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Abstract 

We study the problem of centrally scheduling multiple messages in 
a linear network, when each message has both a release time and 
a deadline. We show that the problem of transmitting optimally 
many messages is NP-hard, both when messages may be buffered 
in transit and when they may not be; for either case, we present effi- 
cient algorithms that produce approximately optimal schedules. In 
particular, our bufferless scheduling algorithm achieves throughput 
that is within a factor of two of optimal. We show that buffering 
can improve throughput in general by a logarithmic factor (but no 
more), but that in several significant special cases, such as when 
all messages can be released immediately, buffering can help by 
only a small constant factor. Finally, we show how to convert our 
centralized, offline bufferless schedules to equally productive fully 
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distributed online buffered ones. Most of our results extend readily 
to ring-structured networks. 

1 The Time-Constrained Communication Problem 

1.1 Introduction 

Communication and interconnection networks are currently under- 
going a transition from traditional best-effort data networks to net- 
works capable of routing messages with timing constraints. In the 
area of communication networks, this shift is motivated by mul- 
timedia applications that use continuous media such as video and 
audio [27]; for instance, a real-time audio packet in a teleconferenc- 
ing application must reach its destination within a specified win- 
dow of time for it to have any utility. The analogous shift in the 
development of interconnection networks is motivated by emerg- 
ing real-time applications that rely on time-constrained communi- 
cation, such as industrial process control, avionics, and automated 
manufacturing [41]. 

In this paper, we consider the scheduling of the transmission of 
a given set of time-constrained messages in a multi-node network. 
Our goal is to deliver as many of the given messages as possible, 
within the following framework: 

l Each message consists of a single packet. A network node 
may send many messages to each of the other nodes. 

l Each message m has, in addition to a source-node sm and 
a destination-node d,, a release time, which is the earliest 
moment at which m can start its journey from sm to d,, and 
a deadline, beyond which no purpose is served by delivering 
m. This means that a message should be dropped as soon as 
it can no longer be delivered by its deadline. 

Our framework allows us to model multiple classes of messages 
with differing timing requirements-a feature that is essential to 
modeling multimedia traffic. We can also mode1 messages for which 
conventional best-effort transmission is sufficient, by setting these 
messages’ associated deadlines to co. Our framework should be 
contrasted with that of more traditional routing problems, which 
seek to optimize global objectives such as overall completion time 
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or average message latency, and do not associate time constraints 
with individual messages. 
The Network Model. We focus on routing messages in linear 
networks-although most of our results apply also to ring-structured 
networks. This focus on linear topologies is a first step towards 
considering more complex interconnection topologies proposed in 
the literature, such as higher-dimensional arrays [41]. There are 
often also other rationales for the focus, such as the following. (a) 
When routing messages in electro-optical interconnection networks 
such as hierarchical rings [22] or meshes [41], or their relatives, 
one might have each packet follow a path composed predominantly 
of long (inexpensive) bufferless hops, punctuated by a very few 
(costly) optical-electric conversions at certain nexus nodes. In a 
mesh, for instance, one might employ a dimension-order routing 
strategy [41] which uses our near-optimal bufferless routing along 
rows and along columns but that performs a single optical-electric 
conversion to change dimensions, (b) In less regularly structured 
communication networks, one often routes messages along sub- 
networks that are either linear or ring-like, because of their easy 
routing-path selection (coupled, in the case of rings, with a mod- 
icum of tolerance to faults). 

An n-node linear network can be viewed as a graph whose 
node-set is vn = { 0, 1, , n - 1) and whose arcs are all pairs 
(Ic, Ic + l), where 0 < k < n - 1. We assume a dual-ported 
model where each node can pass and receive one message to/from 
both neighbors at each step; each arc is a full-duplex link that can 
accommodate one message in each direction at each step. We as- 
sume messages are routed monotonically (i.e., with no backtrack- 
ing) from their sources to their destinations. Thus, our model al- 
lows us to decompose our message delivery problem into two dis- 
joint subproblems, one for left-to-right messages, wherein .sm < 
d,, and one for right-to-left messages, wherein sm > d,. Merely 
superposing optimal solutions to these subproblems yields an op- 
timal solution to the full problem. Henceforth, we discuss just fhe 
left-to-right subproblem. 

We study two scenarios, distinguished by buffering policies. In 
the first, a network’s nodes are allowed to buffer messages in tran- 
sit, in order to relieve contention for network links. In the second, 
no such buffering is allowed, so that message m must move one 
step closer to d, at every moment after its departure from sm. 
The first scenario, which is appropriate for purely electronic envi- 
ronments, has been studied extensively for decades. The second 
scenario, which is particularly appropriate for current and foresee- 
able optical technologies [22], is only beginning to receive attention 
in the literature [S, 371. Significantly, we shall see that the study of 
the bufferless scenario provides important insights into the buffered 
scenario. 
Definitions. An instance of the buffered (resp., bufferless) message- 
scheduling problem OPTB (resp., OPTBL) is a set Z of mes- 
sages to be routed, possibly using buffers (resp., without using 
buffers). The goal is to schedule a subset OPTJ+I(Z) E Z (resp., 
OPTBL. (I) C 1) of maximum cardinality. Note that with release 
times and deadlines, this is the natural question to study, since there 
is no added benefit for messages that arrive early or only marginally 
miss their deadline. The set of messages in Z that are succcss- 
fully delivered under a scheduling algorithm A is denoted A(Z); 
the throughput of A is IA(Z)). 
Summary of Results. We present three categories of results. When 
messages may not be buffered in transit, the problem of maximiz- 
ing throughput is NP-hard (Section 3.1); however, one can effi- 
ciently achieve at least one-half optimal throughput (Section 3.2). 
In Section 4, we ask how much message-buffering can enhance the 
throughput of scheduling algorithms. We show that when one or 
more of the three parameters that complicate message-scheduling- 
the release time, the source-target distance, and the allowable delay- 

is held constant, buffers can increase throughput by only a small 
constant factor (Section 4.1); however, in general, buffers can in- 
crease throughput by as much as a logarithmic factor, but no more 
(Section 4.2). We show that achieving optimal throughput is NP- 
hard also when message-buffering is allowed (Section 5.1); how- 
ever, we provide a distributed (a/k/a “local control”) and online 
algorithm that uses buffers to exactly mimic the performance of the 
(centralized and offline) bufferless approximation algorithm (Sec- 
tion 5.2). In this algorithm, information about a message m to be 
sent arrives only at the source-node sm, and only at the time when 
message m is released. Each node makes all routing decisions lo- 
cally, using only the information that it receives when messages 
are released or that it receives from other nodes during the course 
of routing messages. The results of Section 4 that relate buffered to 
bufferless routing imply that our distributed and online algorithm 
achieves nearly optimal throughput. 

