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Abstract— In real networks, disjoint paths are needed for pro-
viding protection against single link/node failure. When disjoint
paths cannot be found, an alternative solution is to find paths with
the minimum shared links/nodes. In the literature, there is little
work addressing this problem. In this paper, defining vulnera-
bility as the number of times a link/node is shared among differ-
ent paths, we consider the problems of finding k paths with mini-
mum edge/node vulnerability. We study three problems and pro-
pose polynomial algorithms to solve these problems. The work
presented in this paper can be directly applied to a number of
network applications such as reliable unicast/multicast communi-
cations, reliable client-server communications, protection for the
dual-homing architecture, etc.

Index Terms— Networks, graph, algorithm, protection, relia-
bility, survivability, disjoint paths, shortest path, complexity, net-
work flow, minimum cost network flow.

I. INTRODUCTION

A reliable telecommunication network is designed in such a
way that multiple paths exist between every pair of nodes. To
protect the network against single link/node failure, multiple
disjoint paths are needed between a pair of source and desti-
nation nodes. The paths may be node-disjoint or edge-disjoint,
and the network may be directed or undirected. Thus, the prob-
lem of finding disjoint paths have four versions. For a given pair
of nodes, finding k (k > 1) disjoint paths, though desirable,
may not always be possible in practical network applications
for at least two reasons. First, if the network is too sparse, such
paths may not physically exist. Second, if some links are overly
saturated, additional traffic on these links may be prohibited so
that two disjoint paths without using these prohibited links do
not exist.

When k disjoint paths do not exist, alternatively, k paths from
the source to the destination with minimum shared links/nodes
should be found. We adopt the concept of vulnerability intro-
duced in [12] and redefine it as the number of times a link/node
is shared among k paths. k paths with minimum vulnerability
can provide partial protection [18].

Finding k paths with minimum vulnerability is useful for
many applications, including reliable unicast/multicast commu-
nications and client-server communications. Consider a multi-
cast session consisting of a source S and four destination nodes
D1, · · · ,D4. The classical connection for connecting S to its
destinations is a multicast tree, as one shown in Fig. 1 with
edge vulnerability (which will be defined shortly) 4. Suppose a

subnetwork for this multicast session has the structure of edge
vulnerability 2 as shown in Fig. 2. In case of failures of links
A − C and B − E, the number of affected destinations of the
structure of Fig. 2 is smaller than the number of affected desti-
nations of the structure of Fig. 1.
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Fig. 1. Multiple paths for multicasting with tree structure. The paths from s to
{D1, D2, D3, D4} are S−A−C−D1, S−A−C−D2, S−B−E−D3,
S −B −E −D4. (a) Paths when there is no link failure. (b) Paths when there
are 2 link failures, leading to all destinations disconnected.
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Fig. 2. Multiple paths for multicasting. The paths from s to
{D1, D2, D3, D4} are S−A−C−D1, S−B−C−D2, S−A−E−D3,
S −B −E −D4. (a) Paths when there is no link failure. (b) Paths when there
are 2 link failures, resulting 2 destinations disconnected. (c) If reconfiguration
at switches/routers is allowed, all destinations remain connected.

The problem of finding k paths with minimum vulnerability
can also be applied to network protection under the dual hom-
ing architecture. A network consist of core routers and edge
routers. Host machines are connected to edge routers through
access links. In a dual-homing architecture [3], [7], [8], [9],
[12], a host can be connected to two edge routers so that traf-
fic between the source and destination hosts is protected. The
paths between pairs of source and destination hosts with mini-
mum vulnerability are useful for assigning each host a pair of
edge routers to best protect the host.

In this paper, we use the notion of edge vulnerability and
node vulnerability to characterize the degree of edge sharing



and node sharing among different paths. Larger edge/node vul-
nerability implies more edge/node sharing among a set of paths.
A set of paths are edge-disjoint if the edge vulnerability of the
paths is 0, and they are node-disjoint if their node vulnerabil-
ity is 0 (in this case, their edge vulnerability is also 0). We
study three problems of finding k paths with minimum edge or
node vulnerability, namely, 1-to-1, 1-to-k, and single source all
pairs of destinations. We have a dual objective function, namely
minimizing total edge cost subject to minimum edge and node
vulnerability. We show that all the problems considered can
be solved in polynomial time and our algorithms always output
such paths with minimum total cost.

