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In this article, we investigate the Intellectual Property (IP) mapping problem that maps a given
set of IP cores onto the tiles of a mesh-based Network-on-Chip (NoC) architecture such that the
power consumption due to intercore communications is minimized. This IP mapping problem is
considered under both bandwidth and latency constraints as imposed by the applications and the
on-chip network infrastructure. By examining various applications’ communication characteristics
extracted from their respective communication trace graphs, two distinguishable connectivity tem-
plates are realized: the graphs with tightly coupled vertices and those with distributed vertices.
These two templates are formally defined in this article, and different mapping heuristics are sub-
sequently developed to map them. In general, tightly coupled vertices are mapped onto tiles that
are physically close to each other while the distributed vertices are mapped following a graph par-
tition scheme. Experimental results on both random and multimedia benchmarks have confirmed
that the proposed template-based mapping algorithm achieves an average of 15% power savings
as compared with MOCA, a fast greedy-based mapping algorithm. Compared with a branch-and-
bound–based mapping algorithm, which produces near optimal results but incurs an extremely
high computation cost, the proposed algorithm, due to its polynomial runtime complexity, can gen-
erate the results of almost the same quality with much less CPU time. As the on-chip network size
increases, the superiority of the proposed algorithm becomes more evident.
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1. INTRODUCTION

With the continuous scaling of CMOS technologies, interconnects dominate
both performance and power dissipation in future System-on-Chip (SoC) de-
signs. In the 45-nm technology node, for instance, the delay of chip-edge long
global wires can exceed 120 to 130 clock cycles [Ho et al. 2001; Meindl 2003].
Even after aggressive repeater insertion, the delay of global wires may still
be longer than one clock cycle. Besides increased interconnect delay, according
to the International Technology Roadmap for Semiconductor (ITRS) [2007],
without changes in interconnect design philosophy, in 2012, up to 80% of mi-
croprocessor power will be consumed by interconnect itself.

As an architectural remedy to the increased wire delay, which makes it prac-
tically impossible to design a global synchronous system on a chip [Kodi et al.
2008], multiprocessor system-on-chip (MPSoC) designs [Bertozzi et al. 2005],
which integrate multithreaded processors and multiprocessor cores running at
their own clock domains into a single chip have emerged. MPSoC is shown to
deliver high performance yet reasonably low power consumption, making it an
architecture of choice suitable for many embedded system applications. As the
number of processor cores on an MPSoC chip is continuously increasing, tradi-
tional bus-based architecture tends to create a communication bottleneck. As a
result, network-on-chip (NoC) has been considered as a viable communication
infrastructure in MPSoC designs due to its distinct advantages of structure,
performance, and modularity [Dally and Towles 2001; Jantsch and Tenhunen
2003].

For a target application to be running on an NoC-based MPSoC architecture,
a three-step design flow similar to the one suggested in Hu and Marculescu
[2005] is generally followed.

—Step 1: A target application is partitioned into multiple concurrent tasks.
—Step 2: The tasks are scheduled and allocated to selected IP cores.
—Step 3: IP cores selected from Step 2 are optimally mapped onto the NoC-

based MPSoC architecture in terms of power, or performance, or a com-
bination of these figure of merits under the constraints of latency and/or
bandwidth [Ogras et al. 2005]. After mapping, all the routing paths between
any pair of communicating IP cores are optimally identified.
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The partitioning and scheduling problems in Steps 1 and 2 can be approached
following the lessons learned from partitioning and scheduling in parallel
computers but with interprocessor communication considered [Chang and
Pedram 2000]. In this article, our study is limited to mapping the IP cores
onto a regular tile-based NoC architecture (Step 3 in the design flow) and the
mapping is subjected to the latency and bandwidth constraints as imposed
by many real-time multimedia applications. Regular mesh remains the
dominant NoC architecture of choice due to its distinct features: structured
network wiring, modularity, and standard interfaces [Hu and Marculescu
2005].

In the literature, a number of algorithms have been proposed to solve this
IP mapping problem, and they fall into four general categories: (i) branch-and-
bound algorithms [Hu and Marculescu 2005; Lin et al. 2008], (ii) framework-
based approach using simulated annealing (SA) [Harmanani and Farah 2008;
Lu et al. 2008]/genetics algorithm (GA) [Ascia et al. 2004; Zhou et al. 2006]/
tabu search (TS) [Marcon et al. 2007], (iii) linear-programming-based schemes
[Murali and De Micheli 2004], and (iv) greedy-based heuristics [Hansson
et al. 2005; Mehran et al. 2007; Srinivasan and Chatha 2005]. Generally,
branch-and-bound–based algorithms can generate very-high-quality results,
very close to the optimized solutions, provided that the size of work queue is
unbounded. With a large queue size, however, branch-and-bound algorithms
often require huge memory depth and CPU time. The algorithms that fall into
the second and third categories may produce reasonably high-quality solutions
under certain conditions. The greedy-based algorithms, on the other hand,
may generate lower-quality mapping results with significantly low CPU time
required. In Section 2, a more detailed review of these existing approaches is
provided.

In this article, we propose a template-based efficient mapping (TEM) al-
gorithm that generates high-quality mapping results with low runtime. This
algorithm is designed based on two distinguishable connectivity templates ex-
tracted from various applications’ communication trace graphs: the graphs with
tightly coupled vertices and those with distributed vertices. Correspondingly,
different mapping strategies are proposed for these two templates. Simulation
results show that the proposed TEM algorithm achieves significant improve-
ment over MOCA [Srinivasan and Chatha 2005], the known best greedy algo-
rithm in terms of the runtime and the quality of the solutions. Compared with
a branch-and-bound algorithm with a large queue size, which produces near
optimal results but incurs an extremely high computation cost, the proposed
algorithm, due to its polynomial time complexity, can generate the results of
almost the same quality but with much less CPU time.

The rest of the article is organized as follows. Section 2 reviews the ap-
proaches that have been proposed to solve the IP mapping problem, which is
formally defined in Section 3. Section 4 introduces the two templates derived
from various applications’ communication trace graphs. The mapping algo-
rithm based on the two templates is presented in Section 5 along with a few
illustrative examples. Section 6 reports and discusses the simulation. Finally,
Section 7 concludes the article.
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2. RELATED WORK

As shown in Hu and Marculescu [2005], IP mapping is an NP-hard problem,
as it is an instance of the constrained quadratic assignment problem [Garey
and Johnson 1979]. Various heuristic algorithms have been proposed, and they
generally can be categorized into following four categories.

