data transmission and amortize the difficulties in parallel pro-
gramming, we propose to use a software scheduler which design is focused on the following three aspects:

– To reduce the invoking overhead, the categorized task invoking flow and efficient message passing (referring to the con-
trol signal, such as semaphore) mechanism are used.

– To realize efficient data transmission, the protocol between RTOS and NoC defines three subnets in NoC physical imple-
mentation and the corresponding functions in scheduler design.

– To amortize the difficulties in parallel programming, the protocol definition between application program and RTOS
requires that the programmer only needs to supply the encapsulated objects and the data flow relation among them.

These will be discussed as below.

3.2. Protocol between application program and RTOS Iota

The protocol between the application program and RTOS specifies the parallel compiled representation of objects and
their data flow relations, which can be mounted in the scheduler of RTOS and used by scheduler during the running of object.
The definition of App-RTOS protocol (shown in Fig. 4) includes the following eight parts, which are listed in Table 1.

The protocol between application program and RTOS releases the burden of parallel programming so that the program-
mers can pay all their attentions on the parallel exploration of application programs and do not need to care the details of
data hazard and synchronization problem in the execution phase.

3.3. Construction of scheduler and director

3.3.1. Construction of scheduler
As a functional part of RTOS Iota for the multi/many-core system, the scheduler with its proxy-director manages the syn-

ergistic working of tasks on different processors, as shown in Fig. 4. The scheduler handles the system initialization while the
director manages the object execution at runtime. The scheduler is situated on the control processor core and the main struc-
ture is as follows:

(1) There is an interface between the application program and RTOS. The interface receives the objects and the connec-
tions between objects from the parallel compiler and fills them to the scheduler table. The interface also judges the
type of the object based on the connection information and fills the type information to the scheduler table. As
described in Section3.1, the processes of checking the input data readiness and synchronization shall depend on
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Table 1
Protocol between application program and RTOS Iota.

Element Description

Object representation Clarifying the object representation
Allocated processor Indicating the allocated processor for the object
Successor ID Representing the object’s successors
Successor number Indicating the number of successors
Maskin maskout Clearing and setting the control signal (semaphore)
Ready_inter Ready condition for inter-processor input data
Priority level The invoking priority for object
Data transmission parameter Clarifying the type and length of data transformation among inter-processor objects
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the relation of one object to the other objects. This feature is exploited using the method of object categorization. Dif-
ferent invoking flows are suggested for the objects belonging to different categories, thereby, reducing the invoking
overhead. Ten types of objects are defined and shown in Fig. 5. Table 2 shows the corresponding operations in invoking
flow. Here the semaphore is applied as the control signal for synchronization between the objects.

(2) There is a scheduler table which contains the elements defined in App-RTOS protocol and the type information of
object.

(3) There is an object dispatcher which dispatches the objects to the mapped processors at initialization stage based on
the mapping information.

(4) As the crucial part of the scheduler, a director is situated on each processor including the control processor. A director
is also known as a proxy of the scheduler. The director keeps a copy of the corresponding objects which shall be exe-
cuted in that processor. The copy of connections for these objects either inner or outer of the processor shall be kept in
the director as well. According to the copy the director manages the execution of the object on its situated processor.

3.3.2. Mechanism of message passing acceleration
For objects mapped within a processor, their communication need not use NoC since they share the memory of the pro-

cessor. The semaphore is used to indicate a virtual transfer of data in which the output data of an object are transferred to the
input buffers of its successors. The shared semaphore list is used to accelerate the intra-processor message passing. Fig. 6
shows an example of 32-bit semaphore list supporting the communication of five intra-processor objects. Each bit represents
one input buffer for the corresponding object.

The message passing among the inter-processor objects is managed by the object scoreboard in the control signal subnet
of NoC (introduced in Section 3.4). The structure of the object scoreboard is shown in Fig. 7. The object scoreboard records
the readiness of input data for the inter-processor objects. As shown in Fig. 7, each core has its entry in the board which con-
sists of the response part (16-bit width, in gray color in Fig. 7) and the setting parts (each with 2-bit width, in white color in
Fig. 7). The object can write the corresponding bits in setting parts associated with the cores their successors are mapped to.
Also the object can write the corresponding bits in its core’s response part to inform its predecessor that the input data has
been processed. Each core can read all the entries in the board so that the message passing among inter-processor objects is
realized. As the object scoreboard records the dynamic status of message passing among cores, it can also be viewed as part
of the scheduler. It is clear that by using the object scoreboard, the overhead of realizing the complicated protocol in normal
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Table 2
Functions of the different invoking flows.

