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Abstract. We consider comparator networks M that are used repeatedly: while the output produced
by M is not sorted, it is fed again into M. Sorting algorithms working in this way are called periodic.
The number of parallel steps performed during a single run of M is called its period, the sorting time
of M is the total number of parallel steps that are necessary to sort in the worst case. Periodic sorting
networks have the advantage that they need little hardware (control logic, wiring, area) and that they
are adaptive. We are interested in comparator networks of a constant period, due to their potential
applications in hardware design.

Previously, very little was known on such networks. The fastest solutions required time O(ne),
where the depth was roughly 1/e. We introduce a general method called periodification scheme that
converts automatically an arbitrary sorting network that sorts n items in time T(n) and that has
layout area A(n) into a sorting network that has period 5, sorts Q(n z T(n)) items in time O(T(n) z

log n), and has layout area O( A(n) z T(n)). In particular, applying this scheme to Batcher’s
algorithms, we get practical period 5 comparator networks that sort in time O(log3 n). For theoretical
interest, one may use the AKS network resulting in a period 5 comparator network with runtime
O(log2 n).
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1. Introduction

1.1. THE MODEL. Comparator networks can be defined in the following way:
We have a digraph G 5 (V, E), V 5 {v1, . . . , vn}, and a fixed sequence M 5
(S1, . . . , ST) of matchings of G (and E 5 S1 ø . . . ø ST). M is called
comparator network and G its underlying graph. Each node stores exactly one
item. Every edge [vi, vj] [ E represents a communication link between the
nodes vi, vj and may be used for compare-exchange operations only. During such
an operation, the items stored at the nodes vi and vj are compared; if the item of
vi is greater than the item of vj, then their positions are switched. It is helpful to
assume that the items that are compared are switched also if they are equal.
(This convention does not change the contents of the nodes, but influences the
movements of single items and simplifies our analysis of these movements
significantly.)

The computation of M consists of T parallel steps. For i # T, during step i all
compare-exchange operations corresponding to the edges in Si are executed
simultaneously (no conflict arises, since Si is a matching). The computation time
is defined as the number of parallel steps executed, that is T. The layout area of
M is the layout area of the graph G. M sorts in time T, if for each input, after
executing the T parallel steps, the item of rank i is stored at node vi for i # n.

A comparator network M 5 (S1, . . . , ST) is called periodic if there is a
number c such that Si 5 Si1c, for all i # T 2 c. The sequence of steps S1, . . . ,
Sc is called a cycle and c is called the period of M. Odd-Even Transposition Sort
[Knuth 1998] is the simplest periodic comparator network. It sorts n items in n
steps; the underlying graph is a linear array of n nodes, and its period is 2.

We call a comparator network monotonic, if for every compare-exchange
operation [vi, vj] holds: i , j (Knuth [1998] calls it a standard compare-exchange
operation). Since every nonmonotonic sorting network can be converted easily
into a monotonic one [Knuth 1998, p. 238], we confine our considerations to
monotonic sorting networks.

Traditionally, comparator networks are considered as consisting of n vertical
parallel wires connected by comparators. Each of the n input items moves
through the wires. There is exactly one item on each wire. The items may be
exchanged between wires by comparators: comparator [i, j] originating at wire i
and pointing to wire j places the greater of the items carried by wires i, j on wire
j and the smaller one on wire i. The comparators are laid out as devices
connecting the vertical wires. They are grouped into layers corresponding to
parallel steps. Inside a single layer, a vertical wire can be connected to at most
one comparator. Layers of the comparator network are usually laid out sepa-
rately, layer i 1 1 below layer i, for every i. (However, if the network is to be
practically implemented, it is reasonable to interleave the layers to save space.)
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This model is usually used to illustrate comparator networks. If a network has
period c, then it consists of T/c identical parts.

1.2. DESIGN CRITERIA. Sorting is a problem studied already for decades.
Nevertheless, new application environments such as routing packets in fast
communication networks state new design goals. In the last case, sorting has to
be done extremely fast, so only hardware solutions are feasible. In order to keep
balance between speed and costs, the resulting circuits should have small layout
and a clear geometrical structure. Of course, one must be aware of the
AT2-bound yielding a trade-off between speed and area. For this reason, we do
not confine ourselves to the fastest networks, which necessarily have large layout
area.

Comparator networks have advantage that their basic operations are very easy
to implement. Another advantage is to use periodic comparator networks. In this
case, even in the model with wires, the network consists of a single cycle with
wrap-around edges. After executing the last step of a cycle the data are moved
through wrap-around edges and fed as input to the network again (see such a
modification of Odd-Even Transposition Sort on Figure 1). In our setting (nodes
communicating through the communication links) periodicity requires very little
control logic at of each of the nodes. An additional advantage of periodic sorting
networks is that they can work in an adaptive mode, that is, if no exchange occurs
during a single cycle, then nothing will change during the following cycles. So the
string must be already sorted and we may halt the execution.

The main problem with this approach is to design periodic comparator
networks that have acceptable speed despite a small period. This turns out to be
a nontrivial problem.

1.3. PREVIOUS WORK. The concept of periodic sorting has been introduced
by Schröder [1983]. The most famous sorting networks such as Batcher’s [1968]
networks and the AKS network [Ajtai et al. 1983] are not periodic. However,
there has been much effort to construct periodic comparator networks. Perhaps
the most interesting construction in this area was the balanced sorting network
with period log n that sorts n items in time log2 n [Dowd et al. 1989]. The
underlying graph of this network is the log n-dimensional hypercube. Another
standard periodic algorithm is Shearsort [Scherson et al. 1986; Sado et al. 1986].
On a =n 3 =n-mesh, Shearsort performs log =n 1 1 cycles; each cycle
consists of executing Odd-Even Transposition Sort on each row and afterwards
on each column of the mesh. Thus, the period equals 2=n.