1.2 Related Work 

To our knowledge, we present the first analytical results for rout- 
ing time-constrained messages that have arbitrary release times and 
deadlines, Of course, best-effort routing in fixed-connection net- 
works has a long history; see [23, 241 for a survey. Much early 
work routes static message-sets, wherein ail messages are released 
simultaneously [45, 26, 40, 25, 31, 321. More recent work looks 
at dynamic routing, wherein messages arrive at varying times, gov- 
erned either by a random process [43, 7, 171 or an adversary [6,2]. 
Several recent studies focus on bufferless routing algorithms, which 
allow simpler, faster switches. Optical networks provide strong 
incentives to avoid buffering, due to the cost of optical i+ elec- 
tronic conversions [22]. The important class of hot-potato (a/k/a 
deflection) bufferless routing algorithms has been widely studied 
[ 1,4, 10, 20, 8,441. More general approaches to bufferless routing 
can be found in [5, 37, 39,9, 121. These sources focus on optimiz- 
ing a global parameter such as overall completion time or average 
message latency: individual messages do not have deadlines. 

Some recent papers focus on the “session model,” wherein session 
i packets arrive once every l/ri time steps and travel along spec- 
ified length-di paths. A distributed routing algorithm in [35, 361 
guarantees a delay of Pdi/ri for session-i packets, provided that 
edges are used with rate < 1; this bound is improved to O(l/ri + 
d;), via a centralized algorithm, in [3]. By creating a different ses- 
sion for each packet, these results can be used to route each packet 
pi to its destination in time O(c; + di), where ci is the maximum 
congestion on the path of pi. Note that while these results provide 
per-packet delay bounds, they do not accommodate arbitrary timing 
requirements for each packet, i.e., arbitrary release times and dead- 
lines. A recent paper [30] considers the problem of routing a static 
set of messages with arbitrary deadlines in the linear network with- 
out dropping any of the messages. They show that if there exists 
a feasible schedule then the closest-deadline-first greedy strategy 
succeeds in routing all the messages. 

There are several empirical, simulation-based, studies of time- 
constrained routing. [41] introduces a router architecture for mes- 
sages with individual deadlines, using a multi-class variation of 
the earliest due-date algorithm [29]. [48] proposes a minimum- 
laxity-first protocol for transmitting messages with deadlines in a 
multi-access shared-bus network. Some scheduling policies-such 
as Virtual Clock [47], Stop-and-Go [ 151, Rotating Combined Queu- 
ing [21]-do not explicitly use message deadlines, but just attempt 
to keep the worst-case message delay small and bounded. Other 
relevant experimental work includes [33,46, 28,42, 131. 
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Figure 1: Left side: Six message parallelograms on the 22-node line. Right side: (a) Available bufferless delivery routes for message #2 of 
the 1efthandBgure; (b) the mesh of available buffered delivery routes for message #5 of the lefthandjgure. 

2 A Geometric View of the Problem 

Fundamental to both our insights and analyses is the following ge- 
ometric transformation of our message scheduling problem. Say 
that we are transmitting an ensemble M of messages in the net- 
work whose node-set is V, g (0, 1, . . . , n - 1) and whose arcs 
are all pairs (/e, k + I), where 0 5 Ic < n - 1. Consider the “one- 

way infinite” subset M, 2 {(t, w) 1 t 1 0, and 0 5 v 5 n - 1) 
of the two-dimensional integer lattice. 

. Each “row” Rt g {(t, u) IO I: u 5 n-l} of M, represents 
“time-instant” t. 

l Each “column” C, g {(t, v) 1 t 2 0) represents node u 
when 

- v is the source of a message, or 

- v is the destination of a message that originates at node 
v’ < v. 

Then each message m E M can be viewed as a parallelogram 
within M,, whose left and right sides are vertical and whose tops 
and bottoms have 45-degree southwest-to-northeast (henceforth “sw- 
ne”) slopes. Specifically, if m has source-node sm, destination- 
node d,, release-time t$‘, and deadline t:‘, then m’s parallelo- 
gram has the following shape. The parallelogram’s: 

l left (vertical) side lies between rows tk’ and t$-(d, -sm) 
within column s,; 

l its right (vertical) side lies between rows tg’ + (d, - sm) 
and t$ within column d,. 

&’ g &$ _ $’ + s m - d, is the slack of message m, and 
6, g d, - s, is its span. 

In Fig. 1, we depict six time-constrained messages in a 22-node 
linear network, over a period of 25 time units. Reading from left 
to right in the figure, and from bottom to top in each column, the 
messages have the defining characteristics listed in the following 
table. 

Message 1 Source 1 Destination 1 Release 1 Deadline 
Number 1 Node Node 

m=l Sm = 2 d, = 9 
m=2 sm = 2 d, = 12 
m=3 sm = 2 d, = 7 
m=4 Sm = 5 d, = 14 
m=5 sm = 10 d, = 18 
m=6 sn = 11 d, = 13 

1 Time 
t(,d) = 13 
tr’ = 23 
ty’ = 24 
tk”’ = 23 
tS”’ = 15 
t(d) = g 6 

To understand the role of the parallelograms, focus on a mes- 
sage m that can be delivered. Then m must leave sm at some time 
t$’ < tl 5 tC’ - (d, - sm); it can leave no earlier, for &’ is 
its release time; it can leave no later, for then it would not reach d, 
before its deadline t$. By similar reasoning, m arrives at d, at 
some time tg’ + (d, - sm) 5 tz 5 tf,f’. The trajectory of m is a 
path in m’s parallelogram from row tl on the left to row tz on the 
right, having the following form. 

l In the bufferless case, the trajectory is a 45-degree sw-ne line 
whose linearity reflects m’s unimpeded progress from sm to 
d,, with no delay at an intermediate node; see Fig. l(a). 

l In the buffered case, the trajectory is a “staircase”: left-to- 
right motion is along 45-degree sw-ne edges; “risers” (which 
represent m’s being detained in a buffer) are upward edges; 
see Fig. 1 (b). 