Type Checking input data Synchronization Data communication

TO None Modifying shared semaphore Output inner, no data transfer via NoC
T1 Checking shared semaphore None None
T2 None Passing message among cores Output via NoC to another core
T3 Checking passed message Modifying shared semaphore Output inner, no data transfer via NoC
T4 Checking shared semaphore

Checking passed message
Modifying shared semaphore Output inner, no data transfer via NoC

T5 Checking passed message None None
T6 Checking passed message Passing message among cores Output via NoC to another core
T7 Checking passed message Modifying shared semaphore

Passing message among cores
One output inner, no data transfer via NoC
One output via NoC to another core

T8 Checking passed semaphore
checking passed message

Passing message among cores Output via NoC to another core

T9 Checking shared semaphore Modifying shared semaphore One output inner, no data transfer via NoC
Checking passed message Passing message among cores One output via NoC to another core

23 2031 28 27 24 19 16 15 12 3 011 8 7 4
reserved object5 object4 object3 object2 object1

Semaphore list

input4 input2input3 input1
15 14 13 12

reserved reserved

Fig. 6. Semaphore list example.
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data transmission network is eliminated, thus the overhead of message passing (referring to the control signal) among the
inter-processor objects is reduced obviously.

3.3.3. Structure and working flow of director
The director manages the operation of objects allocated in processor at runtime and the directors work together according

to the scheduler table, which keeps the parallel objects executing synergistically. The main structure is as follows:

(1) There is an object pool which keeps part of the copy for the scheduler table. Each entry of the object pool records the
object’s information except the mapping information. The position of an object in the object pool indicates the invok-
ing order of the allocated objects in that processor, which is decided by priority level defined in App-RTOS protocol –
the object with higher priority shall be invoked firstly.

(2) The director manages the object running by using the following eight functions: read_port(), response_set(), validation
_check(), data_send(), message_send_inter(), response_clear(), message_send_intra() and clear_semaphore(). The descrip-
tions of these functions are shown in Table 3.

As described in Section3.1, the invoking flow of an object mainly includes two phases (1) checking the readiness of input
data; (2) synchronizing with the successor, thus the director works as a finite-state machine, which has three states named
object activation, object execution and synchronization check, as shown in Fig. 8.

(1) Object activation phase
In this phase the director checks the readiness of input data for the object which is currently in the head of the object
pool. Different invoking flows are proposed for the different object types as: the object with no predecessors can be
invoked at anytime and objects of other types shall be activated based on the semaphores in the shared semaphore
list and/or the object scoreboard. By calling the function read port(), the director uses the round-robin inspection
method to check the readiness of input data. The object which has inter-processor predecessor shall give its response
signal after finding the readiness of the corresponding input data. The function response_set() is applied by director to
modify the status of object scoreboard.

(2) Object execution phase
If the head object is ready to be invoked for execution, the director invokes the head object followed by the atomic
execution of the object. After the execution of the object, the process turns back to the synchronization check phase
of the director program.

(3) Synchronization check phase
After the invoked object finished its execution, the director shall synchronize with successors to confirm the availabil-
ity of the output data buffer and the object with no successor skips this phase. The function validation_check() is
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Table 3
Descriptions of the function.

Function Description

read_port Checking the readiness of input data
response set Responding to the arrival of inter-processor predecessor’s produced data
validation check Synchronizing with successor to confirm validation of output data buffer
data send Managing the data transmission among the inter-processor objects
message send inter Sending message to validate the input data of inter-processor successor
response clear Validating the output data buffer for the inter-processor predecessor
message send intra Sending message to validate the input data of intra-processor successor
clear semaphore Validating the output data buffer for the intra-processor predecessor
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applied to confirm the validity of output data buffer. If the output data buffer is valid, the function data_send() is called
to manage the data transmission among the inter-processor objects and the object with no inter-processor successor
skips this operation. For synchronization and avoidance of data hazard, the function message_send_inter() and/or mes-
sage_send_intra() set the semaphore for the successors and wait for the response signal of the inter-processor succes-
sor. When the response signal comes, the function response_clear() and/or clear_semaphore() will clear the bits set
before by the function response_set() and message_send_intra().

After all the above operations have been finished, the head pointer of the object pool moves to the next object and the
director returns to the object activation phase. The director working flow for different types of objects are shown in Fig. 9.