In order to get a constant period one might be tempted to generalize
Odd–Even transposition sort by adding some “shortcut edges”. This decreases
the diameter of the underlying graph and gives a chance for a smaller sorting
time. For instance, one may put n vertices on a mesh with a row major order and
wrap-around edges between the first and the last column. In this case, the
vertical edges may serve as “shortcut edges”. However, for most such straightfor-
ward generalizations of Odd-Even transposition Sort the runtime equals Q(n),

FIG. 1. An implementation of Odd-Even Transposition Sort.
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even on average, as shown by Savari [1993]. So despite “shortcut edges”, no
progress has been achieved! An ingenious modification of the schemes consid-
ered by Savari was proposed by Schwiegelshohn [1988]. He introduced a periodic
comparator network with period 8 that sorts n items in time O(=n z log n). The
crucial point is to remove some edges to accelerate sorting. The modification is
tiny and seems to go into a wrong direction, but the consequences are profound.
The idea was followed a very technical and long analysis that has never been
published in a complete form. In his Ph.D. dissertation, Krammer [1991]
proposes a modification of the algorithm of Schwiegelshohn and suggests that it
improves the runtime to O(=n log n) while the underlying graph is still a mesh.
The proposal is based on a standard trick used for reducing runtime of Shearsort.
Actually, no proof or a proof idea in a crucial point is given in Krammer [1991].

Ierardi [1994] presents a period 4 network, which has a worst case running
time of Q(n), sorts in average time O(=n log n). This result is clearly inferior
to the construction of Schwiegelshohn published 6 years earlier.

For k [ N, Kik et al. [1994] built a periodic comparator network with period
Q(k) that sorts n items in time O(k2 z n1/k) and in fact is a certain generaliza-
tion of Odd-Even Transposition Sort. Unfortunately, their construction is based
on expander graphs and cannot be applied in practice.

1.4. THE NEW RESULTS. The result of Schwiegelshohn has been obtained by a
detailed and technically involved analysis of routes of zeroes and ones. This
leaves little hope for generalizations of this algorithm. We provide a considerably
simpler approach that may be applied to a vast family of algorithms. For the sake
of simplicity of presentation, we start by applying this method for the simplest
case, namely, we revisit the case of the two-dimensional mesh:

THEOREM 1.1 (TECHNICAL THEOREM). There is a periodic comparator network
with period 3 and layout area of a 2-dimensional mesh that sorts n items in time
O(=n z log n).

We shall see that if the input contains a single column of 1’s and 0’s otherwise,
then our network requires V(=n z log n) steps. Hence the above time bound is
asymptotically tight. The underlying graph of the network is only slightly
different from the two-dimensional mesh, so its VLSI implementation is straight-
forward. Current experiments show that the algorithm might be interesting for
practical applications.

It is easy to see that Odd–Even Transposition Sort is the only periodic sorting
network with period 2. So the period of the network obtained in Theorem 1.1
cannot be further improved without loosing its good time performance.

The techniques that we develop in the proof of Theorem 1.1 are basic tools for
a more general construction called the periodification scheme. It shows how to
convert an arbitrary comparator sorting network into a periodic sorting network
with period 5 with at most a slight loss of efficiency.

THEOREM 1.2. Let M be a monotonic (nonperiodic) comparator network of
runtime T(n) that sorts n items and has layout area A(n) in the traditional model.
Then there is a periodic comparator network with period 5 and layout area O( A(n) z
T(n)) that sorts Q(n z T(n)) items in time O(T(n) z log n).
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Note that for certain functions T (for instance, T 5 ne), the above transfor-
mation even improves the runtime compared with the original network.

The periodification scheme of Theorem 1.2 generates no big overhead. Hence,
by applying it to practical networks, we get practical networks. Applying it to
Batcher’s sorting networks, we get the following corollary (compare Thompson
[1983]):

COROLLARY 1.3. There is a practical periodic comparator network with period 5
and layout area O(n2/log2 n) that sorts n items in time O(log3 n).

The best runtime, at least theoretically, is achieved by the periodification
scheme if we apply it to the AKS network.

COROLLARY 1.4. There is a periodic comparator network with period 5 that
sorts n items in time O(log2 n).

No lower time bound specific for sorting networks of constant period is known.
So we do not know if the runtime given by Corollary 1.4 is optimal. Establishing
precise runtime limits for sorting networks of a constant period seems to be a
difficult mathematical problem.

The sorting networks that we construct are relatively simple in their design.
Nevertheless, an analysis of runtime is technically challenging. This is not a
surprise, since it is known that even slight modifications in such constructions
might result in a disastrous increase of the time required to sort.

Finally, let us remark that the periodification scheme is a general method for
transforming sorting networks into another sorting networks preserving their
relevant properties and extending them by an additional important property
(periodicity). Another construction of this kind, namely Columnsort, has been
proposed by Leighton [1985]. His procedure transforms an arbitrary sorting
network into a sorting algorithm running on a certain processor network of
degree 3.

Since we try to simplify the presentation as much as possible, we do not
attempt to optimize the constants hidden by the big O’s.

1.5. ORGANIZATION OF THE PAPER. In Section 1.5, we recall, for the readers
convenience, some well-known facts on sorting networks. In Section 2, we
present and analyze a network mentioned in Theorem 1.1. The reader may skip
the details of the runtime analysis (Section 2.5) at the first reading. In Section 3,
we present periodification scheme based on the case of a 2-dimensional mesh
described in Section 2.

1.6. PRELIMINARIES. First, we recall some easy or known properties of com-
parator networks.

PROPOSITION 1.5 (0 –1 PRINCIPLE [KNUTH 1998, P. 223]). If a comparator
network sorts all inputs consisting solely of 0’s and 1’s, then it sorts arbitrary inputs.

PROPOSITION 1.6 ([KNUTH 1998, P. 240]). A monotonic comparator network
that sorts all inputs must perform compare-exchange operations between each two
consecutive nodes according to the ordering of the underlying graph at least once.