The rest of the paper is organized as follows. Section II re-
views existing work of disjoint paths. Section III presents the
algorithms for solving the minimum edge/node vulnerability k
paths problem between a pair of nodes. Section IV presents
the algorithm for finding the minimum vulnerability paths from
one source to k destinations. Section V presents the algorithm
for finding the minimum vulnerability 2 paths from one source
to all-pairs of destinations. Section VI concludes the paper.

II. RELATED WORK

Assume a network is modeled as a weighted graph G =
(V,E), where V is the set of nodes, E is the set of links con-
necting nodes, and each edge is associated with a nonnegative
cost. In the literature, various problems of finding optimized
disjoint paths between two nodes s, t ∈ G have been investi-
gated.

Ford and Fulkson proposed a polynomial-time algorithm for
finding two paths with minimum total cost (named the MIN-
SUM 2-Path Problem) based on minimum cost network flow
model [2]. Suurballe and Tarjan provided different treatment,
and presented algorithms that are more efficient [10], [11]. Li
et al. proved that all four versions of the problem of find-
ing two disjoint paths such that the cost of the longer path is
minimized (named the Min-Max 2-Path Problem) are strongly
NP-complete [5]. They also considered a generalized Min-Sum
problem (referred as the G-Min-Sum k-Path Problem) assuming
that each edge is associated with k different costs. The objec-
tive of this problem is to find k disjoint paths such that the total
cost of the paths is minimized, where the jth edge-cost is asso-
ciated with the jth path. They showed that all four versions of
the G-Min-Sum k-path problem are strongly NP-complete even
for k = 2 [6].

In [14], the problem of finding two disjoint paths such that
the cost of the shorter path is minimized (named the Min-Min
2-path problem) is discussed. All four versions of the Min-
Min 2-path problem are shown to be strongly NP-complete and
there does not exist approximation ratio unless P = NP . In
[15], [16], a generalized weighted 2-path problem called the
α-MIN-SUM 2-path problem is investigated. The objective of
the problem is to find two disjoint paths P1 and P2 from s to
t such that l(P1) + α · l(P2) is minimized (l(Pi) is defined as
total cost of edges on path Pi). It is shown that several versions
of the problem are NP-complete. In [17], the MinSum-MinMin
2-path problem is considered. The objective of this problem
is to find two disjoint paths P1 and P2 from s to t satisfying:

1) l(P1) + l(P2) is minimum and 2) min{l(P1), l(P2) is min-
imum among all pairs of (P1, P2) satisfying 1). It is proved
that this problem is NP-Complete on directed graphs for both
edge-disjoint and node-disjoint cases, and there does not exist
a constant approximation ratio unless P = NP .

In [4], the problem of finding k edge-disjoint paths of min-
imum total cost between a pair of nodes subject to minimum
node sharing is studied and shown to be polynomial-time solv-
able with the same complexity as the minimum cost network
flow (MCNF) problem. This problem is a special case of the
minimum vulnerability 1-to-1 k-path problem investigated in
this paper.

III. k PATHS WITH MINIMUM EDGE/NODE VULNERABILITY

BETWEEN A PAIR OF NODES

A. k Paths with Minimum Edge Vulnerability

We first consider the problem of finding k paths with min-
imum edge vulnerability, which provides partial protection
against single link failure. In all our discussions, we consider a
directed graph since an undirected graph can be converted to a
directed graph simply by replacing each edge by two directed
edges.

Let G = (V,E) be a directed graph with non-negative cost
l(e) or l(u, v) defined for edge e = (u, v). Further, we assume
that there are no parallel edges between any two nodes in G.
Given a source s and destination t, let P = {P1, P2, · · · , Pk}
be a set of paths in a graph G = (V,E) from s to t. We define

δ(e, Pi) =
{

1, e ∈ Pi

0, e /∈ Pi
, δ(e, P ) =

k∑
i=1

δ(e, Pi).

Then δ(e, P ) represents the number of times that e appears in
P . We define

β(P ) =
∑
e∈P

(δ(e, P ) − 1).

β(P ) is named edge vulnerability of the paths in P . Clearly, if
β(P ) = 0, then all paths in P are edge-disjoint.

We define l(P ) =
∑k

i=1 l(Pi), L =
∑

e∈E l(e), and M =
kL + 1. The objective of the problem of finding k paths
with minimum edge vulnerability is to find a set of k paths
P = {P1, P2, · · · , Pk} from s to t in G with: 1) min β(P );
2) min{l(P )|P satisfying 1)}.