A schedule for a set M of messages is a set of trajectories, at most 
one for each m E M, such that no two trajectories share a 45- 
degree sw-ne edge; distinct trajectories in a schedule may, however, 
share a “riser” edge or an endpoint. The throughput of a schedule 
is the number of independent trajectories that it specifies. 

3 Bufferless Message-Scheduling 

Our goal in this section is a centralized bufferless scheduling al- 
gorithm whose schedules are maximal in throughput. We show in 
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Section 3.1 that this goal is NP-hard. In Section 3.2, we devise a 
centralized bufferless scheduling algorithm whose schedules come 
within a factor of 2 of the goal. 

3.1 The NP-Hardness of Optimal Bufferless Scheduling 

Unfortunately, like many significant scheduling problems, the buffer- 
less message-scheduling problem OPTBL is NP-hard. 

Theorem 3.1 The bufferless message-scheduling problem OPTBL 
is NP-hard. 

Proof. See Appendix A. 

3.2 A P-Approximation Algorithm for Bufferless Scheduling 

WhileTheorem 3.1 suggests that we cannot efficiently achieve truly 
optimal throughput, we show now that we can efficiently achieve 
throughput that is within a factor of 2 of optimal. 

Theorem 3.2 There is a polynomial-time algorithm that produces 
bufferless schedules whose throughput is within a factor of 2 of 
optimal. 

Proof. We represent each message in the set Z to be scheduled 
via its parallelogram. At each step of our algorithm, we maintain 
the set U C Z of as-yet unscheduled messages and the set S of 
assigned message-trajectories; initially, U = Z and S = 0. 

A scan line is any sw-ne line segment in M, that originates 
either on the X-axis or in Column Co and terminates either on row 
max,,z{t$$} or in Column C,- 1. Each scan line is a segment of 
a level line of the function z - 1~, hence is uniquely specified by its 
ao-parameter, namely, the (abscissa - ordinate) difference of any 
point on the line. This specification affords us a natural “left-to- 
right” ordering of scan lines, in increasing order of ao-parameters. 
Algorithm BFL: preliminaries. A scan line is active if no scan 
line to its “left” has already been scanned; initially all scan lines are 
active. A scan line is relevant to a message 771 if it intersects m’s 
parallelogram. We maintain a priority queue Q of scan lines, or- 
dered by ao-parameter, from which we can extract the “rightmost” 
active scan line that is relevant to some m E U. We denote by 
BFL(Z) the subset of Z actually scheduled by Algorithm BFL. 

Algorithm BFL 

1. Extract a scan line e from the priority queue Q. 

2. Determine the sequence of segments of e determined by all m E 
U which ! is relevant to. 

3. Use a se-nw scan of f? to find a maximal set S(e) of segments 
that are independent in the sense of not intersecting, except 
perhaps at their endpoints. In more detail: 

a. Start scanning e at the “lowest” left endpoint of a paral- 
lelogram that I intersects. 

b. Find the “lowest” intersection off? with the right endpoint 
of a parallelogram p. Use the segment of e that in- 
tersects p to schedule the message associated with p. 
For the remainder of this step, ignore all parallelograms 
whose left endpoints along e lie “below” the right end- 
point of p. 

c. Continue scanning C at the “lowest” left endpoint of a par- 
allelogram that either coincides with, or lies “above” 
the right endpoint of p along f?. If no such left endpoint 
exists, then this step is complete: else repeat sub-step 
(b). 

Note that we never schedule any parallelogram whose inter- 
section with C properly contains some other parallelogram’s 
intersection with e. 

4. Add the segments in S(I) to set S; remove the associated mes- 
sages from U. 

5. If Q is not empty, go to step 1; else return the schedule S. 

Claim. (BFL(Z)I 2 $IOPTBL(Z)I. 
Verification. Consider an arbitrary m that is assigned a scan line 
segment by OPTBL but not by BFL. Let the right endpoint of a 
scan line segment be the last edge of the segment. It must be that 
the scan line segment e(m) assigned to m by OPT~L contains 
the right endpoint of at least one scan line segment in S; asso- 
ciate e(m) with the “leftmost” of these. Since OPTBL produces a 
valid schedule, at most one such e(m) can be assigned to each scan 
line segment in BFL. We thus have a one-to-one mapping from 
OPTBL (1) - S into S, whence the desired inequality. n 

The implementational details and a tighter time analysis of Al- 
gorithm BFL appear in the full paper. Here, we prove the follow- 
ing claim. 
Claim. Algorithm BFL can be implemented in time polynomial 
in n + 1x1, independent of the message slacks. 
Verification. The slack of a message m can be set to min{ 111 - 
1, tk’}, without altering the throughput. Thus, the number of scan 
lines considered in step 1 is polynomial in (11. For a given scan line 
e with ao-parameter Q, a message m is relevant to C if and only if I 
intersects the message-parallelogram of m, i.e., d, - t$,$’ _< cy _< 
sm -tk’. The left (or lower) endpoint of the segment of e contained 
in the parallelogram of message m is (sm, sn - a), while the right 
(or upper) endpoint is (d,, d, - cr). Thus, computing the set of 
segments of e that correspond to relevant messages in U in step 2 
takes time O((Ul), which is O((Zl). Choosing a subset S(e) of 
these segments takes time polynomial in n + (U(. Therefore, steps 
3 and 4 take time polynomial in n + 111. n 

4 Comparing Buffered and Bufferless Message Schedul- 
ing 

How much can the ability to buffer messages enhance the through- 
put of time-constrained communication? We answer this question 
with bounds on OPTB (1) in terms of OPTBL (1). We show that, 
when all messages have the same slack, or the same span, or the 
same release time, buffering can enhance throughput by at most a 
small constant factor (Section 4.1), while in general, it can improve 
throughput by a logarithmic factor, but no more (Section 4.2). 
Notation. For each message m in BFL(Z) (resp., OPTB(Z)) 
(resp., OPTBL(Z)), we denote by n(m) (resp., nB(m)) (resp., 
~BL. (m)) the trajectory assigned tom by algorithm BFL (resp., an 
optimal buffered schedule) (resp., an optimal bufferless schedule). 