Branch-and-bound algorithms. Hu and Marculescu [2005] proposed a
branch-and-bound algorithm that attempts to search for the optimal solution
through alternating branch and bound steps. This branch-and-bound algorithm
can generate nearly optimized solutions due to its large search space, assum-
ing the size of its work queue is set to infinity. With large queue size, how-
ever, this algorithm demands high memory depth and suffers from long CPU
time. For mapping N tasks to N tiles, the timing complexity is O(N!). For
6×6 mesh, the runtime (on a PC with one Intel Core2 P8600 2.4GHz proces-
sor and 2GB RAM) of the branch-and-bound algorithm can be a few hours
if the queue is unlimited. The memory used is 36∗4∗36!(1044) byte assuming
the queue elements are composed by 36 integers that store the tile info. As
such, this approach is only feasible for mapping IP cores onto an NoC with
a fairly small size, unless a trade-off between the runtime and the quality
of solutions is made. In the literature, techniques have been suggested [Lin
et al. 2008; Murali and De Micheli 2004] to reduce both the memory require-
ment and runtime by largely limiting the size of work queue, which adversely
impacts the search space and thus the quality of the final solution. Actually,
a branch-and-bound scheme boils down to a greedy algorithm if the size of
the work queue is chosen to be very small; in this case, most of the solutions
are trimmed off, resulting in a much reduced search space (i.e., local search
dominates).

Greedy-based heuristic algorithms. Various heuristic algorithms [Hansson
et al. 2005; Murali and De Micheli 2004] have been proposed based on different
observations on the properties of both NoC topologies and the communication
patterns among IP cores. Generally, greedy-based IP mapping algorithms have
very low runtime but often at a sacrifice of the quality of solutions. However,
as we will show in this article, if the algorithm is properly designed, such
degradation of solution quality can be minimized. In the following, we review
a few noteworthy greedy algorithms in greater detail.

To reduce the overall power consumption, one observation is that IP cores
with demanding communication requests (i.e., communication between two
IP cores requesting tight latency or high bandwidth) should be mapped first.
The mapping with minimum-path routing algorithm [Murali and De Micheli
2004], the flow traversal algorithm [Hansson, et al. 2005], and the LCF al-
gorithm [Marcon et al. 2007] are all based on this observation. These algo-
rithms may fail to produce high-quality solutions when there is one IP core
(referred as current IP core) needs to communicate with a large number of
cores (referred as neighbor IP cores). In this case, the current IP core may
be mapped onto a tile with its number of neighbor tiles far less than the
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number of neighbor IP cores. As a result, in the subsequent mapping steps,
many of the current IP core’s neighbor IP cores shall have to be mapped
onto the tiles that are farther away from the current IP core. The commu-
nications between the current IP core and many of its neighbor IP cores
thus may physically go through unnecessarily long distance with extra power
consumption.

The previously mentioned mapping problem can be alleviated by taking the
degree of each IP into mapping consideration. In Spiral [Mehran et al. 2007],
an IP core with a large number of neighbors (degree of the IP core) is prioritized
to be mapped onto a tile that connects to a large number of neighbor tiles (e. g.,
the center of a mesh-based NoC), thus resulting in lower communication delay.
This algorithm, however, may fail to generate high-quality solutions either
when there are IP cores with large degrees but the communications among
these cores and their neighbors do not impose high bandwidth/tight latency
requirements, or when the degree of each IP is small and all the IPs have
nearly identical degree values.

The algorithm MOCA [Srinivasan and Chatha 2005] achieves a sound
balance between the runtime and the quality of solutions. It uses a graph
partition algorithm [Hendrickson and Leland 1995] to recursively partition
both the NoC and the communication trace graph into two halves and
in each iteration, one part of the communication trace graph is mapped
to one region of the NoC. One problem of this algorithm is that pairs of
communicating IP cores that require high bandwidths but can tolerate long
latency may be mapped to tiles with high hop counts, resulting in higher
power consumption. Also, according to our experimental results, the power
performance of MOCA deteriorates drastically when latency constraints are
applied.

Simulated annealing (SA)/genetics algorithm (GA)/tabu search (TS)
framework. The genetic algorithms proposed in Ascia et al. [2004] and Zhou
et al. [2006] for IP mapping target multiple objectives (e.g., low power, high
throughput, or a combination of those). Harmanani and Farah [2008] proposed
a simulated annealing (SA)-based algorithm, and Lu et al. [2008] proposed a
cluster-based SA algorithm such that the IP mapping can be done in a divide-
and-conquer–like manner. In these algorithms, design of the convergence con-
dition is the key to finding a high-quality solution. Although these algorithms
are capable to avoid local minima, finding high-quality solutions is not guar-
anteed. Note that these algorithms typically require considerably longer time
than a greedy-based mapping algorithm.

Linear programming-based algorithms. Linear programming (LP) is used
in Murali and De Micheli [2004] to solve the mapping problem. Here, form-
ing the right LP problem is the key to obtaining high-quality solutions. Al-
though there several software tools exist to solve LP problems, computation is
still time-consuming and there is no guarantee that high-quality solutions can
always be found.
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Fig. 1. The on-chip router structure.

3. PROBLEM FORMULATION

3.1 Architecture Description and Power Model

The NoC system under consideration is composed of N× N tiles interconnected
by a 2D mesh network. Each tile, indexed by its coordinate (x, y), where 0 ≤ x ≤
N − 1 and 0 ≤ y ≤ N − 1, has one processing core and one router. Each router
(shown in Figure 1) connects to its local processing core and four neighbor tiles
through bidirectional channels. Buffers are included at each router input port,
and a 5 × 5 crossbar switch is used as the switching fabric of the router. The
link controllers (LCs) control the flow of traffic across various connections. The
routing and arbitration component decides the routing paths, selects the output
link for an incoming message, and accordingly guides the switch to switch the
traffic.

The power model used in Hu and Marculescu [2005] is followed in this
study. The bit power (Ebit) is defined as the power consumed when 1 bit of data
is transported through a router, and it can be calculated as

Ebit = ESbit + EBbit + EWbit (1)

where ESbit, EBbit, and EWbit represent the power consumed by the switch, the
buffer, and the interconnection wires inside the switching fabric, respectively.
As explained in Hu and Marculescu [2005], EBbit and EWbit are negligibly small.
Hence, the average power consumption for sending 1 bit of data from tile ti to
tile tj can be represented as

Eti ,tj

bit = ηhops × ESbit + (ηhops − 1) × ELbit, (2)
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where ηhops is the number of routers traversed from tile ti to tile t j , ESbit is the
power consumed by the switch, and ELbit is the power consumed on the links
between tiles ti and t j .

3.2 Problem Description

We assume that before IP mapping is performed, a given application described
by a set of concurrent tasks is already bounded and scheduled onto a list of
selected IP cores [Ogras et al. 2005]. The communication patterns between any
pair of IP cores are modeled by the target application’s communication trace
graph, whereas the NoC architecture that the application will be mapped onto
is described in terms of an architecture characterization graph.