3.4. Protocol between RTOS and NoC

The protocol between RTOS and NoC defines the software constructs in the scheduler of RTOS and hardware constructs in
NoC and how they cooperate. As described in Section 3.1, there are four types of data transmission in the NoC of multi/many-
core system. The NoC shall also transfer the control signal (semaphore) among processors. Three subnets are proposed in
NoC and the corresponding functions are suggested in the scheduler design. The three subnets include conventional data
transmission subnet, the word transmission subnet and the control signal subnet.

(1) A direct memory access (DMA) hardware is implemented in the conventional data transmission subnet for fast trans-
fer of block, broadcasting and gathering data among the processor cores. The function data_send() in the director of
RTOS manages the data transmissions in the DMA hardware, with the block size specified by the parameter of data
transfer of the object.

(2) The multi-port register clusters are implemented as the medium for the fast word data transmission in the word
transmission subnet. The function data_send() of director visits this subnet in direct memory-mapped accessing
way to reduce the data transmission overhead. The first two subnets in the NoC and corresponding functions effi-
ciently reduce the communication delay.

(3) Also the multi-port register clusters are implemented as the medium for fast control signal transmission in
control signal subnet. The five functions read_port(), response_set(), validation_check(), message_send_inter() and
response_clear() are applied in the director of RTOS to communicate with the object scoreboard in the control signal
subnet of NoC. These functions visit this subnet in direct memory-mapped accessing way to enable a fast message
transmission between the scheduler and NoC.
Please cite this article in press as: Gu X et al. An efficient scheduler of RTOS for multi/many-core system. Comput Electr Eng (2011),
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4. Evaluation of the scheduler on fine-grained scientific workloads

4.1. Evaluation methodology and platform

As described before, the scheduler design mainly focuses on the following: (1) the categorized invoking flow for object
management and the implementation of efficient message passing mechanism; (2) the definition of protocol between appli-
cation program and RTOS; (3) the definition of protocol between RTOS and NoC. Hence, the experiments will be carried out
as below: (a) the system performance improvement by the reduction of invoking overhead and data communication over-
head will be evaluated and shown in experimental results; (b) the convenience of parallel programming brought by the App-
RTOS protocol definition will be demonstrated in the test algorithm.
Please cite this article in press as: Gu X et al. An efficient scheduler of RTOS for multi/many-core system. Comput Electr Eng (2011),
doi:10.1016/j.compeleceng.2011.09.009
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Five key scientific computing kernels: matrix multiplication – Cannon’s algorithm, the fast Fourier transform (FFT), eigen-
value of matrix – Jacobi algorithm, numerical solution of partial differential equation and LU decomposition algorithm are
applied as the test algorithms. The DFG programming model guides the parallel programming for these application
programs.

The evaluation platform integrates one 32-bit integer RISC core as the control CPU core and eight 32-bit integer DSPs as
the computing acceleration cores. A 3 � 3 mesh topology conventional data subnet and a word transmission subnet are
implemented for the data transmission among cores, and a control signal subnet is implemented for the control signal trans-
mission among cores.

The RTOS Iota with its scheduler and the director of control CPU are allocated on the control RISC and the other directors
are allocated on the DSPs. They work together to manage the object activation, synchronization and synergistic working for
the system. The whole system has been designed at Register-Transfer Level (RTL) in Verilog HDL and the experiment is based
on the RTL simulation.

4.2. Typical workloads in scientific computing

4.2.1. Cannon’s algorithm
The matrix multiplication is used frequently in scientific computing. The Cannon’s algorithm [20] is the most popular

algorithm to solve the matrix multiplication. It separates the original matrix into the sub matrixes and each processor man-
ages the sub matrix multiplication and addition. Then all the sub matrixes result on the processors form the final result. The
64 � 64 matrix multiplication is applied as the test algorithm which is arranged to 4 � 8 sub matrix multiplications and the
sub matrix is of size 16 � 8. Fig. 10 shows the parallel programming process and the critical path for Cannon’s algorithm. As
there is only one iteration in Cannon’s algorithm, the DFG is the same as the task graph and in Fig. 10 only the task graph is
drawn.

(1) The objects ti0 (i = 0 . . . 3) are the predecessors for the inter-processor objects tij (i = 1 . . . 4, j = 1 . . . 8), which transfer
the initial data to successors. They are allocated to the control RISC.