Our first algorithm, named PATHFINDER I, consists of three
major steps, 1) construct a network flow model G′ = (V ′, E′)
from G, 2) apply the minimum cost flow algorithms on G′

to find a flow of value k, 3) obtain k paths from the flow.
We list the pseudo-code of the algorithm as follows, where
l(e′), c(e′), f(e′) represent the cost, capacity and flow value of
an edge e′ ∈ E′, and |f | =

∑
v′∈V ′ f(s, v′) represents the

value of flow f .



Algorithm PATHFINDER I(G, s, t, k):
begin

//Step 1: Construct a flow network G′ = (V ′, E′) from G:
for each e = (u, v) ∈ E do add a new parallel edge e = (u, v).
let E = {(u, v)|(u, v) ∈ E}.
let V ′ = V and E′ = E ∪ E,
for each e ∈ E do assign capacity c(e) = 1,
for each e ∈ E do assign capacity c(e) = k − 1,
for each e ∈ E do assign cost as its cost in G, l(e),
for each e ∈ E do assign cost l(e) = M + l(e).
//Step 2: Compute a flow on G′:
get a minimum cost flow f with |f | = k,
by running an MCNF algorithm on G′.
//Step 3: Obtain k paths P = {P1, P2, · · · , Pk} of G:
for each e′ ∈ E′ do

if f(e′) = 0 then remove e′ from G′.
end-for
for i = 1 to k do

find a shortest path P ′
i from s to t in G′,

obtain Pi by replacing each (u, v) ∈ P ′
i with (u, v).

for each e′ ∈ P ′
i do

f(e′) = f(e′) − 1,
if f(e′) = 0 then

remove e′ from G′.
end-for

end-for
end

In G′, we have |V ′| = |V | and |E′| = 2|E|. The MCNF
algorithm will run properly on G′ though there exist parallel
edges between any pairs of nodes [1]. Obviously, the complex-
ity of this algorithm is the same as the complexity of the MCNF
algorithm it uses. Since M is a much bigger number than k, the
Successive Shortest Path Algorithm [1] is an efficient algorithm
for Step 2, which takes O(k · (|E| + |V | log |V |)) time.

Following we will prove the correctness of above algorithm.
We have following 3 claims:
1) For any network flow f in G′ with flow value |f | = k,

the Step 3 in algorithm PATHFINDER I retrieves k paths
from s to t of G.

2) For any k paths P = {P1, · · · , Pk} from s to t of G, we
can create a flow f in G′ with value |f | = k, by following
steps (called Flow Creation procedure):

• Set f(e′) = 0 for every e′ ∈ E′.
• For i = 1 to k do

– For each edge (u, v) in Pi: if f(u, v) = 0, set
f(u, v) = 1; if f(u, v) = 1, set f(u, v) =
f(u, v) + 1.

3) The above 2 procedures are reversible each other. That
is, the result flow of applying Flow Creation procedure
on paths that are retrieved from flow f by procedure Step
3 is f ; the result paths of applying Step 3 procedure on
flow which is created by procedure Flow Creation from
k paths P are the same k paths P . We call f the corre-
sponding flow of P , and call P the corresponding paths
of f .

We use c(f) =
∑

e′∈E′ l(e′) · f(e′) to denote the total cost
of flow f .

Lemma 1: For a k paths P = {P1, · · · , Pk} of G and its
corresponding network flow f in G′, we have:


c(f) = l(P ) + β(P ) · M
β(P ) = �c(f)/M�
l(P ) = c(f) − β(P ) · M

(1)

Proof: As δ(e, p) − 1 is exactly the flow value on e =
(u, v), we have:

c(f) =
∑
e∈P

l(e) +
∑
e∈P

(δ(e, P ) − 1) · l(e)

=
∑
e∈P

l(e) +
∑
e∈P

(δ(e, P ) − 1) · (M + l(e))

=
∑
e∈P

δ(e, P ) · l(e) +
∑
e∈P

(δ(e, P ) − 1) · M

= l(P ) + β(P ) · M

Since l(P ) =
∑k

i=1 l(Pi) ≤ k · L < M , we have:

β(P ) = �c(f)/M�, l(P ) = c(f) − β(P ) · M.

Theorem 1: For a weighted directed graph G = (V,E) with
source s and destination t, algorithm PATHFINDER I computes
a k-path solution P = {P1, P2, · · · , Pk} such that β(P ) is min-
imized and l(P ) is minimized among all possible sets of k paths
in G with minimum β(P ).