Definition 1. A communication trace graph (CTG) G = (P, E) is an undi-
rected graph, where a vertex/node pk ∈ P represents an IP core (a processor, an
ASIC device or a memory unit, etc.), and an edge ei = (pk, pj) ∈ E represents
the communication trace between vertices pk and pj . For edge ei,

—ω(ei) defines the communication bandwidth request between vertices pk and
pj given in bits per second (bps). ω(ei) sets the minimum bandwidth that
should be allocated by the network in order to meet the performance con-
straints.

—σ (ei) represents the latency constraint, which is given in number of hop count
instead of an absolute number in cycles [Srinivasan and Chatha 2005].

—W(ei) represents the weight of edge ei, and it is defined in the same way as
that in Srinivasan and Chatha [2005]. Of all the traces in the graph, let ei

be the trace with the highest bandwidth requirement, and e j be the trace
with the tightest (lowest) latency constraint. An integer K is defined as the
minimum value required to ensure that among all the traces in the graph,
ω(ei )

σ (ei )K ≤ ω(e j )
σ (e j )K . Once K is determined, W(ei) = ω(e)

σ (e)K .

A CTG can be transformed from its corresponding application characteriza-
tion graph (APCG) [Hu and Marculescu 2003] as follows. The vertices in the
CTG are the same as those in the APCG. For each edge ei, ω(ei) is obtained
by combining the communication volumes/bandwidth request of the two pos-
sible edges on different directions between two vertices connected by ei in the
APCG. The latency constraint of ei is the tighter one of the two possible edges
connected by ei in the APCG.

Definition 2. An architecture characterization graph (ACG) Ğ = (T, L) is
an undirected graph, where each vertex ti ∈ T represents a tile and each edge
li ∈ L = (tk, tj) represents the link between adjacent tiles tk and t j . For link li:

• bw(li) defines the bandwidth provided on link li between adjacent tiles tk and
t j ;

• c(li) defines the link cost of li, that is, power consumption for transmitting 1
bit data from tk and t j .
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In this article, we focus on regular NoC architectures which have bw(li) = B,
c(li) = C for each li ∈ L, where B and C are constants. hk, j is the set of links
forming one of the shortest paths from tile tk to tile tj(hk, j ⊆ L). dist(hk, j)
determines the number of elements in hk, j (i.e., it is the hop count of the
shortest path between tile tk and tile t j).

Definition 3. A mapping algorithm M: P → T maps each vertex in CTG
onto an available tile in ACG. M(pi) represents the mapped tile in ACG, where
pi ∈ P and M(pi) ∈ T.

Definition 4. A routing algorithm R: E → H, finds one of the shortest
routing path between M(pk) and M(pj) for each edge ei = (pk, pj) ∈ E. The links
of forming this path belongs to set hM(pk),M(pj ).

The IP mapping problem is formulated as follows:
Given a CTG(P, E) representing the communication pattern of an application

and an ACG(T, L) representing the target NoC architecture, where |P| ≤ |T|,
find a mapping M : P → T which maps all the vertices in CTG onto available
tiles in ACG and generates a deadlock-free and minimal routing paths for all
edges in CTG such that the total power consumption is minimized, that is,

Min

⎧⎪⎪⎨
⎪⎪⎩

|E|∑
i=0

ei=(pk,pj )∈E

ω(ei) ×
|hM(pk),M(pj )|∑

m=0
lm∈hM(pk),M(pj )

C

⎫⎪⎪⎬
⎪⎪⎭

(3)

satisfying
∀pi ∈ P, M(pi) ∈ T (4)

∀pi, pj ∈ P and pi 	= pj, M(pi) 	= M(pj) (5)

∀li, B ≥
∑

ei=(pk,pj )

ω(ei) × f
(
li, hM(pk),M(pj )

)
(6)

∀ei = (pk, pj), σ (ei) ≥ dist
(
hM(pk),M(pj )

)
(7)

where f (li, hM(pk),M(pj )) =
{

1 if li ∈ hM(pk),M(pj )

0 if li /∈ hM(pk),M(pj )
.

Similar to the definitions adopted in Hu and Marculescu [2005], the condi-
tions given by Equations (4) and (5) ensure that each IP core should be mapped
exactly to one tile and no tile can host more than one IP core. The inequities
given in Equation (6) specify the bandwidth constraint for every link, and the
inequities given in Equation (7) ensure that the latency constraint (in terms
of number of hop count) between two communicating IPs is satisfied after the
mapping.

4. DERIVATION OF THE MAPPINGTEMPLATES FROM CTGS

4.1 A Motivation Example

As alluded in Section 2, MOCA [Srinivasan and Chatha 2005] does not perform
well when the latency constraints are considered. Derivation of the mapping
templates can be better illustrated from the following example.
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Fig. 2. The CTG of an MPEG4 decoder with 11 IP cores [Srinivasan and Chatha 2005]. The
bandwidth request (Mbps) and latency constraint (number of hop count) of each edge is labeled on
the edge.

Fig. 3. (a) The mapping result of MOCA on the CTG of MPEG4 decoder without latency constraints
applied in Figure 2. (b) The mapping result of MOCA on the CTG of MPEG4 decoder with latency
constraints applied. (c) A better mapping solution on the CTG of MPEG4 decoder with latency
constraint. The square boxes are tiles and the circles are IP cores.

The mapping solution without and with latency constraints obtained by
MOCA is shown in Figures 3(a) and 3(b), respectively.

A communication path with higher bandwidth request should be mapped to
links with lower hop count to reduce power consumption as Equation (3) indi-
cates. In the CTG shown in Figure 2, one can see that of the seven neighbors
of vertex 1, vertices 3, 2, 4, and 7 have the highest bandwidth/tightest latency
requirements. Such neighbors are referred as four most significant neighbors
(formally defined in Section 5). Consequently, it will be beneficial to map these
four vertices onto tiles close to vertex 1 to reduce the hop count and subse-
quently help reduce the power consumption. In the same token, the four most
significant neighbors of vertex 8 shall be mapped in a similar fashion; i.e., ver-
tices 4, 11, 10, 9 should be mapped onto tiles with low hop count to vertex 8.
When latency constraints are not considered, MOCA maps the pairs of com-
municating IP cores with high bandwidth requirements to tiles with minimum
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hop count. As shown in Figure 3(a), edge (1, 4) requests very high bandwidths
and thus vertex pairs 1 and 4 are mapped to tiles that are one-hop-count away
from each other. Edges (1, 7) and (8, 10) are mapped similarly. As such, the
mapping result generated by MOCA is in very high quality. However, when the
latency constraint is applied, the result of MOCA deteriorates. For example,
in Figure 3(b), the hop counts of edges (1, 7), (8, 9), (8, 10) are greater than 1,
which results in higher power consumption.