4.1 Important Special Cases 

We focus on three natural restrictions of the routing problem, as- 
suming in turn that all messages have the same slack, or the same 
span, or the same release time. 

4.1.1 The Power of Buffers when Message-Slacks are Uni- 
form 

Theorem 4.1 Ifall messages in problem instance Z have the same 
slack S, then OPTB (Z) 5 3 . OPTBL (I). 
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Proof. We compare JOPZ’B(Z)) with IgFL(Z)I, using a scheme 
in which messages in OPTB(Z) - BFL(Z) donate “credits” to 
messages in BFL(Z). A message m E OPTB(Z) - BFL(Z) 
is not included in BFL(Z) because each of the S + 1 poten- 
tial bufferless trajectories specified by its parallelogram contains 
the right endpoint of at least one trajectory r(m’) of a message 
m’ E BFL(Z). We collect a set D, of some S + 1 messages 
from BFL(Z) that collectively block all of m’s potential buffer- 
less trajectories, and we have m “donate” l/(S + 1) units of credit 
to each m’ E D,. (Note that some m’ E BFL(Z) may receive 
credits from more than one m E OPTB (Z) - BFL(Z).) 

Clearly, this scheme allocates IOPTB(I) - BFL(I)I units of 
credit in all. To bound the total credits a message m’ E BFL(Z) 
can receive, let R,,,, G OPTB(Z) - BFL(Z) be the set of mes- 
sages that donated credit to m’. The parallelogram of each m E 
R,, must contain the right endpoint, (v,t) E Mn, of r(m’). 
Hence, m’s optimal buffered trajectory nB(rn) must “reach” node 
‘u, say at time TV. Since at most one message arrives at 21 in a 
single timestep, TV,, is unique to message m. Further, since all mes- 
sages have slack S, each m E R,, has IV-~ - tl < ,S, whence 
IR,, ( 5 25 + 1. Since each m E R,, contributes exactly 
l/(S + 1) units of credit to m’, the total credit received by m’ 
is 

l 
mER ,s+1 5 s+1 - c- 

2s+1 < 2. (1) 

It follows that the aggregate credit received by messages in BFL(Z) 
does not exceed P.IBFL(Z)I. Thedesired bound now follows from 
the fact that the total credits donated by messages in OPTB (2) - 
BFL(Z) equals the total credits received by messages in BFL(Z), 
combined with the definition of optimality: 

n 

4.1.2 The Power of Buffers when Message-Spans are Uniform 

Theorem 4.2 If all messages in problem instance Z have the same 
span 6, then OPTB (2) 5 2 OPTBL (Z). 

Proof. We show how to route at least half the messages in OPTB (Z) 
without buffers. Partition OPTB(Z) into sets SO and S1, by plac- 
ing each m E OPTB (I) into Sj iff m’s parallelogram intersects 
a column C;(,J+~), where 0 < i 5 L(n - l)/(& + l)] and i mod 
2 = j: each m E OPTB(I) intersects exactly one such column. 
At least one 1.9, I 2 ]0PT~(2))/2; assume without loss of gener- 
ality that set is SO. We construct a bufferless trajectory z(m) for 
each m E So as follows. Let rB(m) “reach” a column &(J+~) at 
time TV. (By construction, such an i exists for each m E So.) The 
bufferless trajectory a(m) is the unique sw-ne segment that passes 
through point (2i(S + l), rm). 

We claim that the bufferless schedule just constructed is valid, 
in that distinct messages are assigned disjoint trajectories. To wit, 
say that columns Cail(d+l) and Czi,(a+1) intersect $rnl) and 
;i(mz), respectively. First, if il # i2, then these columns are at 
least 2(S + 1) apart, whence G(ml) and ?(m,), both having span 

6, cannot intersect. Say next that il = i2 g i. Since the buffered 
trajectories ?‘r~(ml) and rB(m2) reach column C2i(s+1) at ~~~ 
and 7;n2, respectively, we have ~~~ # 7m2; hence, %(m,) does 
not intersect %(mp). Our bufferless schedule for So is thus valid, 
whence IOPTBL((Z)I 2 [SOI 2 ~IOPTB(Z)I. n 

4.1.3 The Power of Buffers when Release Times are Uniform 

Theorem 4.3 If all messages in problem instance Z have release 
time zero, then OPTB (Z) 5 2 OPTBL (Z). 

Proof. Let C be any buffered schedule that specifies trajectories for 
a set of messages C(Z) E 1. We say that m’ E C(Z) conflicts with 
m E C(Z) if (a) m’ reaches its destination on the same scan line 
as m, and (b) .S,I < d, < d,,. C is a single-con$lict schedule 
if for each m E C(Z), there is at most one other m’ E C(Z) that 
conflicts with m. 
Claim 1. At least half the messages in any single-conflict buffered 
schedule C can be routed without using buffers. 
Verification. We filter the messages in C(Z), dropping some and 
routing others without buffers along the scan lines on which they 
reach their destinations under C. We select the messages to route 
greedily, by performing a sw-ne traversal of each scan line and 
scheduling a message iff it does not conflict with any previously 
scheduled message. By definition of single-conflict, each message 
that we schedule can block at most one other message, whence the 
Claim. 
Claim 2. Any static message-set can be optimally scheduled via a 
buffered single-conflict schedule C. 
Verification. We start with an optimal buffered schedule C’ for the 
messages in OPTB (2) and convert it in stages to a single-conflict 
schedule C. We process scan lines from left to right, rerouting some 
messages if necessary, to ensure the single-conflict property. When 
we reschedule a message m, we use only scan lines to the right of 
the current one and only messages whose destinations are to the 
right of d, ; therefore, a single left-to-right pass over the scan lines 
converts C’ to a single-conflict schedule C. 