Proof: Suppose for the sake of contradiction the claim
is not true, then there exists a different set of k paths from s
to t, P ′ = {P ′

1, P
′
2, · · · , P ′

k} such that one of the following
conditions holds:

1) β(P ′) < β(P );
2) β(P ′) = β(P ), and l(P ′) < l(P ).
Let f and f ′ be the corresponding flows for P and P ′. From

lemma 1, we have c(f) = (l(P ) + β(P ) · M) and c(f ′) =
(l(P ′) + β(P ′) · M). Hence:

c(f) − c(f ′) = (β(P ) − β(P ′)) · M + (l(P ) − l(P ′)).

Case 1: β(P ′) < β(P ).
Then β(P ) − β(P ′) ≥ 1. Thus:

c(f) − c(f ′) ≥ M + l(P ) − l(P ′)
≥ M − l(P ′)

≥ M −
k∑

i=1

l(P ′
i )

≥ M − k · L
= 1.

This contradicts the assumption that f is a minimum cost flow.

Case 2: β(P ′) = β(P ), and l(P ′) < l(P ).
Then, we have

c(f) − c(f ′) = l(P ) − l(P ′) > 0.

This contradicts the assumption that f is a minimum cost flow.

Note that, if β(P ) = 0, all k paths in P are edge-disjoint,
and they are also a solution for the MinSum k-path problem.



B. k Paths with Minimum Node Vulnerability Subject to Mini-
mum Edge Vulnerability

We next consider the problem of finding k paths with min-
imum node vulnerability, which can provide partial protection
against single node failure. For P = {P1, P2, · · ·Pk} we define

η(v, Pi) =
{

1, v ∈ Pi

0, v /∈ Pi
, η(v, P ) =

k∑
i=1

η(v, Pi).

Then η(v, P ) represents the number of times that node v is
shared among paths in P . We define

γ(P ) =
∑

v∈P,v �=s,t

(η(v, P ) − 1).

γ(P ) is named the node vulnerability of P . Clearly, if γ(P ) =
0, then all paths in P are node-disjoint.

The objective of the problem of finding shortest k paths with
minimum node vulnerability in addition to minimum edge vul-
nerability is to find a set of k paths P = {P1, P2, · · · , Pk} from
s to t in G with: 1) min β(P ); 2) min{γ(P )|P satisfying 1)};
3) min{l(P )|P satisfying 1) and 2)}. We define M ′ = ((|V |−
2)(k − 1) + 1) · M .

To solve this problem, we present algorithm PATHFINDER
II as follows.

Algorithm PATHFINDER II(G, s, t, k):
begin

//Step 1: Construct a flow network G′′ = (V ′′, E′′) from G:
construct G′ = (V ′, E′) from G as shown in Step 1 of PATHFINDER I.
for each e ∈ E do assign cost as its cost in G, l(e),
for each e′ ∈ E do set its cost l(e′) = M ′ + l(e).
for each v′ ∈ V ′ − {s, t} do

replace v′ with two nodes v′′
1 , v′′

2 and add
two edges (v′′

1 , v′′
2 ) and (v′′

1 , v′′
2 ) as shown in Fig. 3,

assign (v′′
1 , v′′

2 ) capacity c(v′′
1 , v′′

2 ) = 1,
assign (v′′

1 , v′′
2 ) capacity c(v′′

1 , v′′
2 ) = k − 1,

assign (v′′
1 , v′′

2 ) cost l(v′′
1 , v′′

2 ) = 0,
assign (v′′

1 , v′′
2 ) cost l(v′′

1 , v′′
2 ) = M .

end-for
let V̂ = {v′′

1 , v′′
2 | v′ ∈ V ′ − {s, t}}.

let Ê = {(v′′
1 , v′′

2 ), (v′′
1 , v′′

2 ) | v′ ∈ V ′ − {s, t}}.
let V ′′ = V̂ ∪ {s, t}, E′′ = E ∪ E ∪ Ê.
//Step 2: Compute a flow on G′′.
get a minimum cost flow f with |f | = k,
by running an MCNF algorithm on G′′.
//Step 3: Obtain k paths P = {P1, P2, · · · , Pk} of G:
for each e′′ ∈ E′′ do

if f(e′′) = 0 then remove e′′ from G′′.
end-for
for i = 1 to k do

find a shortest path P ′′
i from s to t in G′′,

obtain Pi by replacing each (v′′
1 , v′′

2 ) or (v′′
1 , v′′

2 ) in P ′′
i ∩ Ê with

node v ∈ V , replacing each (u, v) ∈ P ′′
i ∩ E with (u, v) and

for each e′′ ∈ P ′′
i do

f(e′′) = f(e′′) − 1,
if f(e′′) = 0 then remove e′′ from G′′.