A better mapping solution can be obtained and shown in Figure 3(c). In this
solution, edges in CTG with higher weights force the corresponding vertices to
be mapped onto the tiles with lower hop counts than those edges with smaller
weights. In Figure 2, vertices 1 and 8 have many edges with high bandwidths
or tight latency. In Figure 3(c), these two vertices are mapped onto the two
tiles with the largest degree or maximal number of neighbor tiles (i.e., 4).
Therefore, the neighbors of the two vertices with which the two vertices form
communications requesting higher bandwidth or tighter latency are mapped
with lower hop counts to the two vertices such that the power consumption is
reduced.

4.2 Classification of Applications

From the previous example, one can see that different mapping strategies shall
be adopted for CTGs with different features. Here, we present two distinct
templates derived from various CTGs: CTG that includes vertices with many
significant neighbors defined later in the text, and CTG that does not have such
vertices.

Given a CTG(P, E), and a sorted list of edges in decreasing order of edge
weight denoted as Ê:

Definition 5. A vertex pi∈P is a hot node if (a) pi has a degree greater than
or equal to α, and (b) of the first β edges in the edge list Ê, there are at least γ

edges that are connected to pi.
Values of α, β, γ are topology- and application-dependent, and they can

be set accordingly. From our experiment, we have determined that α = 4 is
appropriate for a mesh-based structure, and β = 50%, γ = 1 are experimentally
determined.

Template 1: An application falls into Template 1 (tightly coupled) if there is
at least one hot node in its CTG.

Template 2: An application falls into Template 2 (distributed) if there is no
hot node in its CTG.

5. ALGORITHM DESCRIPTION

Of the two distinct application templates described in Section 4, different map-
ping strategies shall be adopted. As such, the proposed mapping algorithm is
named as TEM.

The overall structure of the TEM algorithm is shown as follows: Before
the template-based mapping takes place, the edges have to be sorted in a
nonincreasing order in terms of the edge weight. After all the vertices are
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mapped, a routing allocation routine is needed to help find routing paths for
communicating vertices.

5.1 Mapping Algorithm for Template 1: TEM Template1()

5.1.1 Algorithm Description. An application of Template 1 (CTG has at
least one hot node) is mapped based on the following observations.

(i) Hot nodes should be given a higher mapping priority; that is, they shall be
mapped before any other nodes are mapped. All the hot nodes in a CTG
will be first mapped along with their α most significant neighbor vertices.
A hot node is better mapped onto a tile in an NoC that has the maximum
number of neighbor tiles.

(ii) Once all the hot nodes are mapped, the mapping sequence of remaining
unmapped non-hot nodes will be performed based on the decreasing order
of weight of edges connecting them.

As such, this procedure consists of two major steps: (i) map hot nodes in
CTG, (ii) map other vertices.
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Before we discuss the algorithm in detail, the following definitions are
introduced:

Definition 6. Vertex pn is a significant neighbor of vertex pi if there exists
an edge (pi, pn) ∈ E and such an edge (pi, pn) is within the first β edges in the
sorted edge list Ê.

Definition 7. Since in a mesh structure, the maximal degree of a tile is
four, the four most significant neighbors {pn1, . . ., pn4} of a hot node pi are
the four neighbors of pi that edges (pn1, pi), . . ., (pn4, pi) have the highest
bandwidth/tightest latency requirements among all the edges formed by pi

and its other neighbors.

Definition 8. A center tile is an unmapped tile that its four neighbor tiles
are also unmapped. A center tile in a 2D topology such as a mesh can be
determined by the following algorithm. This algorithm searches along the
tiles and stops if an unmapped tile is found whose four neighbors are un-
mapped. All tiles in the NoC architecture are described by a table tbl =
{<X0, Y0>, MN0), . . . , (<X|T|−1, Y|T|−1>, MN|T|−1)}, where for tile ti, <Xi, Yi>

represents its coordinate and a flag, MNi, indicates whether ti is mapped or not.

Figure 4 shows an example of the center tiles found in a 5 × 5 mesh. In a
simple term, a center tile refers to a tile with the largest degree in the network
(e.g., a tile connected to four neighbor tiles in a mesh-based structure).
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Fig. 4. (a) A center tile found (denoted as black dots) with four neighbor tiles (denoted as gray
dots). (b) A second center tile found (denoted as cross dots).

Definition 9. Two vertices pk, pj are “close” if (i) edge (pk, pj) is among
the first β edges in the sorted edge list or (ii) a neighbor vertex of pk (or pj) is
connected with pj (or pk), and this edge is among the first β edges in the edge list.

Step 1: Map Hot Node. Procedure Map Hot Node maps each hot node and
its four most significant neighbor vertices. Each hot node pi is associated with
a counter ctri that counts the number of times pi appears as a terminal vertex
of the edges in the sorted edge list. The procedure works as follows.

—Case 1. The current hot node pi is not mapped yet. Check whether this hot
node is close (Definition 9) to any of those mapped hot nodes. If yes, this hot
node is mapped to a tile with a minimum hop count to the already mapped hot
node. Otherwise, a center tile is selected and it is allocated to this hot node.
Then, pi ’s four most significant neighbors are mapped to the neighbor tiles if
they have not been mapped. Two criteria should be observed in mapping the
neighbors of pi: (i) if a neighbor has a high degree value, it should be mapped
onto a tile with more available neighbor tiles; (ii) for a neighbor pn, if the
weight of edge (pn, pi) is larger than that of edge (pm, pi) (pm represents any
other neighbor), pn should be placed on a tile having lower hop count to the
tile of pi. Tile Min Hop Count(pi,T) returns a tile in tile set T with minimum
hop count to the tile allocated for pi.
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—Case 2. The current hot node has already been mapped because it belongs to
the first α neighbors of a previously mapped hot node. In this case, only the
four most significant neighbor vertices need to be mapped. The procedure
Improve Edge can be called for optimization.

Step 2: Mapping other vertices. After Step 1, all the hot nodes have been
mapped. In this step, procedure Map Edge maps all the remaining unmapped
vertex/vertices. There are three cases to consider.

—Case 1. Neither of the two terminal vertices pk, pj of edge êi = (pk, pj) is
mapped. Search the edges fromêi+1 to ê|E | (i.e., edges whose weight is less
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than eπ (i)). If one of the two terminal’s neighbor vertices is found mapped,
the vertex with a mapped neighbor is mapped onto a tile that has the min-
imum hop count to its mapped neighbor. For example, if pj has a mapped
neighbor ps, then pj is mapped to a tile with minimum hop count to ps.
Then, the other unmapped terminal vertex pk in this example is mapped
onto a tile with a minimum hop count to pj . On the other hand, if none of
the two terminal vertices’ neighbors is mapped, an available tile is selected
and immediately allocated to one of the vertices, after which the other ver-
tex is mapped onto a tile with a minimum hop count to the just mapped
tile.