By Proposition 1.6, a single cycle of a periodic sorting network must contain all
comparators [i, i 1 1].
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Let xW 5 ( x1, . . . , xn), yW 5 ( y1, . . . , yn). We say that xW # yW , if xi # yi for
every i # n. We say also that vector xW 5 ( x1, . . . , xn) describes the contents of
a network N with n nodes, if for j # n the jth node of N contains xj.

PROPOSITION 1.7. Let N be a comparator network. Let xW, yW [ {0, 1}n be inputs
for N, xW # yW. Let xWi ( yWi) describe the contents of N immediately after step i of N on
input xW ( yW). Then xWi # yWi for every step i of N.

By applying Proposition 1.7 for every single step of a network, we get the
following corollary:

COROLLARY 1.8. Let N be a comparator network and xW [ {0, 1}n an arbitrary
input to N. Let xWi describe the contents of N immediately after step i during the
computation on input xW. Let yW0 5 xW, yW1, yW2, . . . be a sequence of vectors obtained in
the following way: for every i, yi11

3 is obtained from yWi by applying the ith step of
network N and then replacing some number of 0’s by 1’s. Then xWi # yWi for every i.

PROPOSITION 1.9 [DE BRUIJN 1974]. If a periodic comparator network M is
monotonic and all compare-exchange operations of a single cycle of Odd–Even
Transposition Sort are performed at every cycle of M, then M sorts every sequence of
n items in at most n cycles.

PROPOSITION 1.10. Let M be a monotonic sorting network that sorts n items. Let
M be considered in the traditional way: consisting of n vertical wires connected by
comparators. If we remove the first k consecutive wires and the last , consecutive
wires and the comparators incident to these wires, then we get a sorting network M9
that sorts n 2 k 2 , items.

2. A Periodic Sorting Network with Period 3

2.1. THE CONSTRUCTION OF THE NETWORK. Architecture of the periodic
comparator network M with period 3 that sorts in time O(=n z log n) is very
simple: The underlying graph GM of M is a two-dimensional mesh in which the
nodes are arranged in a way portrayed by Figure 2. Formally, for even p and odd
q, where q 5 Q( p), GM consists of the nodes Pi, j for i [ {1, . . . , p}, j [
{1, . . . , q} if i is odd, and i [ {1, . . . , p}, j [ {0, . . . , q 2 1} if i is even.
For a given i, the ith row of GM consists of the nodes of the form Pi, j, and the
ith column, called Ki, consists of the nodes of the form Pj, i. The two leftmost
columns and the two rightmost columns are called border columns; the remaining
columns are called internal columns. The nodes of M are ordered according to
the row-major ordering: Pi, j a Pi9 , j9 N (i , i9) ~ (i 5 i9 ` j , j9).

FIG. 2. Arrangement of the nodes for p 5 8 and
q 5 13.
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Each cycle of the algorithm consists of the three parallel steps shown in Figure
3: Step A, Step B, and Step C, performed in this order. The orientation of the
comparators is not shown since it is assumed that the network is monotonic.
Steps A and C are called horizontal and Step B is called vertical. The horizontal
steps ensure that, as required by Proposition 1.6, there is a compare-exchange
operation between every two consecutive nodes of GM according to the row-
major ordering. Note that the horizontal Steps A and C contain long edges
connecting the border columns (so called “Schwiegelshohn” edges) every second
row, similarly as in the case of the networks of Schwiegelshohn [1988] and
Krammer [1991]. We cannot put all “Schwiegelshohn” edges into a single
horizontal step since then even the average runtime of the resulting algorithm
would be of order n [Savari 1993]. The crucial phenomenon for the performance
of the algorithm on inputs consisting of 0’s and 1’s is the way in which high
towers of 1’s (0’s) coming to the right (left) border are broken up into two parts
moved into two different columns (see Figure 5). This effect is crucial for
Schwiegelshohn’s construction [Schwiegelshohn 1988].

2.2. GENERAL PROPERTIES OF M. In this section, we define basic notions that
we use in the context of M and of the periodification scheme. Most of them are
borrowed from the approach of Schwiegelshohn. We start with some general
properties holding for all Schwiegelshohn-like networks; however, we state them
for M. Nevertheless, we should keep in mind that we shall use them in Section 3.

Definition 2.1. Horizontal (vertical) edges of M are the edges of GM that
connect the nodes of the same row (of the same column). The remaining edges
are slanted edges used at Step B and “Schwiegelshohn” edges connecting the left
and the right border columns of GM.

An item a is called right-running (left-running), if during the last horizontal step
a was involved in a compare-exchange operation through a horizontal edge and
placed at the right (left) end of the edge.

FIG. 3. The three parallel steps performed by M during one cycle.
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A column that contains only right-running (left-running) items is called
R-column (L-column).

Obviously, every internal column is alternately an L-column and an R-column,
and the changes occur every horizontal step. The situation at the border columns
is more complicated. The locations of right- and left-running items are shown by
Figure 4.

According to our convention for performing compare-exchange operation on
equal items, we immediately get the following property:

Fact 2.2. Each right-running 1 remains right-running until it reaches the right
border columns. Similarly, each left-running 0 remains left-running until it
reaches the left border columns. A left-running 1 becomes right-running if it is
compared with a right-running 0. Similarly, a right-running 0 becomes left-
running if it is compared with a left-running 1.

Intuitively, we may think that the R-columns move one position to the right at
each horizontal step. Indeed, during a horizontal step, all right-running 1’s of an
R-column Ki move to the column Ki11. Some of the right-running 0’s in Ki also
move to Ki11; however, some of them meet left-running 1’s, stay in Ki and
become left-running. Their place in Ki11 is taken over by the 1’s that become
right-running at this step. Similarly, L-columns “move left”.