We describe a single iteration of the rerouting procedure. We 
convert a schedule C’ under which message m has (potentially) 
multiple conflicts along scan line !--call them ml, , mk, where 
dm, < dm, < < d,,-to a schedule C”’ under which m has 
at most one conflict along C. Say that k > 2 (or else no rerouting is 
needed). We transform C’ to C”’ in two steps. 

Step 1. We reschedule mk, routing it as before until it reaches d,, 
and then routing it to d,, along e. 

Step 2. We use the space freed by delaying mk to “push” all other 
messages on e between d, and d,, , including 
ml, ma, , rnk-1, to a scan line to the right of e. 

This procedure ensures that m conflicts along e only with mk. 
We accomplish Step 2 as follows. Let p be the distance traveled 

by mk along C under C’. Denote by C” the “schedule” obtained by 
performing Step 1 on C’. Now, C” may not be a valid schedule: 
there may be a u E {d,, . . , d,, - q - l} such that more than 
one message moves along e from v to v + 1 at the same time. 
We transform C” into a valid schedule C”’ by removing all other 
messages on e between d, and d,, - Q. We produce, in stages, a 
sequence of schedules, cd,,, , cd,,, +1, , Cd,,,, -q, such that 

. cd,,, = C”, and Cd,,-, = C”‘. 

l Each C, is valid along scan line C up to node w, for d, 5 
u i dm, - q. 

We exploit the static nature of Z to transform each C, to X,+1. 
Say that m’ # mk moves from ?J to 2) + 1 along e. (If no m’ exists, 
then &+I = C,.) We create &,+I by altering C, so that m’ 
moves from v to w + 1 on a scan line to the right of e. Let C, be the 
scan line along which rnk moves from v to v + 1 under C’. Note 
that under C, , no message moves from node u to 2) + 1 along e,. 
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Now, if TJ = s,,, then since t$ = 0, we can simply reschedule 
m’ to travel from v to v + 1 along C,, and we are done. If w > S,I , 
then we must be more careful. Let I’ be the scan line along which 
m’ moves from v - 1 to v under C,. If e’ is not to the left of e,, 
then we are done, since again we can simply reschedule m’ from 
node 2, to IJ + 1 along &,; however, we cannot do this if e’ lies to 
the left of &,. In this case, we reschedule m’ from w to v + 1 along 
e’. If no message was previously routed from v to v + 1 along e’, 
then again we are done. Otherwise, since C, is valid up to 21, and 
since m’ is routed from w - 1 to u along e’, some other message m” 
must encounter e’ at w. We repeat the same process with m”, and 
we keep repeating until we reach either & or any other scan line 
that does not forward a message from 2, to 2) + 1 under C,. With 
each new message, we arrive at least one scan line closer to &; 
hence we reach either & or some other empty scan line eventually. 
Claim 2 follows. 

If we use Claim 2 to construct a single-conflict schedule for 
OPTB (I), then use Claim 1 to route at least half the messages in 
OPTB (1) without buffers, we achieve the theorem. n 

4.2 The General Comparison 

We now derive a tight (to within constant factors) relationship be- 
tween (OPTB (Z) I and IOPTBL (2) 1 for arbitrary problem instances 
2. We express our bounds in terms of the parameter A(Z) ‘% 

min{a(ZJ, a(Z), [Zl}, where ~(1) 2 max,,~{t~)} is themax- 
imum slack in 1, and 6(Z) 2 max,ez{6,} is themaximum span. 

Theorem 4.4 For any problem instance 2, 

and 

IOPTB(Z)I 5 4(logA(Z) + 1). IOPTBL(~)I. 

The upper bound in the theorem is a direct consequence of the fol- 
lowing three lemmas. We prove the lower bound in Theorem 4.5. 

Lemma 4.1 For any problem instance 1, 

IOPTB(Z)I 5 2(ln(a(Z) + 1) + 1). IOPTBL(Z)~. 

Proof. We use the credit-distribution scheme of Theorem 4.1 to 
compare (OPTB(Z)I with IBFL(Z)I. This scheme has each m E 
OPTS(Z) - BFL(Z) donate l/(tk) + 1) units of credit to each of 
t$’ + 1 messages in BFL(Z) that collectively block all of m’s po- 
tential bufferless trajectories. Clearly, a grand total of IOPTB (I) - 
BFL(Z)I credits are donated. Reversing our focus, we use the rea- 
soning (and notation) of Theorem 4.1, tempered by the fact that 
slacks are not uniform here, to generate the following analogue 
of the upper bound (1) on the total credit received by any m’ E 
BFL(Z). 

c --!-- 5 c ,,‘t1.1 mER , &‘+ 1 TtER,l 

5 1+2 C t 5 2ln(cT(Z)+l)+l. (2) 
i=2 

(Recall that R,t comprises those messages that donate credit to 
m’.) Hence, the total number of credits received by messages in 
BFL(Z) is 5 (2 ln(a(Z) + 1) + 1). IBFL(Z)I, which yields the 
lemma, because IBFL(Z)I 2 lOPT~t,((z)l. n 

Lemma 4.2 For any problem instance Z, 

Proof. The proof is identical to that of Lemma 4.1, except that we 
bound the sum (2) differently. Using the facts that (a) IR,t I 5 
111 - 1 (since m’ # R,I), and (b) no two messages reach any node 
simultaneously, we find (using the notation of Theorem 4.1) that 

mER , I,‘t,+1 5 1+2 c c : 5 21n (jj[Zl) +l. 

l<i6(Zl/2 

The lemma follows. n 

Lemma 4.3 For any problem instance 1, 

IOPTB(Z)I 5 4([1og6(Z)J + 1). (OPTBL(~)I. 

Proof. We partition OPTB (Z) into sets Ri, 0 5 i 5 Llog b(Z)], 
by placing each m into Rll,, 6, J . Let R be an Ri of largest cardi- 
nality, so that 

IOPTBV)I 
IRI 1 [log S(Z)] + 1’ (3) 

Much as in Theorem 4.2, we show that at least l/4 of the messages 
in R can be routed without buffers. To this end, let 6 be an integer 
such that for all m E R, 6 5 6, < 26. Divide R into four 
(possibly intersecting) sets Sj, 0 5 j < 3 by placing each m into 
Sj iff m’s parallelogram intersects a column C;(J+~) of M,, where 
0 5 i 5 [(n - l)/(S + 1)j and i mod 4 = j. The S, collectively 
cover R because each m E R intersects at least one C;(J+~). Let 
S denote the largest Sj , say Se. We note that ISI 2 f I RI. 