(2) The objects tij (i = 1, 2, 3, j = 1 . . . 8) calculate the intermediate results for sub matrixes and they are the predecessors
for intra-processor objects ti+1j (i = 1, 2, 3, j =1 . . .8). The objects are allocated to DSPs.

(3) The object t4j (j = 1 . . . 8) calculate the final results for the sub matrixes, which are the predecessors for the inter-pro-
cessor object t50. They are allocated to DSPs.

(4) The object t50 builds up the final matrix result and is allocated to the control RISC.

4.2.2. The fast Fourier transform (FFT)
The fast Fourier transform (FFT) is the fast algorithm for DFT. We use the FFT application program from the SPLASH-2

benchmarks suite [21]. In benchmark the Cooley–Turkey algorithm [22] is applied which is written as below:
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In the experiment 4096-point FFT is applied as the test algorithm. The 4096-point FFT on platform is arranged as N1 = N2 = 64
and the Fig. 11 shows its parallel programming process and the critical path.

1. The object t00 is the predecessor for the inter-processor objects t1j (j = 1 . . . 8), which broadcasts the coefficients WN and
WN1 to objects t1j (j = 1 . . . 8). It is allocated to the control RISC.

2. The object t10 is the predecessor for the inter-processor objects t2j (j = 1 . . . 8), which transposes the input data set, con-
sidered as N1 � N2 complex matrix, into a N2 � N1 matrix. It is allocated to the control RISC.

3. The objects t1j (j = 1 . . . 8) calculates the Wn2
N and Wk1

N1
for the intra-processor successor objects t2j (j = 1 . . . 8).

4. The objects t2j (j = 1 . . . 8) perform N2 individual N1-point one dimensional FFTs and multiply the results by Wn2k1
N . They

are predecessors for the inter-processor objects t20 which are allocated to DSPs.
5. The object t20 transposes the resulting N2 � N2 matrix into a N2 � N2 matrix, which is the predecessor for the inter-pro-

cessor objects t3j (j = 1 . . . 8) and is allocated to the control RISC.
6. The objects t3j

(j = 1 . . . 8) perform N1 individual N2-point one dimensional FFTs on the resulting N1 � N2 matrix. They
are the predecessors for the inter-processor successor t30 and are allocated to DSPs.

7. The object t30 transposes the resulting N2 � N1 matrix into a N1 � N2 matrix and is allocated to the control RISC.

We use the FFT algorithm as an example to demonstrate the convenience of parallel programming brought by the pro-
tocol definition between application program and RTOS. The object ti1 (i = 1 . . . 3) and t30 are used as the samples which
are shown in Table 4. The programmer only needs to provide the representation of object, the data relationship among
threads and the attribute information of object, and does not need to care the data hazard problem and synchronization
among the parallelism objects.

4.2.3. Eigenvalue of matrix
The eigenvalue k of matrix A is defined as Au = ku, where A is an n � n matrix, k is a real number and u is the n dimen-

sional characteristic vector of matrix A. The Jacobi matrix algorithm [23] is applied to solve this problem. In experiment a
64 � 64 matrix is applied as the test algorithm. The Fig. 12 shows its parallel programming process and the critical path
of one iteration.

1. The object t00 assigns the matrix coefficients of A to the DSPs, which is the predecessor of objects t1j (j = 1 . . . 8). It is allo-
cated to control RISC.

2. The object t1j (j = 1 . . . 8) divide the assigned coefficients into upper diagonal and lower diagonal classes, compute the big-
gest absolute value of matrix coefficients of the class that the assigned coefficients belong to and send the biggest abso-
lute value and its row and column indexes to t20. They are the predecessors of object t20 which are allocated to DSPs.

3. The thread t20 finds the maximum value from the collected biggest values, its row index g and column index h, and which
class it belongs to as well. Then it decides if the whole coefficient except that of diagonal is not less than a threshold. If the
result is true the iteration will be terminated and object t60 will get the final results. Oppositely the iteration will go to
objects t3j. The object t20 is the predecessor of objects t60 and t3j, which is allocated to control RISC.
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Table 4
Information list provided by the application program.