Let w(Ki, t) denote the number of 1’s in column Ki immediately after step t.
Since horizontal and vertical steps of M are interleaved, we introduce additional
notation: let ht denote the tth horizontal step and vt denote the tth vertical step
of the algorithm. The following facts result obviously from our considerations
above:

Fact 2.3. If Ki, i , q 2 1, is an R-column immediately after step ht, then
w(Ki, ht11) # w(Ki, ht) # w(Ki11, ht11). Similarly, if Ki, i . 1, is an

FIG. 4. R- and L-items after Step A, B, and C.
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L-column immediately after step ht, then w(Ki21, ht11) # w(Ki, ht) # w(Ki,
ht11).

By a straightforward induction on k, we obtain the following fact:

Fact 2.4. If Ki, i 1 k , q, is an R-column immediately after step ht and
w(Ki, ht) 5 x, then Ki1k is an R-column immediately after step ht1k and
w(Ki1k, ht1k) $ x. Similarly, if Kj, j . k, is an L-column immediately after step
ht and w(Kj, ht) 5 x, then Kj2k is an L-column immediately after step ht1k and
w(Kj2k, ht1k) # x.

Fact 2.5. Suppose that Ki is an R-column immediately after step ht. Then
w(Kj, ht) # w(Ki, ht) provided that j , i, i 2 j # 2t 2 1 and Kj is an
L-column immediately after step ht (i.e., i and j are of different parities).

Intuitively, the R-column and the L-column that are at Ki and Kj after step ht

have already “met” in the past. Therefore, by Facts 2.3 and 2.4, the L-column has
no more ones than the R-column.

PROOF. Let t9 5 (i 2 j)/ 2 and s 5 j 1 t9. Then t9 , t and i 5 (s 1 1) 1
t9. Immediately after step ht2t9, Ks11 is an R-column and Ks is an L-column.
Hence, they are compared at step ht2t9 and therefore w(Ks, ht2t9) # w(Ks11,
ht2t9). On the other hand, by Fact 2.4, w(Ks11, ht2t9) # w(Ks111t9, ht) 5
w(Ki, ht) and w(Ks, ht2t9) $ w(Ks2t9, ht) 5 w(Kj, ht). Hence, w(Ki, ht) $
w(Kj, ht). e

2.3. MORE SPECIFIC PROPERTIES OF M. While R-columns “move to the right”
and L-columns “move to the left”, the vertical steps make efforts to sort these
columns. (Of course, this process cannot be completed because of the new 1’s
that join this column.) In order to sort these columns steps of Odd–Even
Transposition Sort are performed. Note that between consecutive vertical steps,
an R-column moves two positions to the right. Hence, to make the things work
properly, the vertical edges of the columns at distance 2 must represent different
steps of Odd–Even Transposition Sort. This is the reason for our design of Step
B.

If all k lowest nodes of a column contain 1’s, then we say that this column has
a foot of height k .

Since p steps of Odd-Even Transposition Sort suffice to sort every input of size
p, by Corollary 1.8 we get the following fact:

Fact 2.6. If Ki is an R-column immediately after step vt and w(Ki, vt) $ x,
then Ki12r contains a foot of height x immediately after step vt1r provided that
r $ p and i 1 2r , q 2 1.

Now we discuss what happens at the border columns; as already mentioned,
this is crucial for achieving a good runtime. The reader may inspect how a high
tower of 1’s contained in an R-column reaching the right border is broken into
two parts by the Steps A and B (see Figure 5).

Fact 2.7. If step t is a C-step and w(K1, t) # x, then w(K1, t 1 2) # x 1
p/ 2.

A more precise estimation of w(K1, t 1 2) is possible, but what we state in
Fact 2.7 suffices for our purposes. Note that Fact 2.7 shows that even if the right
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border contains only 1’s, then the new R-columns formed at the left border take
only a limited number of 1’s from the right border. This prevents the effect of a
single high column traveling around the network without loosing its height.
(Compare Savari [1993] for some networks on the mesh that exhibit this behavior
and therefore require long runtimes.)

PROOF OF FACT 2.7. Let x , p/ 2, since otherwise the fact is trivial. For each
even i, it is easy to see that if after step t the node Pi, 1 contains a zero, then after
subsequent Step B (i.e., step t 1 2), node Pi21, 1 contains a zero. After step t,
there are at least p 2 x zeros in K1; at least p/ 2 2 x of them are stored at the
nodes Pi, 1, for i even. Hence, K1 contains at least p/ 2 2 x zeros after step t 1 2,
that is, at most p/ 2 1 x ones. e

2.4. LOWER BOUND. We show that M requires V(=n z log n) steps in the
worst case. Namely, we consider an input for which K2 contains 2s 2 1 5 Q( p)
ones in the lowest nodes, (2s 2 1 , q/ 2), and 0’s otherwise. The 1’s move
together to the right and in Q(q) steps reach column Kq21, say at step ht0

. It is
easy to see on Figure 6 that after step ht014, a new R-column formed at K2
contains 0.5(2s 2 1) 5 2s21 2 1 ones. By Fact 2.6, after Q(q) steps an
R-column with a foot of height 2s21 2 1 arrives at the right border. Continuing
in the same way we see that after Q(m z q) steps there is a column inside M that
contains at least 2s2m11 2 1 ones. Since 2s 2 1 , q/ 2, all ones must be moved
to the bottom row before the contents of M become sorted. So, if there is a
column containing at least two 1’s, the contents of M are still not sorted. It
follows immediately that the input considered here requires V(s z q) 5 V(q z
log p) steps.

2.5. RUNTIME ANALYSIS. In this section, we show that M sorts in O(=n z
log n) steps. In order to simplify our analysis we assume that q . 13p and q 2
1 is divisible by 4. (However, we believe that M performs well also if we leave out
these assumptions.)