We conclude the proof by showing that all m E S can be routed 
without buffers. Say that m’s buffered trajectory, irB(m), reaches a 
column C4k(S+i) at time 7,. (By construction, such a COh.IUIn ex- 
ists for each m E S.) We assign m the bufferless trajectory z(m) 
that is the unique sw-ne segment that passes through point (4k(6 + 
l), rm). We claim that the bufferless schedule {z(m) 1 m E S} 
is valid. To this end, let ki and k2 be integers such that columns 
C4/E1(&+1) and C&(J+i) intersect Gi(mr) and%(m2), respectively. 
First, if kl # kz, then columns Cdki(&+i) and C4kz(a+i) are at 
least 4(6 + 1) apart. Since $(rn,) and z(rn2) each have span 
5 26 - 1 each, the trajectories cannot intersect. Alternatively, if 
kl = ka g k, then the buffered trajectories KB(mi) and nB(m2) 

reach column C4k(J+1) at times rmml and 7;n2 # T,,,*, respectively 
so that z(ml) and ji(m2) do not intersect. n 

Theorem 4.5 There exists a problem instance Z such that 

~OPTB(Z)I 2 i log R(Z). IOPTBL(Z)I. 

Proof. We construct the “bad” problem instance Z recursively. The 
base instance Ze contains a single message m such that sm = 0, 
d, = 1, tk’ = 0, and t$$ = 1. Inductively, we construct in- 
stance zk from xk - i , by setting zk = Sk U 7$1 1 U ZfJ 1, where: 
(a) Sk consists of 2’-’ identical messages, each having sm = 0, 
d, = 2”, &’ = 0, and t$ = 2k+’ - 1; (b, c) Zpl, and ZrJi 
are obtained by translating two copies of zk- 1, positioning the first 
with its “origin” at (0, Zk-‘) E M, and the second with its “ori- 
gin” at (2”-’ ,2”-‘) E M,. See Fig. 2. 
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Figure 2: Problem instance Zk. 

Claim. All messages in I,, can be routed using a buffered schedule, 
SO rhar lOPTB(z,,)I > k2”-‘. 
Verification. We proceed by induction on Ic, the case k = 0 being 
obvious. Assuming the claim for I&r, we route the messages 
in zk as follows. We adapt the schedule for Zk-r to its non- 
overlapping copies, 1’: and Z’! . We then route each m E Sk 
in turn, so that its trajbc:ory doe: niot conflict with an previously 
routed message: m starts at some time t, 0 5 t < 2 l -t, along a 
scan line t? that is not used by any other m” E Sk, until it reaches 
node 2k; it then waits in node 2”‘s buffer for 2”-’ steps, to reach a 
scan line !’ that is not used by any other m” E Sk; it linally travels 
along e’ to d, (cf. Fig. 2). We thus have ]oPTo(zk)] = ]zk], 
whence, by construction, 

fork 1 1, with initial condition ]Za] = 1. The Claim follows from 
the above recurrence relation. 

Wenowbound]OPTer,(Zk)].ForeachO<j<2”-l,let!, 
be the scan line that passes through point (0, j). In our construction 
of zk, any bufferless message that uses scan line J$ must be sent 
from point (2” - j - 1,2” - 1) to point (2” - j,2”). Thus, no 
bufferless schedule for zk can route more than one message along 
any e,. This means, however, that IOPT~L (Zk)l < 2”. We now 
note that o(zk) = 2” - 1, b(Zk) = 2”, and ]zk] 2 k2”-‘, so 
that A(zk) = 2” - 1. Combining this fact with our bounds on 
]oP!FB(zk)] and ]oPTBL(zI;)]. we have the claimed inequality. 
n 

5 Message Scheduling with Buffers 

In this section, we seek buffered scheduling algorithms that are 
maximal in throughput, making no attempt to limit the number of 
buffers. We show that maximizing throughput in this scenario is 
NP-hard (Section 5.1); however, we show that, surprisingly, a dis- 
tributed and online buffered algorithm (which makes all routing de- 
cisions locally) can mimic the performance of the centralized and 

offline bufferless algorithm BFL-in both action and throughput 
(Section 5.2). Using our results in Section 4, we infer that our 
distributed and online algorithm achieves throughput to within a 
constant factor of optimal when slacks or spans or release times are 
uniform, and to within a logarithmic factor in general. 

5.1 The NP-Hardness of Optimal Buffered Scheduling 

Theorem 5.1 The bufferless message-scheduling problem OPTB 
is NP-hard. 

Proof. See Appendix A. 

5.2 A Distributed and Online Approximation for Buffered Schedul- 
ing 

A scheduling algorithm is distributed if only the source-node of 
a message initially receives information about each message to be 
sent. Information can be transmitted to other nodes, for example, 
when a message is forwarded to another node, but this information 
travels no faster than messages, i.e., across one link per time step. 
All decisions made by a node must be derived using only local in- 
formation. In the algorithms discussed here, we transmit a small 
amount of additional information along with each packet. How- 
ever, this additional information can be encoded in log n bits- 
which is exactly the number of bits required to describe message 
destinations. This does not increase the required packet size for 
messages by more than a factor of 2, and when the size of the mes- 
sage is much larger than the size of the destination description, this 
has no significant effect on the packet size. The scheduling algo- 
rithms we consider here are also online: no node has any informa- 
tion about a message m prior to &‘, the release time of m. 

In our distributed and online algorithm, D-BFL, each node o 
maintains a list of messages that are available to be forwarded to 
node v + 1. Let Pit be the set of messages that are available for 
transmission along scan line Ci by node 21. At time t, node 21 selects 
a message mLv E Pt{, for i = 2) - t, and forwards it along scan 
line &. We now show how to make the choice of rniv using only 
local information. For any algorithm A, let L,,(A) denote the most 
recent endpoint on f!i in column C,, i.e., the largest o’ 5 2, such 
that some m with d, = o’ reaches d, along &. In D-BFL, we 
ensure that each Y always knows the value of L,,(D-BFL) at time 
step t, by always forwarding the current value along each scan line. 
This is the only additional information that D-BFL forwards with 
messages. 