—Case 2. One of the two terminal vertices is mapped, but the other one is not.
In this case, only the unmapped vertex needs to be mapped onto a tile with
minimum hop count to the mapped tile.

After two vertices have been mapped, the Improve Edge procedure is called for
optimization.
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Fig. 5. An example which needs the procedure Improve Edge.

After completing the mapping process described earlier, it may be necessary
to optimize the mapping outcome. This can be seen from an example illustrated
in Figure 5, where vertices 2 and 7 are assumed to be the hot nodes. In the first
step, these two hot nodes are mapped along with their respective four most
significant neighbors. In the second step, when mapping the remaining edges,
edge (3, 8) is the edge with the greatest weight. In Figure 5, edge (3, 8) has a
delay of 4 hops. For a better mapping, vertices 3 and 8 should be mapped onto
tiles with lower hop count apart. This optimization can be achieved by running
the Improve Edge procedure after the mapping.

The Improve Edge procedure can be made flexible in implementation with
different runtime implications. For example, for an edge (pk, pj), the following
options can be chosen: (i) A free tile is allocated for pj to check whether the
hop count between mapped tiles for pk and pj can be reduced. (ii) In a more
aggressive way, the tile of a mapped vertex pm is reallocated to pj and another
tile is found for pm. Then, the hop count for the related edges needs to be
updated. This optimization can be performed on edges with larger weight only.

For edge êi = (pk, pj), if the hop count between the mapped tiles of pk and
pj is greater than 1, the optimization is performed as follows. A parameter
OPT HOP is used to control the runtime and the quality of solution. If an
available free tile with OPT HOP hop count to pk’s tile is found, it is reallocated
to pj if the following two conditions are satisfied: (i) The hop count between
the mapped tiles of pk and pj is reduced and (ii) the hop counts between the
mapped tiles of the two vertices of the edges from 0 to i − 1 in the sorted edge
list do not increase. Here, we set OPT HOP to 1.

5.1.2 Complexity Analysis. The sorting procedure, Sort Edge, has a time
complexity of O(|E|log|E|). Thus, the complexity of the TEM Template1 al-
gorithm is determined by procedures Map Hot Node and Map Edges. Both
procedures use Improve Edge. If an edge has a hop count greater than 1, one
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free tile with minimum hop count to the tile pk’ mapped to is found. The hop
counts of edges eπ (i) and eπ (1), eπ (2), . . ., eπ (i)−1 are checked. Hence, the search
time of Improve Edge is bounded to O(|T|+|E|).

Map Hot Node: Assume there are |Ĥ| hot nodes to be mapped. To map
each hot node, we need (i) find a center tile which takes O(|T|) time, or
(ii) find a tile with minimum hop count to a mapped hot node, which also
takes O(|T|) time. After a free tile is found and the hot node is mapped,
its four most significant neighbors should be mapped onto the uncommitted
tiles with minimum hop counts to the hot node, which has the time complex-
ity of max(|T|, time(Improve edges). Hence, the complexity of Map Hot Node
is O(|Ĥ|∗(|T|+max(|T|, |T|+|E|))). The average runtime is much less as
finding a free tile that is two-hop-count away from a given tile requires a search
of no more than 8 tiles.

ii) Map Edges: There are no more than |E| edges to be considered. For each
edge, there are three cases.

Case 1: If the two vertices are unmapped, the edge list needs to be scanned
to find an edge such that one of its terminal vertices happens to be the two
unmapped vertices. The total search time is O(|E|).

Case 2: One of the vertices is mapped, and the other vertex is unmapped.
The search time is O(|T|).

Case 3: If both of the vertices are mapped, Improve Edge. The time is
O(|T|+|E|).

Hence, the time complexity of Map Edges is O(|E|∗(|E|+|T|+ |T|+|E|)).
Combining the complexity of Map Hot Node and Map Edges, the complexity

of TEM Template1 is shown to be O(|Ĥ|∗(|E|+|T|)+|E|∗(|E|+|T|)), which
can be further simplified as O((|E|+|T|)2), since |Ĥ|≤|P|≤|T|.

5.1.3 An Example. Here, we use an example to illustrate the
TEM Template1 algorithm. Assume a MPEG4 decoder (its CTG is given in
Figure 2) needs to be mapped onto a 4 × 4 mesh network (Figure 6(a)) under
latency constraints. The sorted edge list according to the weights of edges in
decreasing order is given by:{(1, 2), (1, 3), (1, 4), (8, 4), (1, 7), (8, 11), (8, 10), (8,
9), (1, 0), (1, 5), (5, 6), (6, 7), (1, 9)}. The hot nodes are vertices 1 and 8.

The edge list is scanned. After the fifth edge (1, 7) is reached, the counter of
vertex 1 has already reached four. Then vertex 1 is mapped to a center tile in
NoC, tile 5. Among the four neighbors, vertices 4 and 7 have the highest degree
value. Hence, they are mapped to tiles 9 and 6, respectively, which have more
neighbor tiles than tiles 2 and 3. Figure 6(a) shows the result after vertex 1
and its four most significant neighbors are mapped.

Of the first nine edges in the edge list (i.e., up to edge (8, 9)), vertex 8 has
appeared four times. Vertex 8 is close to vertex 1 as they are both connected to
vertex 4, then it is mapped to tile 10, a tile with the minimum hop count to tiles
5 and 9. Now, tile 10 has only two free neighbor tiles while vertex 8 has three
unmapped neighbors. Hence, its neighbors with which vertex 8 forms edges
with larger weights among all its neighbors (i.e., vertices 10, 11) are mapped
to the neighbor tiles of tile 10. After vertex 9 is mapped to tile 2, which is
two-hop away from tile 10, the four most significant neighbors of vertex 8 are
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Fig. 6. (a) Result after mapping vertex 1 and its four neighbors. (b) Result after mapping vertex
8 and its four neighbors. (c) Final mapping result of the MPEG4 decoder.

mapped. Figure 6(b) shows the result after mapping vertex 8 and its four most
significant neighbors.

After vertices 1 and 8 along with their respective neighbors are mapped, the
edge list is rescanned to map the remaining edges, that is, {(1, 0), (1, 5), (5,
6), (6, 7), (1, 9)}. For edge (1, 0), vertex 1 is mapped, but vertex 0 is not. Then,
vertex 0 is mapped onto tile 13, a tile with two-hop away from vertex 1 and
then. then edge (1, 5) needs to be mapped. As vertex 1 is mapped and vertex 5
is unmapped, tile 7 is selected for mapping vertex 5. The remaining edges are
mapped similarly. The final mapping result is shown in Figure 6(c).

5.2 Mapping Algorithm for Template 2: TEM Template2()

Mapping applications of Template 2: (CTG does not contain hot nodes) is based
on the following observation:

If a CTG does not have such hot nodes, instead of recursively partitioning
the CTG and ACG as in MOCA [Srinivasan and Chatha 2005], the CTG and the
ACG can be both partitioned into only four parts and mapped in a divide-and-
conquer–like manner. For each part of the CTG/ACG, the mapping is performed
with larger weight first criterion.