By the 0 –1 Principle (Proposition 1.5), it suffices to consider only sequences
consisting of 0’s and 1’s. As in Schwiegelshohn [1988], our goal is to establish the
following fact:

FIG. 5. Breaking up a tower of 1’s at the right border.
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LEMMA 2.8 (KEY LEMMA). There exist constants c and d such that after
executing c z q steps, either

(a) the d z p bottom rows of GM contain only 1’s, or
(b) the d z p top rows of GM contain only 0’s.

By Lemma 2.8, after executing c z q steps, d z p consecutive bottom or top
rows can be removed from M without disturbing the computation on the
remaining part of the network. Let this remaining part be called M9. Note that
M9 has the same structure as M (maybe, we have to leave one more row of M in

FIG. 6. Breaking up a tower of nine 1’s at the right border.
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M9), and differs from M only by its height. The contents of M become sorted
exactly when the contents of M9 become sorted. For M9, we may apply Lemma
2.8 as well. By iterating this process, we see that after O(q z log p) steps the
contents of M become sorted with the exception of O(1) rows lying above a
group of rows containing only 1’s and below a group of rows containing only 0’s.
By Proposition 1.9, O(q) additional steps suffice to sort these rows. Hence O(q z
log p) 1 O(q) 5 O(q z log p) steps suffice to sort the contents of M and
Theorem 1.1 follows.

In the proof of Lemma 2.8, we shall use some counting arguments. Since GM is
symmetric, we may always reverse the roles of 0’s and 1’s. Hence, we may assume
that the input contains at least ( pq)/ 2 ones.

Let g 5 q 2 4p. We shall prove that after O(q) steps, V( p) bottom rows of
GM will be filled with 1’s. To fill this region with 1’s, we use the 1’s that occur in
Kg, every time when Kg is an R-column after step hg. Therefore, we have to show
that Kg always contains sufficiently many 1’s. It is a little surprising that such a
property really holds. Even more surprising and therefore useful is that we do
not need to know much about the structure of M to derive this result. Let us
remark that at this point we start an analysis that is very much different from the
approach of Schwiegelshohn.

Fact 2.9. There is a constant c1 such that if Kg is an R-column immediately
after horizontal step ht, t $ g, then w(Kg, ht) $ c1p.

PROOF. Let w(Kg, ht) 5 x and Kg be an R-column immediately after step ht,
t $ g. We shall estimate the total number of 1’s in GM by an expression
depending on x. Then, we shall see that x $ c1p follows from the assumption
that there are at least ( pq)/ 2 ones in GM.

It is crucial to observe how many 1’s are in GM on the left side of Kg. Let t0 5
t 2 g. For 2 # i # g, let Si consist of the columns 2 through i with their
contents immediately after step ht01i. By Fact 2.4, w(Ki, ht01i) # w(Ki1g2i,
ht01i1g2i) 5 w(Kg, ht) 5 x. It means that the rightmost column of Si contains
at most x ones. Let us consider the number of ones in the columns inside Si. For
the L-columns it is easy, since they have “met” the R-column that is the
rightmost column of Si at the moment. More formally, since i # 2(t0 1 i) 2 1,
by Fact 2.5, each L-column inside Si contains at most x ones. In particular, it
follows that w(K1, t9) # x if t9 is a C-step and t9 . ht0

. Hence by Fact 2.7, w(K1,
t9 1 2) # x 1 p/ 2 (note that step t9 1 2 is the next B-step after step t9).

Now we estimate the number of 1’s in R-columns of Si, and hence the total
number of 1’s in Si. Let w(Si) denote the total number of 1’s in Si. Clearly,
w(S2) # x as already seen. In order to estimate w(Sg), we consider how w(Si)
grows with i. A vertical step that might be executed between steps ht01i and
ht01i11 does not influence the number of 1’s in each of the columns 2 through
i 1 1. So we only have to consider what happens during step ht01i11. By the
construction of M, the total number of 1’s in the columns 2 through i 2 1 does
not change during step ht01i11, if this is an A-step. If step ht01i11 is a C-step,
then at this step the number of 1’s in the columns 3 through i 2 1 does not
change. Si11 contains R-column Ki11 that is not in Si. Therefore, to estimate
w(Si11) 2 w(Si), it suffices to consider the contents of the columns K2, Ki,
Ki11 only. By Fact 2.3, w(Ki, ht01i11) # w(Ki, ht01i). On the other hand,

955Periodification Scheme



w(Ki11, ht01i11) # x. So at the right border of Si11 at most x “new” ones occur.
Hence, if step ht01i11 is an A-step, then

w~Si11! # w~Si! 1 x. (1)

Now let us assume that step ht01i11 is a C-step. We have seen that w(K1,
ht01i11 2 1) # x 1 p/ 2. Hence the number of 1’s in K2 may increase during
Step C by at most x 1 p/ 2. So

w~Si11! # w~Si! 1 2x 1
p

2
. (2)

By inequalities (1), (2) and w(S2) 5 x, it is easy to derive that w(Sg) # ( g 2
2) z p/4 1 (3g 2 4) z x/ 2. Taking into account that there are at most 4p2 2 p/ 2
ones in the nodes on the right side of Kg and at most (3/ 2) p ones inside columns
K0 and K1, we may easily see that the total number of 1’s in GM is less than
(1/4) pq 1 (3/ 2)qx 1 3p2. We have assumed that the total number of 1’s in GM

is at least ( pq)/ 2. Since q $ 13p, it may be derived that x $ ((1/6) 2
(2/13)) p. e

By Fact 2.6 and Fact 2.9, we get immediately:

Fact 2.10. There exists a constant c1 such that after any step ht, t $ q, each
R-column Kj, j $ q 2 2p, contains a foot of height c1p.

Fact 2.10 guarantees that every time after step hq, there are high feet coming
to the right border all the time. We shall see that these feet suffice to fill the
bottom part of GM with 1’s in reasonable time.