Algorithm D-BFL 

Each node IJ performs the following steps at time t = v - i 

1. Node v forwards L,,(D-BFL) to node v + 1 along &. 

2. Let S be the set of all messages m’ such that m’ E P*f and 
S,I 2 L%,(D-BFL). Node 2, selects a message miv such 
that m+, has the nearest destination of any message in S 
(breaking ties as in BFL). The message m,, is forwarded 
to node v + 1 along &. Note that no message is forwarded if 
s = 0. 

Theorem 5.2 Foranyproblem instanceI, D-BFL(Z) = BFL(Z). 

Proof. Let eoB[m] (resp., CBFL[rn]) be the scan line along which 
m E D-BFL(Z) (rcsp., m E BFL(Z)) reaches d,. We claim 
that !BFL[m] E eoB[rn] for all m. 

Say that mzv is premature if dmiu = v + 1 and e~~[mi,] > 
eBFL[m,,], i.e., if, under D-BFL, mi, is the final “hop” for a 
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message, and mi, reaches dmi, earlier under D-BFL than under 
BFL. We say that mi, is preemptive if there is an m’ E Pi: 
such that esFL[rn’] = i, but mzv # m’. Note that if l?BFL(rn] # 
!,B[m] for some message m, then some mi, is either premature 
or preemptive. We wish to show that this cannot occur. 

Let the pair (i, u) specify the segment within scan line &, from 
column C, to column C&,+1. For each pair (i,~), consider the 
pairs (Ic, w) defined by the three relations: (1) i < k 5 i + 21 - 1; 
(2) 0 5 w < w; (3) (i, w) # (k,w). These pairs consist of all 
the segments-in a region of hl,. When i 2 0, this region is a 
right triangle, minus the segment that originates where i = Ic and 
2, = w. The legs of this triangle lie along the X-axis and column 
C,; its hypotenuse is the portion of & between the legs. When 
i < 0, the region has the same shape, except the portion of the 
triangle where w < 0 is not present. In either case, we call this the 
triangle of injh4ence of (i, 71). 

Lemma 5.1 If there is no pair (k, w) in the triangle of injluence 
for (i,v) such that rnkw is either preemptive or premature, then 
mzv is neither preemptive nor premature. 

Proof Let F’%t be the BFL-analogue of Pi:, comprising those 
messages that have not been scheduled by BFL prior to scan line 
!,, but that could be sent from v to v + 1 along e, (because their 
parallelograms contain the appropriate segment of &). We prove 
the lemma via three claims, the first of which is immediate from 
the specification of BFL. 
Claim 1. For any m E P%, , N if!n~~[rn] # &, then d, contains the 
right endpoint of some other message m’ between nodes sm and 
dm. 
Claim 2. If no mkw. for a (k, w) in the triangle of injuence for 
(i, u), is preemptive, then Pi: C Pzt. 
Verification. Any m E P%t - Pzt must be sent by BFL along a 
scan line & such that i < k 5 i + u - 1. Since m is sent on ek by 
BFL, and thus it must have a release time making it available at 
least as early as scan line &. However, since m E P%t, message m 
must “pass through” scan line ek, and thus there must be some w, 
sm 5 w < 2, such that m E PkDw, but m was not sent from node 
w on scanline k. However, this means that mkw is preemptive. By 
hypothesis, no m E Pit - Pzz can exist. n 

Claim 3. If no mkw. for a (k, w) in the triangle of influence for 
(i, v), is premature or preemptive, then Li,(BFL) = Li,(D- 
BFL). 
Verification. Let m be the message with d, = L,,(BFL) that 
reaches its destination on &. Since no mkw in the triangle of in- 
fluence is premature or preemptive, m must reach d, along & 
under D-BFL also. Thus, we need only show that no m’ with 
d, < d,, < w has .!,,[m’] = i # f?BFr.[m’]. Since no edge 
in the triangle of influence is preemptive, if loo [m’] = i, then we 
cannot have eAFL[rn’] > i. Also, since m;cd,, -1) is not prema- 
ture, we cannot have e,F,[rn’] < i. n 

To prove the lemma, we first show that miv is not preemptive. 
To this end, let rnc be the message in BFL(Z) that was forwarded 
along & from ‘II to 2) + 1; mV AJ is NULL if no message is sent. 
We need only show that, if m;, is m Pzy and is not NULL, then 
rn: = mnv. In BFL, rnz is the message in Pi: with the left- 
most destination, that has a source after L,, (BF L). Furthermore, 
by Claim 3, under D-BFL all messages in Pit with a source pre- 
ceding L,, (BFL) are removed from consideration. If rn: E Pjf, 
then rn: is not removed. By Claim 2, if rnz E Pi:, then it must be 
one of the remaining messages with the leftmost destination. Since 
we break ties in the same manner as is in BFL, if rn,: E Pit, then 

N ‘m,,, = miv. 

Lastly, we assume, for contradiction, that mi,, isjremature. If 
so, it cannot be NULL. By Claim 2, then, mi, E P,, . Moreover, 
by Claim 1, we must have Li, (BFL) > smiy. However, by Claim 
3, L,,(D-BFL) > sm;, as well. This implies that m;, is not 
delivered under D-BFL, which is a contradiction. n 

We show how this lemma implies that no miv is preemptive or 
premature, which in turn implies the theorem. We proceed induc- 
tively along rows of M, (= time steps). For row t = 0: the triangle 
of influence for any pair (i, v) such that t$, = 0 is empty, so the 
hypothesis of Lemma 5.1 is satisfied trivially; hence, no such mi,, 
is preemptive or premature. Now, assume inductively that for some 
time t > 0, every message forwarded at time t’ < t is neither pre- 
emptive nor premature. This implies that for any i and 2, = i + t, 
no mkw in the triangle of influence for (i, v) is preemptive or pre- 
mature. Then, by Lemma 5.1, no message forwarded at time t is 
preemptive or premature, which extends the induction. n 
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A The NP-Completeness Proofs 

We reduce 3-SAT [ 141 to the problem of determining a maximum 
cardinality subset of messages that can be routed with or without 
buffers. Given any 3-SAT formula Cp, we show how to construct an 
equivalent time-constrained message routing problem Z(a) such 
that OPTB(Z(@)) = OPTsr, (Z(@)). For this, we use three types 
of structures: a structure to represent variables of @, a structure to 
represent clauses of @,, and a structure called a chain that is used as 
an interface between the two. 