Object t11 t21 t31 t30
Allocated proc. DSP1 DSP1 DSP1 RISC
Successor t21 t20 t30 none
Successor no. 1 1 1 0
mask_out 0x00000010 0x00000000 0x00000000 0x00000000
mask_in 0xfffffff0 0xffffff0f 0xfffff0ff 0xffff0fff
ready_inter 0x00000001 0x00000002 0x00000004 0x88888888
Priority level 1 2 3 4
Data trans. para. None 512 words 512 words None
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4. The objects t3j (j = 1 . . . 8) calculate the tangent of rotating angle h of hyper plane (g, h), cos h and sin h, to form akin trans-
form matrix Pgh and perform matrix multiplication AðkÞ ¼ Pðk�1Þ

gh Aðk�1ÞPðk�1Þ�1
gh . They are the predecessors of objects t5j,

which are allocated to DSPs.
5. The object t40 broadcasts the matrix coefficients of row g and column h to the DSPs, which is the predecessor of objects t5j

(j = 1 . . . 8). It is allocated to control RISC.
6. The objects t5j (j = 1 . . . 8) performs multiplication of the former result ðPð1Þgh Pð2Þgh Pðk�2Þ

gh Þ by Pðk�1Þ
gh , which are the predecessors

of t1j and allocated to DSPs. Because there is a loop between objects t5j and t1j, the initial status of t1j’s input data buffer for
t5j shall be set valid to enable the running of objects t1j.

7. The object t60 get the final results which the diagonal elements are the eigenvalues of the matrix and the columns are the
corresponding eigenvectors. It is allocated to control RISC.

4.2.4. Numerical solution of partial differential equation
As an example the two-dimensional Poisson equation is defined as
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where f(x, y) and g(x, y) are the known functions and defined in the interior zone with boundary of X. The Gaussian–Seidal
iteration method [24] is applied to solve this problem. In the experiment, the numeric computation of a specific partial dif-
ferential equation is set on a 32 � 32 grid, which is divided into eight portions of size of 16 � 8 partial grids each assigned to
one DSP. Actually, for the convenience of computation in a DSP the size of partial grid is enlarged to 18 � 10 for involving the
data of border lines of samples from the neighboring partial grids, which leads the necessity of exchange of the border data
from different partial grids after each iteration computing. The Fig. 13 shows its parallel programming process and the crit-
ical path of one iteration.

1. The object t00 distributes the data of boundary condition and the presumed initial data for the partial grids to DSPs. It is
allocated to control RISC which is the predecessor of t1j.

2. The objects t1j (j = 1 . . . 8) perform the calculation of expression (4), which are the predecessors of t20. They are allocated
to DSPs.
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3. The object t20 compare the values from t1j with the last iteration results whether the difference of them is less than a
threshold or not. If the result is true the iteration will be terminated and object t40 will get the final results. Oppositely
the iteration will go to objects t3j. The object t20 is the predecessor of objects t40 and t3j (j = 1 . . . 8) which is allocated to
control RISC.

4. The objects t3j (j = 1 . . . 8) perform exchange of border data with their neighboring objects, which are the predecessors of
t1j and are allocated to DSPs. As there is a loop between objects t3j and t1j, the initial status of t1j’s input data buffer for t3j

shall be set valid to enable the running of objects t1j.
5. The object t40 performs the output of the numeric solution of the partial differential equation, which is the successor of t20

and is allocated to control RISC.

4.2.5. LU decomposition algorithm
A system of n linear algebraic equations in n variables is usually expressed as Ax = B,
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where A is an n � n coefficient matrix containing the aijs, and x and B are n-element vectors storing xis and bis, respectively.
The LU decomposition algorithm [24] is a well known solution to solve the linear algebraic equation which decomposes the
coefficient matrix A into a product of a lower and an upper triangular matrix. The LU application program used in the exper-
iment is from the SPLASH-2 benchmarks suite [21]. The 1024 � 1024 coefficient matrixes are applied in the experiment.
Fig. 14 shows the parallel programming process and the critical path for LU decomposition algorithm.

1. The object t00 is the predecessor for the inter-processor object t11, which arranges the input matrix A by using a 2-D
scatter decomposition. It is allocated to the control RISC.

2. The object t11 is the predecessor for the inter-processor objects t2j (j = 2 . . . 8) and intra-processor object t21, which
processes the diagonal block of the matrix A and broadcasts the result to its successor objects. The objects t33, t55

and t77 also do the same job as t11 does. They are allocated to DSPs.
3. The objects t2j (j = 1 . . . 8) process the blocks which are in the same row and column of the diagonal block and mod-

ify the blocks that are in the lower right corner of the matrix. They are the predecessors for the object t33 and are
allocated on the DSPs. The objects t4j, t6j, t8j (j = 1 . . . 8) also do the same job as t2j do.