We say that a word w 5 w1w2
. . . wp [ {0, 1, p}p describes column Kj at

some instant if for i # p node Pi, j stores number wi whenever wi [ {0, 1}.
By Fact 2.10, the R-columns coming to the right border every time after step

hq, have a feet of height c1p. The 1’s of each such a foot are split into two
groups: half of the 1’s move to the left border through the “Schwiegelshohn”
edges and begin their movement to the right; the remaining 1’s are “reflected” at
the right border and become left-running (see Figure 6). By Fact 2.10, they
remain left-running at least up to the moment when they reach column Kq22p. In
the meantime, the mentioned groups of left- and right-running 1’s are sorted
inside the columns by execution of vertical steps (see Figure 7). Below, we
examine this phenomenon more closely. Let c2 be a constant such that c2p #
(c1p 2 1)/ 2. For j [ N, let j# 5 j/ 2. Let wi 5 (p)p22c2p1ı#(1p)c2p2ı#(1) ı#. By
inspection of Figure 6, we get the following fact.

FIG. 7. Sorting L- and R-columns on sides of M.
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Fact 2.11. Let t0 $ q and t0 be even. The word w2 describes column K2
immediately after C-step ht014 and column Kq22 immediately after C-step ht012.

The R-column (L-column) that resides in K2 (Kq22) immediately after step
ht014 (ht012) moves to the right (left) during the following steps. Its contents
during this movement are described as follows (see Figure 7).

Fact 2.12. If t0 $ q, t0 even and 2 # i # 2c2p, then wi describes

(i) column Ki immediately after step ht01i12.
(ii) column Kq2i immediately after step ht01i.

PROOF

(i) The proof is by induction on i. The case for i 5 2 holds because of Fact
2.11. We assume that the property claimed holds for i and prove it for i 1 1.

First, let us assume that i is even. Then ht01i12 is a C-step and ht01(i11)12 is
the consecutive A-step. During step ht01i13 all 1’s are moved from Ki to Ki11
without changing their vertical positions. Hence, wi describes Ki11 immediately after
step ht01i13, too. On the other hand ı# 5 i 1 1, if i is even, hence wi 5 wi11 and the
property claimed holds for i 1 1.

Now let us assume that i is odd. Then between steps ht01i12 and ht01i13 a
vertical step is executed. It changes positions of 1’s in Ki before these 1’s are
moved to Ki11 during step ht01i13. Note that inside Ki, there are vertical edges
between the nodes (we count them from the bottom): 1st and 2nd, 3rd and 4th,
. . . , if ı# is even, and between the nodes 2nd and 3rd, 4th and 5th, . . . , if ı# is odd.
Hence, there are always edges between the nodes ı# 1 1 and ı# 1 2, ı# 1 3 and ı#
1 4, . . . . According to the description of Ki, before executing the vertical step,
there are 1’s at the nodes ı# 1 2, ı# 1 4 . . . (the nodes ı# 1 1, ı# 1 3 . . . are of
unspecified contents). Therefore, all 1’s above row ı# are moved one position
downwards during the vertical step. Thereby, the lowest 1 joints the foot of 1’s
and Ki is described afterwards by the word w 5 (p)p22c2 p1ı#11(1p)c2 p2ı#21(1)ı#11.
After executing step ht01i13, the word w describes the contents of Ki11. Note
that ı# 1 1 5 i 1 1, if i is odd. Hence, w 5 wi11 and the property claimed holds
for i 1 1.

(ii) The proof is similar. Additionally, we use the fact that each R-column Kq2j

for j # 2p has a foot of height c1 p. Therefore, if during a horizontal step such
an R-column Kq2i21 is compared with an L-column Kq2i described by the word
wi, then immediately after this step L-column Kq2i21 is described by wi. e

By Fact 2.12, the left-running 1’s arriving at column Kq22c2 p after step hq12c2 p

form feet of height c2 p. Fact 2.12 also implies that each R-column arriving at
K2c2 p after step hq12c2 p12 has a foot of height c2 p. These feet move to the right
(see Figure 8). Finally, after step h2q22c2 p each R-column Kj, j $ 2c2 p, has a
foot of height c2 p. Then the feet of height c2 p of L-columns appearing at
column Kq22c2 p can move further to the left up to the column K2c2 p (see Figure
9). These feet fill the middle-bottom part of the network in q 2 4c2 p horizontal
steps (see Figure 10). Thereby, we have proved the following property:

Fact 2.13. Starting from step ht1
, t1 5 3q 2 6c2 p, each column Ki, 2c2 p #

i # q 2 2c2 p, has a foot of height c2 p.
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The feet of height c2 p located in the middle of GM form “an area of high feet”
that will be called region X. To finish the proof of Lemma 2.8, we have to show
that X expands to the both borders during the next O( p) steps.

Fact 2.14. After step ht1
region X reaches the left border of the network in

O( p) steps, that is, each column Kj, j , 2c2 p, contains a foot of height c2 p.

PROOF. We show that every O(1) cycles, a new column joins X on the left
side. Let , be the maximal number such that , , 2c2 p and K, has not a foot of
height c2 p at the considered moment of the computation. First, we assume that
, $ 4.

Case 1. , is odd. By Fact 2.12, after the subsequent Step A, the R-columns
K, and K,22 are described by the words w, and w,22, respectively. The vertical
edges of the subsequent Step B transform the columns K, and K,22 so that now
they are described by

w9 5 ~p!p22c2 p1,# 11~1p!c2 p2,# 21~1!,# 11

and

u9 5 ~p!p22c2 p1,2211~1p!c2p2,2211~1!,2211,

respectively. Note that ,#5 , 2 2 1 1. Hence u9 5 w,. The next Step C does not
change the contents of the c2 p lowest nodes of K,, since all corresponding nodes
of column K,11 contain 1’s. Since the 1’s from column K,22 are moved one

FIG. 8. Filling feet of R-columns in the middle of M.

FIG. 9. Filling feet of L-columns in the middle of M.