5.2.1 Algorithm Description

Definition 10. A block trace graph (BTG) is denoted as G’ = (B, BE), where
each vertex bi ∈ B is a partitioned block and bi ⊂ P (P is the vertex set of CTG(P,
E)), and an edge bei = (bk, bj) ∈ BE exits if pkl ∈ bk and pjm ∈ bj, (pkl, pjm) ∈ E.
In Figure 7(a), the circles are blocks. For an edge bei = (bk, bj) ∈ BE,

—ω(bei) represents the total bandwidth request of the CTG edges between the
vertices in bk and bj .

—σ (bei) represents the tightest latency constraint among all edges (pkl, pjm)
for ∀pkl∈bk and ∀pjm∈bj . σ (bei) is represented in the number of hops among
the CTG edges between vertices in bk and bj .

—W(bei) represents the weight of bei. The calculation is the same as the weight
of edges in CTG.
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Fig. 7. (a) An example BTG. (b) Mapping result of the BTG to regions in a VACG. (c) Mapping of
vertices inside each block to the tiles in the corresponding region in VACG.

—An CTG edge (pi, pj)∈E belongs to a block bk if pi∈bk or pj∈bk. Ei represents
the set of edges belonging to bi.

—|bk| represents the number of CTG vertices in bk (the size of bk).

The vertices in each block bi are categorized into two types, and they are
mapped differently.

(i) Internal vertices. An internal vertex pintern has all its neighbors in the same
block of pintern. In Figure 7(c), vertices 0 and 1 are internal vertices. The
internal vertices set of bi is represented as INi.

(ii) External vertices. An external vertex pextern has at least one of its neighbors
not in the same block of pextern. In Figure 7(c), vertex 2 is an external vertex.
The external vertices set of bi is represented as EXi.

Definition 11. A Virtual ACG (VACG) is denoted as Ğ’ = (R, CH), where
a vertex ri ∈ R represents a partitioned region and ri ⊆ T (T is the tile set of
ACG(T, L)). Each edge chi = (rk, r j) ∈ CH represents the existence of direct
links between tiles in rk and r j . In Figure 7(b), each square box is region to be
mapped. For each edge chi ∈ CH,

—bw(chi) represents the total bandwidth provided by the ACG links between
all the tiles in rk and r j .

—c(chi) represents the cost of edge chi, which is calculated as the average
power per bit of the ACG links between all the tiles in rk and r j .

The Template 2 TEM algorithm has two major steps. In the first step, the
BTG is formed using a graph partition algorithm [Hendrickson and Leland
1995] to partition the CTG into four blocks. The VACG is formed by partitioning
the ACG into four default regions (e.g., square regions in Figure 7(b)). The
blocks in the BTG are mapped to the regions in the VACG. Then, the actual
regions of the VACG are partitioned according to the size of the block in the
BTG. Figures 7(a) and 7(b) illustrate this process. Blocks A, B, C, D are mapped
to regions 1, 2, 3, 4, respectively.

In the second step, the vertices in each block are mapped to the tiles within
its region. The external vertices are first mapped to the border of each region,
after which the internal vertices are mapped with larger weight edge first
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criterion. Figure 7(c) illustrates this process. The edges in a block are sorted in
a nonincreasing order using Sort Edge. For bi, let the sorted list be Êi = ê1, ê2,
. . ., ê|Ei |, i.e., W(ê1) ≥ W(ê2) ≥ · · · ≥ W(ê|Ei |) for êi ∈ Ei, 1≤i≤|Ei|.

The following text lists the TEM Template2 algorithm, which calls the
Map Edge and Improve Edge procedures described in Section 5.1. Based on
the mapping result of BTG onto VACG, the VACG is partitioned into regions in
a top-down manner. The size of each partitioned region needs to be set equal
to the size of the corresponding block in the BTG.

Figure 8 shows an example. Assume the size of br1, br2, br3, br4 is 3, 1, 4,
4, respectively. Then, the first partition generates P1 with tiles 0, 1, 2, 3, and
P2 with the rest tiles. Then, according to the sizes of the four blocks, P1 and
P2 are partitioned vertically. The final partitioned VACG regions are shown in
Figure 8.

The Map External Vertex Block procedure maps extern vertices to the bor-
der of each block.
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Fig. 8. An example of partitioning NoC into regions of VACG according to the blocks of CTG.

Figure 9 illustrates how an external vertex, pextern, is mapped if none of its
neighbors outside of its block has been mapped yet. Assume pextern’s block is
mapped to region 1. If pextern only has one neighbor outside of its block and
its neighbor’s block is mapped to region 2, pextern shall be mapped to a tile in
the shaded area in Figure 9(a). If its neighbor’s block is mapped to region 3,
then pextern shall be mapped to the shaded area in Figure 9(b). Similarly, if its
neighbor’s block is mapped to region 4, pextern shall be mapped to a tile in the
shaded area in Figure 9(c).

5.2.2 Complexity Analysis. The complexity of TEM Template2 is deter-
mined by the step where the vertices in each block are mapped to the tiles
within its region.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 1, Publication date: April 2010.



1:22 • X. Wang et al.

Fig. 9. Illustration of mapping an external vertex. The shaded area in region 1 is the border
between (a) region 2, (b) region 3 and (c) region 4.

Fig. 10. CTG of VOPD.

For each block, the external vertices are found and mapped first. This re-
quires scanning the edges in this block to find the external vertices, which
requires |Ei| time. For each external vertex, find a tile for it, which takes
O(|Ti|) time (Ti is the tile in the region which bi is mapped to). Then, the
internal vertices are mapped after sorting the edges that belong to this block.
The complexity is bounded by the complexity of Map Edge for the edges inside
a block. The runtime is

|Ei|+|bi|·log(|bi|)+|bi|·(|Ei|+|Ti|)+|Ei|·log(|Ei|)+|Ei|2+2·|Ei|·|Ti|+O(|T|+|E|).
Hence, the overall complexity of TEM Template2 is bounded to O((|E|+|T|)2)
as |bi|<|P|≤|T|, |Ei|<|E|, |Ti|<|T|.

5.2.3 An Example. Here we use the VOPD with latency constraint
[Srinivasan and Chatha 2005] shown in Figure 10 to illustrate how the
TEM Template2 algorithm works. The tile ordering is the same as shown in
Figure 6(a).

The sorted edge list is given by {(0, 1), (3, 4), (6, 7), (9, 11), (10, 11), (1, 2),
(2, 5), (4, 6), (6, 8), (9, 10), (8, 9), (3, 5)}. The four blocks after the partition are:
A{0, 1}, B{2, 5}, C{3, 4, 6, 7}, D{8, 9, 10, 11}. The mapping of the blocks onto
four default regions is shown in Figure 11. The partitioned VACG regions are
shown in Figure 12.