end-for
end-for

end

In G′′, we have |V ′′| = 2 · |V |, and |E′′| = |E′| + 2|V | =
2 · (|E| + |V |). Obviously, the complexity of this algorithm
is the same as the complexity of the MCNF algorithm it uses.
Again, if we use the Successive Shortest Path Algorithm, the
complexity is still O(k · (|E| + |V | + |V | log |V |)) = O(k ·
(|E| + |V | log |V |)).

See figure 4 for an example of graph transformation from G
to G′′ with k = 3.
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Fig. 3. Node splitting for G′′. (a) The original node. (b) The new node.
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Fig. 4. (a) Before Step 1: graph G = (V, E). (b) After Step 1: flow network
G′′ = (V ′′, E′′). M = (2+3+4+6) ·3+1 = 46, M ′ = (2 ·2+1) ·M =
230. Symbol (x, y) represents the (cost, capacity) pair for each edge.

Similarly, we have following claims:

1) For any network flow f in G′′ with flow value |f | = k,
the Step 3 in algorithm PATHFINDER II retrieves k paths
from s to t of G.

2) For any k paths P = {P1, · · · , Pk} from s to t of G,
we can create a flow f in G′′ with value |f | = k, by
following steps (called Flow Creation procedure):

• Set f(e′′) = 0 for every e′′ ∈ E′′.
• For i = 1 to k do:

– For each node v �= s, t in Pi: if f(v′′
1 , v′′

2 ) = 0,
set f(v′′

1 , v′′
2 ) = 1; if f(v′′

1 , v′′
2 ) = 1, set f(u, v) =

f(u, v) + 1.
– For each edge (u, v) in Pi: if f(u′′

2 , v′′
1 ) = 0, set

f(u′′
2 , v′′

1 ) = 1; if f(u′′
2 , v′′

1 ) = 1, set f(u′′
2 , v′′

1 ) =
f(u′′

2 , v′′
1 ) + 1.

3) The above 2 procedures are reversible each other. We
call f the corresponding flow of P , and call P the corre-
sponding paths of f .

Lemma 2: For a k paths P = {P1, · · · , Pk} of G and its
corresponding network flow f in G′′, we have:




c(f) = β(P ) · M ′ + γ(P ) · M + l(P )
β(P ) = �c(f)/M ′�
γ(P ) = �(c(f) − β(P ) · M ′)/M�
l(P ) = c(f) − β(P ) · M ′ − γ(P ) · M

(2)

Proof: Note that η(v, P ) − 1 is exactly the flow value
on (v′′

1 , v′′
2 ). Similarly, δ(e, P ) − 1 is exactly the flow value on

(u′′
2 , v′′

1 ). Thus we have:



c(f) =
∑

v∈P,v �=s,t

(η(v, P ) − 1) · M +

∑
e∈P

l(e) +
∑

e=(u,v)∈P

(δ(e, P ) − 1) · l((u′′
2 , v′′

1 )

= γ(P ) · M +∑
e∈P

l(e) +
∑
e∈P

(δ(e, P ) − 1) · (M ′ + l(e))

= γ(P ) · M +∑
e∈P

δ(e, P ) · l(e) +
∑
e∈P

(δ(e, P ) − 1) · M ′

= β(P ) · M ′ + γ(P ) · M + l(P ).

Since l(P ) < M (from the proof of lemma 1), and γ(P ) =∑
v∈P,v �=s,t(η(v, P ) − 1) ≤ (|V | − 2)(k − 1), we have M ′ >

γ(P ) · M + l(P ). Thus,


β(P ) = �c(f)/M ′�
γ(P ) = �(c(f) − β(P ) · M ′)/M�
l(P ) = c(f) − β(P ) · M ′ − γ(P ) · M

Theorem 2: For a weighted directed graph G = (V,E) with
source s and destination t, algorithm PATHFINDER II com-
putes a k-path solution P ∗ = {P1, P2, · · · , Pk} such that P ∗

satisfies the following properties:
(1) β(P ∗) = β∗ = min{β(P )|P is a k-path solution};
(2) γ(P ∗) = min{γ(P )|P is a k-path solution such that