FIG. 10. The situation after step ht1
.
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position to the right, the words w, and w9 describe now the columns K,21 and
K,, respectively. Then for each i # c2 p, either Pi, ,21 or Pi, , contains a 1. These
two nodes are compared during the next Step A. Hence, a foot of height c2 p is
formed in K,.

Case 2. , is even. After subsequent Step C, the R-columns K, and K,22 are
described by the words w, and w,22, respectively. Similarly as in Case 1, after
Step A, these words describe the columns K, and K,21, respectively. Then Step
B transforms the columns so that now they are described by

~p!p22c2 p1,# 11~1p!c2 p2,# 21~1!,# 11

and

~p!p22c2 p1,2211~1p!c2 p2,2221~1!,2211,

respectively. Since ,# 5 , 2 2 1 1, for each i # c2 p, at least one of the nodes
Pi, ,21 and Pi, , contains a 1. Hence after the next Step C, column K, has a foot
of height c2 p.

Similar considerations show that O(1) cycles suffice to include the columns
K0, K1, K2 and K3 to region X provided that K4 is already in X. e

Once X reaches the left border, every left-running column emerging at the
right border contains a foot of height c2 p (the feet are no longer broken at the
right border, since the 1’s in the first columns prevent the ones from the right
border to go through Schwiegelshohn edges). Such a left-running foot moves to
the left until it meets X. Then, it expands X by one column. It follows that X
reaches the right border in O( p) steps.

3. The Periodification Scheme

An important property of the networks described in Section 2 is that R-columns
and L-columns are being sorted by Odd-Even Transposition Sort on their way to
the right and left border, respectively. Now we show that, if we replace Odd-Even
Transposition Sort by other algorithms, then we may obtain much faster net-
works, as claimed in Theorem 1.2. The main idea of the construction remains the
same as in Section 2, but there is a new technical problem that causes deep
modifications of the design. Namely, if we proceed as in Section 2 and prove that
there is a region X consisting of middle columns of the network in which every
column contains a foot of height V( p), then we still have to prove that X
expands quickly to the right and left border of the network. The problem is that
the proof of this phenomenon in Section 2 depends heavily on the properties of
Odd-Even Transposition Sort. In Section 3.1, we design a periodic network with
period 5 that avoids this problem no matter which (nonperiodic) algorithm has
been used. In Section 3.2, we discuss some features of the construction. In
Section 3.3, we prove an upper bound of the runtime of the algorithm.

Since our construction is general, it can be tuned a little bit once we decide
upon which network undergoes the periodification scheme. We discuss some of
such possibilities in the conclusions section.

3.1. CONSTRUCTION OF THE NETWORKS. Let N be a (nonperiodic) monotonic
sorting network, which sorts p items in T steps. We show how to convert N into
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a periodic network 3N. The nodes of 3N are arranged in a p 3 q-rectangle,
where p is even and where an even q, q 5 Q(T), is chosen appropriately. As
before, the nodes are ordered according to the row-major ordering and Pi, j

denotes the node from the ith row and the jth column. 3N performs cyclically
Steps A, B, A, C, D. The Steps A, B, and C, called horizontal, are depicted by
Figure 11. With few exceptions, Step D, called vertical, performs only vertical
comparisons, that is, comparisons connecting nodes inside the same column. Step
D depends on N and its crucial components are embeddings of N into 3N.
Intuitively, in order to embed N into columns i1, i2, . . . , iT, we draw N in the
traditional way with its “wires” laid horizontally: for j # T we take all
comparators from the layer j of N and put them into column i j (see Figure 12).

Definition 3.1. We say that N is embedded into columns i1, i2, . . . , iT, if for
every j 5 1, . . . , T and 1 # k1 # k2 # p, there is an edge between the nodes
Pk1, i j

and Pk2, i j
, if and only if [k1, k2] is a comparator of N at step j (during the

nonperiodic computation of N).

In 3N, we distinguish regions XL
2 , ZL, XL

1 , Y, XR
1 , ZR, XR

2 depicted by Figure
13. Each of the regions XL

i , XR
i for i 5 1, 2 consists of 4T columns. Four copies

of N are embedded into each of these regions. Two copies are used for sorting
R-columns and the other two for sorting L-columns. The copies for sorting
R-columns are embedded from left to right and the copies for sorting L-columns
from right to left. That is, if we index the columns of such a group from left to
right by the numbers 1, 2, . . . , 4T, then the first copy of N is embedded into the
columns 1, 5, . . . , 4T 2 3 and the second one is embedded into the columns 3,
7, . . . , 4T 2 1. The other two copies for sorting L-columns are embedded into
the columns 4T 2 2, 4T 2 6, . . . , 2 and 4T, 4T 2 4, . . . , 4. The parts ZL

and ZR consist of four columns each and contain slanted edges depicted by
Figure 14. Group Y has width Q(T) and may contain arbitrary vertical edges.
(We do not need such edges for our runtime analysis, however they may improve
real performance of the network.)

Step D performs all comparisons corresponding to the vertical edges intro-
duced by the embeddings of N. Additionally, it performs comparisons corre-
sponding to the slanted edges inside ZL and ZR presented at Figure 14 and may
perform arbitrary vertical comparisons inside Y.

3.2. REMARKS ON THE CONSTRUCTION. There are some elements in the
design of 3N that need to be commented before we go into technical details. The
first interesting feature is the shape of Step C. It contains all “Schwiegelshohn”
edges. The idea is to let every second R-column move from the right to the left
border. These R-columns play a crucial role once there is a “region X” of high

FIG. 11. The horizontal steps for p 5 8 and q 5 6.
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feet in the middle of 3N. Each such an R-column with a high foot expands X by
one column to the left once it arrives next to X on its left side.

Since for 3N there is only one step that performs “breaking” columns at the
borders, there is no need for ragged sides of the network and therefore the nodes
form an ordinary rectangle.