The structure for a variable 2 consists of two messages m, and 
‘rnb: one for each literal of 5. These messages have span 2 and 
slack 0. Messages m, and rnd must be sent on the same scan line, 
and overlap for one unit of the distance traveled. Thus, at most one 
of m, and ms can ever be routed successfully. In our construction, 
the message corresponding to the literal that is true is the message 
that is dropped. For all variables %, m, and rnt are placed on the 
smallest numbered (leftmost) scan line in any arrangement where 
only the messages corresponding to the same variable overlap. Call 
the one unit of distance to be traveled by m, and rnz where they 
do not overlap with the opposite literal the crirical time slot of that 
message. 

The critical time slot is used to interface with a chain. Each 
chain is associated with a single literal x (or 2). Each message in 
the chain has to travel the same 1 unit of distance as the critical 
time slot for x. In the simplest chains, there are Ic messages, each 
with slack k. The deadline for all of these messages is the same, 
and coincides with the critical time slot for 2. This means that if 
the literal that the chain is associated with is false (i.e., message m, 
has N0I been dropped) one message of the chain has to be routed 
as soon as the messages in the chain are released. We call this time 
slot the bortom of the chain. When the literal is true (i.e., message 
m, is dropped), on the other hand, the bottom of the chain does not 
need to be occupied. 

The bottom of each chain is connected to a clause structure. 
Each clause structure uses 6 consecutive scan lines !r . . !s, and 
these scan lines are allocated only to a single clause structure. The 
structure is depicted in Fig. 3. This structure represents a clause 
composed of the literals A, B, and C, where A is the earliest of 



Figure 3: The clause structure. 

the three literal in the linear order imposed by the ordering of the 
variables in the leftmost scan line, and C is the latest. In this struc- 
ture, parallelogram p,4 (resp. pn and pc) is lined up so that the 
upper right corner of its parallelogram exactly coincides with the 
bottom of the chain originating from message mA (resp. messages 
mn and mc). The release times of these parallelograms, as well 
as all of parallelogram px , are all at a node to the left of all m,. 
Parallelogram px is available on e, and has slack 2. Parallelogram 
pA is also available on er, and has slack 5. Parallelogram pe has 
slack 3 and is available on es. Parallelogram pc has slack 1, and 
is available on !a. Parallelogram pl is available on la, has slack 1, 
and its source and destination are the same as the messages in the 
chain for B. Parallelograms pz and ps have the same source and 
destination as the messages in the chain for A. Parallelograms p2 
is available on & with slack 3, and p3 is available on 1s with slack 

be successfully routed (with or without buffers), then the bottom of 
at least one of the chains for A, B and C is not occupied. 
Verification. Note what happens when the bottom of chain C is 
occupied: the message for pc must be routed by sending it entirely 
along the first scan line of its parallelogram, regardless of whether 
buffers are being used or not. Similarly, if the messages for pc 
and pr are both successfully routed and the bottom of chain B is 
occupied, then the message forpn must be routed along the earliest 
scan line of its parallelogram. Likewise, when the messages for pn, 
pc, ps and pa are all successfully routed and the bottom of chain 
A is occupied, then the message for pA must be routed along the 
earliest scan line of its parallelogram. However, if the messages for 
PA, pn and pc are all routed along the bottoms of their respective 
parallelograms, there is no room for the message in px to be routed. 

For each variable 2, at least one of m, and rnz must be dropped, 
and thus if OPTn(Z(@)) = n - u, then for each variable x, ex- 
actly one of mz and rn, is dropped, and no other messages are 
dropped. This and Claim A implies that every clause is connected 
to at least one chain D such that the bottom of D is not occupied. 
Thus, every clause is associated with at least one message mD that 
has been dropped. By setting every literal D corresponding to a 
message mD that has been dropped to true, we produce a satisfy- 
ing assignment for a, The same holds if OPTBL((Z(+)) = n - w. 

We complete the proof by showing that if there exists a satisfy- 
ing truth assignment for a, then OPTB (Z(a)) = OPTBL (Z(a)) = 
n - V. Given a satisfying assignment for a, we route all but v of 
the messages by dropping only the messages corresponding to a 
true literal. We route all the messages in each chain at as late a 
time as possible. Since each clause has a true literal, this means 
that at least one of the chain bottoms in each clause structure is 
unoccupied. The message in the corresponding parallelogram can 
be routed along the last scan line in its parallelogram, and since at 
least one message is so routed in each clause structure, all messages 
in every clause structure can be successfully routed. n 

For each clause of Cp, there is one such structure in Z(a). When 
a literal Y appears in more than one clause, the chain is extended, 
starting at the lower right corner of the parallelogram Y. This ex- 
tension to the chain interfaces with the next clause containing Y. 
The behavior of the chain extension mimics that of the original 
chain: if the bottom of the original chain is occupied, and all mes- 
sages in the clause structure are successfully routed, then the bot- 
tom of the chain extension is also occupied. However, if the bottom 
of the original chain need not be occupied, then the bottom of the 
chain extension need not be occupied either. 

It is also the case that some chains need to cross over a clause 
structure CS that does not contain the literal the chain represents. 
However, in all such cases, we know exactly how many messages 
for CS pass through the chain. To construct a chain of height k 
with j messages passing through the chain, we simply use Ic - j 
messages with slack Ic. The resulting chain has the same properties 
as a chain without messages passing through it. 

Let n be the total number of messages in Z(a), and let w be the 
number of variables in 9. We first show that when OPTB(Z(@)) = 
n - u or OPTBL (Z(a)) = n - w, then there must be a satisfying 
truth assignment for a. 
Cl&I A. Ifthe messages in PA, pB, pc, px, pl, pz andpa can all 
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