β(P ) = β∗};
(3) l(P ∗) = min{l(P )|P is a k-path solution such that

γ(P ) = γ(P ∗) and β(P ) = β∗}.
Proof: Suppose for the sake of contradiction the claim

is not true, then there exists a different set of k paths from s
to t of G, P ′ = {P ′

1, P
′
2, · · · , P ′

k} such that one of following
conditions holds:

1) β(P ′) < β(P ∗);
2) β(P ′) = β(P ∗), and γ(P ′) < γ(P ∗);
3) β(P ′) = β(P ∗), γ(P ′) = γ(P ∗), and l(P ′) < l(P ∗).
Let f and f ′ be the corresponding flows for P ∗ and P ′. From

lemma 2, we have c(f) = β(P ∗) · M ′ + γ(P ∗) · M + l(P ∗),
c(f ′) = β(P ′) · M ′ + γ(P ′) · M + l(P ′). Hence:

c(f) − c(f ′) = (β(P ∗) − β(P ′)) · M ′ +
(γ(P ∗) − γ(P ′)) · M +
(l(P ∗) − l(P ′)).

Case 1: β(P ′) < β(P ∗).
Then β(P ∗) − β(P ′) ≥ 1, and

c(f) − c(f ′) ≥ M ′ − (γ(P ′) · M + l(P ′))

≥ M ′ − ((|V | − 2)(k − 1) · M +
k∑

i=1

l(P ′
i ))

≥ M ′ − ((|V | − 2)(k − 1) · M + k · L)
= M ′ − ((|V | − 2)(k − 1) · M + (M − 1))
= M ′ − ((|V | − 2)(k − 1) + 1) · M + 1
= 1.

This contradicts the assumption that f is a minimum cost flow.
Case 2: β(P ′) = β(P ∗), and γ(P ′) < γ(P ∗).

Then γ(P ∗) − γ(P ′) ≥ 1. Thus,

c(f) − c(f ′) ≥ M + l(P ∗) − l(P ′)
≥ M − l(P ′)
≥ M − k · L
= 1

This contradicts the assumption that f is a minimum cost flow.
Case 3: β(P ′) = β(P ∗), γ(P ′) = γ(P ∗), l(P ′) < l(P ∗).

Then,
c(f) − c(f ′) = l(P ∗) − l(P ′) > 0.

This contradicts the assumption that f is a minimum cost flow.

Note that, if β(P ∗) = 0, then all paths in P ∗ are edge-
disjoint. If γ(P ∗) = 0, then β(P ∗) = 0 and all paths in P ∗

are node-disjoint (and, of course, edge-disjoint).

IV. MINIMUM VULNERABILITY k PATHS FROM ONE

SOURCE TO k DESTINATIONS

We then consider the problem of finding a set of k paths
P = {P1, P2, · · · , Pk} from s to a set of destinations T =
{t1, · · · , tk} in a graph G = (V,E) with minimum vulnerabil-
ity. The definitions of L,M , and M ′ are the same as in the last
section. We first present our algorithm, named PATHFINDER
III, for finding k paths with minimum edge vulnerability from
s to T . Similar to the previous two algorithms, PATHFINDER
III also consists of three major steps:

Algorithm PATHFINDER III(G, s, T, k):
begin

//Step 1: Construct a flow network G′ = (V ′, E′) from G:
for each e = (u, v) ∈ E do add a new parallel edge e = (u, v).
let E = {(u, v)|(u, v) ∈ E}.
add a new node t and set V ′ = V + {t}.
for i = 1 to t do add edge (ti, t).
let Ẽ = {(ti, t)|∀ti ∈ T}.
let E′ = E ∪ E ∪ Ẽ.
for each e ∈ E ∪ Ẽ do assign capacity c(e) = 1,
for each e ∈ E do assign capacity c(e) = k − 1,
for each e ∈ E do assign cost as its cost in G, l(e),
for each ẽ ∈ Ẽ do assign cost l(ẽ) = 0,
for each e ∈ E do assign cost l(e) = M + l(e).
//Step 2: Compute a flow on G′:
get a minimum cost flow f with |f | = k,
by running an MCNF algorithm on G′.
//Step 3: Obtain k paths P = {P1, P2, · · · , Pk} of G:
for each e′ ∈ E′ do