To save space, only the mapping inside block D is explained in detail.
Figure 13(c) shows the mapping result before the vertices in block D are
mapped. The edge list in block D is {(9, 11), (10, 11), (6, 8), (9, 10), (8, 9)}
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Fig. 11. Mapping blocks to the default regions in VACG.

Fig. 12. Partition of a NoC into regions.

and the external vertex is 8, then vertex 8 is mapped to tile 9, a tile sitting at
the border of regions C and D and adjacent to vertex 6. Now both of the two
vertices of edge (9, 11) are unmapped. Then, the edge list is searched again
and edge (8, 9) is found. Since vertex 8 is already mapped, vertex 9 is mapped
to a tile adjacent to vertex 8 and vertex 11 is mapped to a tile adjacent to
vertex 9. Next, for edge (10, 11), vertex 10 is mapped adjacent to vertex 11.
Figure 13(d) shows the result after all the vertices in block D are mapped.

5.3 Routing Path Allocation

After the mapping step, the minimum hop count between any mapped tile pair
is calculated, and this calculation and the bandwidth constraint shall guide the
routing algorithm to find the routing paths. In an NoC design, the deterministic
and static routing is preferred due to its simplicity and less resources needed
[Hu and Marculescu 2005]. In TEM, a similar routing algorithm as in Hu and
Marculescu [2005] to find the routing paths for each communication edge with
two objectives: (i) all the routing paths have to be minimal and the resulting
network has to be deadlock-free, and (ii) the bandwidth and latency constraints
need to be satisfied.

To ensure deadlock-free routing, the turns are restricted to the legal turn set
(LTS) [Hu and Marculescu 2005] allowed by the underline routing algorithm.
An LTS is composed of and only of those turns allowed in the corresponding
algorithm. Any path to be allocated can only employ turns from the LTS. A
legal path is a minimal path that employs the turns in LTS. Different from
Hu and Marculescu [2005], the flexibility of an edge is subject to the latency
constraint (i.e., an edge with tighter latency shall be made less flexible). Here,

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 1, Publication date: April 2010.



1:24 • X. Wang et al.

Fig. 13. Mapping results after block A is mapped (a), block B is mapped (b), block C is mapped (c),
and block D is mapped (d).

the flexibility of an edge eθ (i), flex(eθ (i)), is defined as f lex(eθ(i)) = δ(hM(pk),M(pj ) ×
σ (eθ(i))K , and

δ(H(M(pk), M(pj)) =
{

2, if there is more than one legal path
1, if there is only one legal path

[Duato et al. 2003], where H and σ , K are defined in Section 3. Edges with a
lower degree of flexibility are given a higher priority during the path allocation.

6. PERFORMANCE EVALUATION

To evaluate the performance of the TEM algorithm, both TEM Template1 and
TEM Template2 algorithms are implemented and simulated. The brand-and-
bound (BNB) [Hu and Marculescu 2005] and MOCA [Srinivasan and Chatha
2005] algorithms are also implemented and the mapping results of all three
algorithms are compared. The size of the work queue is properly selected for a
practical branch-and-bound algorithm [Lin et al. 2008; Murali and De Micheli
2004]. If the length of work queue is not limited, the solution of BNB is nearly
optimized. However, when the network size increases, both the runtime and
the memory consumption of BNB increase dramatically. Controlling the length
of work queue attempts to make a compromise between the quality of solu-
tion and the runtime of BNB. To demonstrate the effects of different routing
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Table I. Numbers of Vertices of Random Benchmarks
for Different Network Sizes

Network size Numbers of vertices of benchmarks
4×4 13, 14, 15, 16
5×5 23, 24, 24, 25
6×6 33, 34, 35, 36

Table II. Comparison of Power Consumption (Normalized) of TEM and MOCA
on Mesh-Based NoCs with Different Network Sizes

Applications of Template 1 Applications of Template 2

TEM TEM

Network size XY Odd–even MOCA XY Odd–even MOCA
4×4 0.94 0.88 1 0.95 0.89 1
5×5 0.93 0.87 1 0.94 0.92 1
6×6 0.86 0.84 1 0.87 0.83 1

algorithms, the XY routing and odd–even routing (one adaptive routing algo-
rithm) algorithms are selected. Two types of applications, random applications
generated from task graph for free (TGFF) [Dick et al. 1998] and multime-
dia applications from Hu and Marculescu [2003] and Srinivasan and Chatha
[2005], are adopted as benchmarks. The Noxim simulator [Noxim] is modified
to obtain the total communication power after the mapping and the routing
path allocation steps. The energy dissipation parameter for routers from Orion
[Wang 2002] and the link power dissipation parameter from COSI [Pinto et al.
2009], both based 90 nm CMOS technology, are adopted in our simulations.
The simulations are performed on a PC with one Intel Core2 P8600 2.4GHz
processor and 2GB RAM.

6.1 Experiments on Random Applications

We first apply TEM and MOCA to map five randomly generated benchmark
applications onto 4 × 4, 5 × 5, and 6 × 6 mesh-based NoCs. The numbers of
vertices of random benchmarks over these three different sizes of networks are
shown in Table I. The results are tabulated in Table II. For the ease of compar-
ison, the power consumption of the mapping results obtained from MOCA and
TEM for each benchmark is normalized. For each template on networks with
different sizes 4 × 4, 5 × 5, 6 × 6, five random benchmark applications are
generated. The number of vertices in each of the five applications is selected
from Table I.

Table II shows that that TEM outperforms MOCA with ≥5% less power
consumption when XY routing is used and with >10% less power consumption
when adaptive routing is used. For applications of Template 1, the improvement
of TEM over MOCA becomes more noticeable with the increase of the network
size.

Table III reports the work queue length and the runtimes of the branch-
and-bound algorithm and TEM. We set the mapping result of TEM as the seed
and adjust the length of work queue in BNB until the mapping result of BNB
outperforms that of TEM (the seed), that is, the power consumption of BNB is
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Table III. The Work Queue Length and Runtime of BNB When BNB Outperforms
TEM in Power Consumption (Normalized)

BNB

Length of work Ratio of runtime Ratio of power consumption
Network size queue of BNB/TEM of BNB/TEM

4×4 1,000 70.5 0.98
5×5 10,000 606.42 0.93
6×6 100,000 N/A N/A

Fig. 14. Runtime vs. network size for TEM and MOCA.

lower than that of TEM. The ratio of BNB’s runtime over TEM is defined by
the runtime of BNB divided by that of TEM, with given length of work queue.
The ratio of power consumption over TEM is defined as the power consumption
of BNB divided by that of TEM. The ratio of power consumption over TEM of
6× 6 networks is not available because BNB with a work queue size of 100,000
cannot generate better mapping results than TEM after running for 3 hours.
As also shown in this column, with the increase of network size, in order to
outperform TEM, BNB has to run a much longer time, so TEM is much more
scalable than BNB with the increase of the network size.