4. The objects t01 collects the result data which is allocated to the control RISC.

5. Experimental results and analysis

As described in Section 4.1 the system performance improvements by the reductions of invoking overhead and data com-
munication overhead will be evaluated and shown in experimental results. We compare the proposed scheduler of RTOS Iota
with the former RTOS Iota (RTOS1) which is not optimized for reducing the invoking overhead and the data communication
overhead. Table 5 and Table 6 list the three types of overhead on the critical path for the proposed scheduler and RTOS1. The
percentage of the overhead to the whole time consumption, the system performance-speedup (the speedup to the single-
processor) and the efficiency (the ratio of the valid acceleration cores to the eight acceleration cores) are calculated as the
three criterions for the comparison. The results are shown in Fig. 15.

From Fig. 15 we can see that percentages of the invoking overhead in the proposed RTOS are lower which are no more
than 11.51% and the invoking overhead of RTOS1 are larger than that in the proposed RTOS. As a result the RTOS1 has poor
system performance than that of the proposed RTOS. The reductions of invoking overhead and data communication over-
head improve the system efficiency by 0.13–19.62%. Thus the system efficiencies for the five algorithms are higher, which
are not less than 59.00%.
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Table 5
Overheads of the five algorithms for the proposed scheduler of RTOS Iota.

Algorithm Invoking (cycles) Communication (cycles) Computing (cycles) Total (cycles)

Cannon 8421 44359 447614 500394
FFT 3448 16841 271725 292014
Eigenvalue of matrix 5633 6810 36502 48945
Differential equation 4161 1574 42703 48438
LU 7201 1886521 758044524 759938246

Table 6
Overheads of the five algorithms for the RTOS1.

Algorithm Invoking (cycles) Communication (cycles) Computing (cycles) Total (cycles)

Cannon 38337 44329 447614 530280
FFT 18648 17041 271725 307414
Eigenvalue of matrix 15870 11810 36502 64182
Differential equation 13032 6574 42703 62309
LU 78701 1886521 758044524 760009746
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Fig. 14. Parallel programming process and the critical path of LU decomposition algorithm.
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The data of efficiency of the cell processor taken from the literature show that, for 4096-point FFT, cell delivers 54.68%
efficiency [25] while our system obtains 90.25%. And for the 1024 � 1024 LU algorithm, Cell’s efficiency is 64.66% [26] while
our system reaches 92.63%. Cell is a very good accelerator, which has been used in super computer Roadrunner [27], and the
efficiencies in computation are higher than those are reported by [25,26]. We think that due to there is a very well designed
operating system implementing in Roadrunner, which the computing efficiency of Cell is higher than that in [25,26]. On the
other hand, the high computing efficiency of our multi core system just reveals that there is much rooms for the software/
hardware co-design for the parallel programming with the operating system and the connection network between cores,
which needs us to do further works.

The storage requirements of Iota/scheduler on RISC and directors on DSPs are estimated and listed in Table 7. From Table
7 we see that for the asymmetric structure of the RTOS, the storage requirements for Iota and director are small. It is very
important for the limited memory space of the embedded processor cores.
Please cite this article in press as: Gu X et al. An efficient scheduler of RTOS for multi/many-core system. Comput Electr Eng (2011),
doi:10.1016/j.compeleceng.2011.09.009
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Fig. 15. Performance improvement.

Table 7
Storage requirements for Iota and director.

Memory space Iota/scheduler on RISC (KB) Director on DSPs (KB)

Operating system

RTOS 10/3.660 5.380
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6. Conclusions and future work

The suggested scheduler of master-slave RTOS presented in the paper offers an efficient way to manage the object run-
ning for the embedded distributed multi/many-core system without shared memories. It features of the small code size that
the proxy of the scheduler of RTOS – director is only of size 5.380 KB, which is adequate for the limited memory space of
embedded multi/many-core situation. By defining protocol between the application program and RTOS the suggest approach
eases the difficulties of parallel programming, that enables the programmer to concentrate attentions on how to optimiza-
tion his/her application without too much to concern the details on data conflicts or synchronization among the threads in
the program. The experimental results indicate that the suggested scheduler and director and the clarification of protocol
between RTOS and NoC improve the system efficiency by 0.13–19.62%, thereby, lead to higher system efficiency for the five
scientific computing kernels. Our future work will be focused on the optimizations for the software structure of the proposed
scheduler.
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