if f(e′) = 0 then remove e′ from G′.
end-for
for i = 1 to k do

find a shortest path P ′
i from s to t in G′,

obtain Pi by replacing each (u, v) ∈ P ′
i with (u, v),

and removing edges in Ẽ.
for each e′ ∈ P ′

i do
f(e′) = f(e′) − 1,
if f(e′) = 0 then

remove e′ from G′.
end-for

end-for
end

In G′, we have |V ′| = |V | + 1, |E′| = 2|E| + k. Again, the
complexity of this algorithm is the same as the complexity of



the MCNF algorithm it uses. If we use the Successive Shortest
Path Algorithm, the complexity is still O(k·(|E|+|V | log |V |)).
Then we have the following result.

Theorem 3: For a weighted directed graph G = (V,E), al-
gorithm PATHFINDER III computes a k-path solution PT =
{P1, P2, · · · , Pk} from s to T = {t1, · · · , tk} such that β(P )
is minimized and l(P ) is minimized among all possible sets of
k paths in G with minimum β(P ).

The proof is almost exactly the same as the proof of theo-
rem 1.

Applying the node splitting technique used in algorithm
PATHFINDER II, we can modify PATHFINDER III to find
shortest k paths with minimum node vulnerability γ(PT ) sub-
ject to minimum edge vulnerability β(PT ).

V. MINIMUM-VULNERABILITY PATHS FROM SINGLE

SOURCE TO ALL-PAIRS OF DESTINATIONS

In this section, we consider the problem of finding 2
paths with minimum edge vulnerability for all pairs of nodes
{t1, t2} ⊆ V − {s} in a given graph G = (V,E). We define

β′({t1, t2}) = min{β({P1, P2})|P1, P2 are paths

from s to t1 and t2, respectively}.

Algorithm PATHFINDER III presented in the previous sec-
tion can be used to compute β′({t1, t2}) for two nodes t1, t2 �=
s. Instead of applying PATHFINDER III to all pairs of nodes,
we can use the Min-Sum Single-Source All-Destination-Pairs
Shortest Disjoint Two Paths algorithms proposed in [13] to
solve this problem more efficiently.

Firstly, we transform G into G′ using Step 1 of
PATHFINDER I. Then we apply Algorithm I in [13] to get
the shortest distance matrix M = (duv, puv, quv), where duv

represents the total cost of the shortest edge-disjoint path pair
from s to u, v, and puv, quv are used to backtrack the preceding
nodes in the two disjoint paths. The matrix M can be computed
in Θ(|V |2) time and Θ(|V |2) space using the algorithm of [13].
Thus, for each pair u, v ∈ V − {s}, we have the following
claims:

1) β′({u, v}) = �duv/M�.
2) For P ′ = (P ′

1, P
′
2) obtained from puv, quv (which takes

Θ(L(n)) time, where L(n) is the number of nodes in
P ′

1, P
′
2), β(P ′) = β′({u, v}). Let P = (P1, P2) be the

paths obtained by replacing each edge (x, y) in E with
edge (x, y). Then (P1, P2) are two paths from s to u, v
in G. We claim that l(P1) + l(P2) is the shortest among
all possible two paths from s to u, v with vulnerability
β′({u, v}).

We omit the proof here. Note the total complexity of finding
β′({t1, t2}) for every pairs t1, t2 ∈ V − {s} is only O(|V |2).

Similarly, the same method can be extended to solve the
problem of finding shortest paths from s to all pairs of nodes
in directed graphs subject to minimum edge vulnerability β(P )
and minimum node vulnerability γ(P ) using the node splitting
technique in PATHFINDER II.

VI. CONCLUDING REMARKS

To protect a network against single link/node failure, disjoint
paths satisfying specific connection requirements are needed.
However, in a real network, disjoint paths may not always ex-
ist. A viable approach is to find paths with minimum number
of shared links or nodes. In this paper, we characterized the
degree of edge sharing and node sharing by the notion of edge
vulnerability and node vulnerability. We provided a complete
study of three variant problems of finding k paths with mini-
mum edge/node vulnerability and showed that all these prob-
lems are polynomially solvable by reducing them to the mini-
mum cost network flow problem. The algorithms presented in
this paper are very useful for many network applications includ-
ing reliable unicast/multicast communications, reliable client-
server communications, and protection under the dual homing
architecture. Future work includes finding k paths with mini-
mum vulnerability satisfying load balancing requirements.
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