Next, we compare the runtime of MOCA and TEM when network size grows.
For each network size, five random applications are generated with the number
of vertices equal to the number of tiles. As shown in Figure 14, the average
runtimes of MOCA and TEM are comparable.

6.2 Experiments on Multimedia Benchmarks

Multimedia benchmarks of both Template 1 and Template 2 are tested on a
4 × 4 mesh-based NoC. Table IV lists these benchmarks. For benchmarks of
both templates, we compare the simulation results of TEM, BNB, and MOCA.
Specifically, we compare the degradation of normalized power consumption of
TEM compared to BNB (i.e., the increase in power consumption of mapping
results from TEM compared to that from BNB) and the degradation of MOCA
compared to BNB. Since 4 × 4 mesh is relatively small in size, the length of
work queue in BNB is set to unlimited (i.e., no speed-up technique is used). The
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Table IV. Multimedia Programs and Their Templates

Benchmark Template Description
MPEG4 1 MPEG4 decoder
263enc 1 H263encoder
263enc+MP3enc 1 H263encoder and MP3 encoder
263enc+MP3dec 1 H263encoder and MP3 decoder
263enc+263dec 1 H263encoder and H263 decoder
Multimedia Systems (MMS) 1 Multimedia Systems
VOPD 2 Video plane object decoder
MP3enc 2 MP3 encoder
MP3enc+MP3dec 2 MP3 encoder and MP3 decoder

Table V. Comparison of Power Consumption (Normalized) of TEM and MOCA over BNB on
Benchmarks of Template 1

With latency constraint Without latency constraint

TEM TEM

Benchmarks XY Odd–even MOCA BNB XY Odd–even MOCA BNB
MPEG4 1.05 1.05 1.45 1 1.01 1.01 1.06 1
263 enc 1.07 1 1.11 1 1.4 1.03 1 1
263enc+MP3enc 1.14 1.11 1.27 1 1.01 1 1 1
263enc+MP3dec 1.06 1.01 1.28 1 1.04 1.01 1 1
263enc+263dec 1.06 1.01 1.9 1 1.06 1.02 1 1

runtime of BNB is in the order of a few minutes depending on the characteristics
of the CTG.

Table V shows the result of benchmarks of Template 1 with and without
latency constraints. When the latency constraints are not considered, the result
of TEM is comparable with that of MOCA. When the latency constraints are
considered, the TEM algorithm outperforms MOCA for most media programs
listed in Table IV. The degradation of TEM as opposed to BNB is within 10%
with odd–even routing. The reduction in power consumption of TEM compared
to MOCA is over 15%. For MPEG4dec, the degradation of TEM is only 6%
compared to that of MOCA 45%. This is due to that the weight of edges with
tight latency constraint, but low bandwidth request is greatly increased and the
difference in edge weights is increased. The recursive graph partition of MOCA
may separate IP cores having communications with high bandwidth request
but loose latency constraint. Thus, edges with higher bandwidth requests are
mapped to paths with more hop counts, resulting in higher power consumption.
Consequently, the mapping of tightly coupled subgraphs is not optimized.

Table V also shows that the power consumption of mapping result from
TEM with odd–even routing is lower than that from TEM with XY routing for
263enc, 263enc + MP3enc, 263enc + MP3enc, 263enc + 263dec with and with-
out latency constraints. This is due to the fact that applications of Template 1
have several hot nodes that request high bandwidth/tight latencies. Adaptive
routing is more suitable for this type of applications with unevenly distributed
communication patterns.
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Table VI. Comparison of Power Consumption (Normalized) of TEM over
MOCA on MMS (Template 1)

With latency constraint Without latency constraint

TEM TEM

Benchmarks XY Odd–even MOCA XY Odd–even MOCA
MMS 0.9 0.84 1 0.97 0.91 1

Table VII. Comparison of Power Consumption (Normalized) TEM and MOCA over BNB on
Benchmarks of Template 2

With latency constraint Without latency constraint

TEM TEM

Benchmarks XY Odd–even MOCA BNB XY Odd–even MOCA BNB
VOPD 1.02 1.02 1.1 1 1.02 1.02 1.08 1
MP3enc 1.1 1.1 1.12 1 1 1 1 1
MP3enc+MP3dec 1.14 1.11 1.41 1 1.08 1.07 1.08 1

The multi-media system (MMS) benchmark [Hu and Marculescu 2005] is
also simulated on a 5 × 5 mesh-based NoC. Table VI shows the reduction in
power consumption (normalized) of TEM over MOCA.

Table VII shows the benchmark result (Template 2) with and without latency
constraints. Without latency constraints, the result of TEM is comparable with
that of MOCA. On average, the degradation of TEM over BNB is within 10% for
both XY routing and odd–even routing. With latency constraints, the power con-
sumption of mapping result from TEM is slightly lower than that from MOCA
for VOPD and MP3enc. For MP3enc + MP3dec, TEM achieves significant re-
duction in power consumption compared to MOCA. This is due to that the TEM
algorithm for applications of Template 2 uses a divide-and-conquer approach.
Inside each partitioned block, TEM first maps external vertices to the border
of the block and the remaining edges with larger weight first criterion. Thus,
larger weight edges are mapped first inside each block. MOCA, on the other
side, recursively partitions the CTG without considering the structure of the
network. Thus, some edges with large bandwidth requests but satisfy low la-
tency constraint may be separated and allocated to tiles with higher hop counts.

For benchmarks of Template 2, the power consumption of mapping result
from TEM with odd–even routing is slightly lower than that from TEM with
XY routing. Since the communication traffic is more evenly distributed in this
type of applications, the superiority of odd–even routing over XY routing is not
so significant under such traffic as compared to what is seen in Template 1.

7. CONCLUSION AND FUTURE WORK

This article presented a template-based greedy algorithm to address the IP
mapping problem under the bandwidth and latency constraints. An application
falls into Template 1, if there are one or more hot nodes in the application which
have many communications demanding either higher bandwidth or tighter
latency. In this case, the proposed algorithm TEM maps the hot nodes first
along with their four most significant neighbors, after which the remaining IP
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cores are mapped in descending order based on the edge weights. On the other
hand, an application is categorized as Template 2, if the communications are
nearly evenly distributed among the vertices. In this case, TEM first divides
the NoC into regions and CTG into blocks, then it maps the IP cores inside each
block in a divide-and-conquer manner. The experiments on both random and
multimedia benchmarks showed that TEM generates high quality mapping
results with low runtimes. Future work includes extension of TEM to other
NoC topologies, such as folded torus, fat tree, and a few others.
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