There is an additional problem caused by Step C. In the situation when every
R-column going to the right border of 3N contains a foot of height x, we can no
longer guarantee that every L-column generated on the left border contains at
least x/ 2 ones. This is guaranteed only for every second L-column. This
problem is solved as follows: Consider an L-column that contains at least x/ 2
ones in the x lowest nodes when it is generated at the right border. After moving
through XR

2 it contains a foot of height x/ 2. Then this column moves to ZR. In
ZR, the foot of this column is splitted into two parts during Step D– every second
1 is sent to the next L-column in ZR (for which we had no guarantee about a
number of 1’s contained). Thus, in XR

1 each L-column contains at least x/4
ones. ZL acts symmetrically on the R-columns on the left side of 3N.

The role of Y is only to increase the width of 3N in order to apply counting
arguments (as in the proof of Fact 2.9).

3.3. ANALYSIS OF THE ALGORITHM. The key point in the analysis is, as before,
the following lemma:

LEMMA 3.2 (KEY LEMMA). There exist constants c and d such that after
executing c z q cycles either

(a) the bottom d z p rows of 3N contain only 1’s, or
(b) the top d z p rows of 3N contain only 0’s.

FIG. 12. Embedding of a network.

FIG. 13. Partitioning of the nodes of 3N.

FIG. 14. The edges inside ZL and ZR.
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Recall that N is monotonic. If we remove consecutive bottom (top) rows
containing 1’s (0’s) only and all incident edges, then we obtain a network 3N9
and a corresponding embedded comparator network N9. By Proposition 1.10, N9
is a sorting network. Therefore, we may apply Lemma 3.2 repeatedly to show that
after executing O(q log p) cycles 0’s fill the top rows of M, 1’s fill the bottom
rows of M and these rows are separated by O(1) rows containing both 0’s and
1’s. By Proposition 1.9, the next O(q) cycles suffice to complete sorting. Hence,
3N sorts in time O(q log p) 5 O(T log p).

The rest of this section is devoted to the proof of Lemma 3.2. We have to
follow almost the same sequence of technical facts as in Section 2. When
possible, we only sketch the necessary changes.

Since the network is symmetric, we may assume that at least half of the nodes
contain 1’s. Under this assumption, we show that after c z q cycles the bottom d z
p rows of 3N contain only 1’s (i.e., part (a) of Lemma 3.2 holds).

Fact 3.3. When Step D is executed, the slanted edges inside ZL connect
R-columns and the slanted edges inside ZR connect L-columns. Every R-column
(L-column) is incident to the slanted edges during Step D exactly once during its
movement through ZL (ZR).

PROOF. The columns incident to slanted edges are K4T11, K4T13 (inside ZL)
and Kq24T22, Kq24T (inside ZR). Immediately after Step C, the odd numbered
columns are R-columns and the even numbered columns are L-columns (see
Figure 11). So at this moment, K4T11, K4T13 are R-columns. Also, since q is
even, Kq24T22, Kq24T are L-columns at this moment.

For the second part of Fact 3.3, observe that there are four horizontal steps
between two consecutive Steps D. Hence, every moving column once influenced
by the slanted edges leaves ZR or ZL before the next Step D is executed. e

Fact 2.2 remains valid for 3N. Let Kzl
be the right-most column of ZL and Kzr

be the leftmost column of ZR. Fact 2.3 should be reformulated in the following
way.

Fact 3.4. If Ki is an R-column immediately after step ht, i , q and i $ zl,
then w(Ki, ht11) # w(Ki, ht) # w(Ki11, ht11). Similarly, if Kj is an L-column
immediately after step ht, j . 1 and j # zr, then w(Kj21, ht11) # w(Kj, ht) #
w(Kj, ht11).

The assumptions that i $ zl and j # zr are necessary, since for the proof, we
require that between horizontal steps ht and ht11 the number of 1’s in Ki

remains unchanged. Obviously, performing Step D on Ki with i 5 zl, zr may
violate this property. Concerning an R-column Ki, this cannot happen, if i $ zl,
by Fact 3.3. Similarly, while concerning an L-column Kj, it suffices to assume that
j # zr. Otherwise, the proof of Fact 3.4 is the same as the proof of Fact 2.3.
Similarly as in Section 2, we get immediately the next fact by induction on k.

Fact 3.5. If Ki is an R-column immediately after step ht, w(Ki, ht) 5 x, i 1
k # q and i $ zl, then Ki1k is an R-column immediately after step ht1k and
w(Ki1k, ht1k) $ x. Similarly, if Kj is an L-column immediately after step ht,
w(Kj, ht) 5 x, j 2 k $ 1 and j # zr, then Kj2k is an L-column immediately
after step ht1k and w(Kj2k, ht1k) # x.
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Fact 2.6 has to be modified as follows:

Fact 3.6

(i) Let Ks be the first or the third column of XZ
i , i [ {1, 2}, Z [ {L, R}. If Ks

is an R-column immediately after step vt and w(Ks, vt) $ x, then immedi-
ately after step vt1T21, column Ks14T24 contains a foot of height x.

(ii) Let Ks be column 4T or 4T 2 2 of XZ
i , i [ {1, 2}, Z [ {L, R}. Suppose

that immediately after step vt, the column Ks is an L-column and Ks contains
x ones in the y lowest registers. Assume further that for t9 $ vt each
R-column in XZ

i contains a foot of height y. Then immediately after step
vt1T21 column Ks24T14 contains a foot of height x.

Fact 3.6 follows immediately from the construction of 3N and Corollary 1.8.
The only difference between Facts 2.6 and 3.6 is that previously we could start at
any column Ki. This was possible since the consecutive vertical steps perform
Odd-Even Transposition Sort even if we start sorting at Ki. Now, in order to
perform the steps 1, 2, 3, . . . of N (in this order) we have to start at the beginning
of some embedded copy of N.

At Step B, only p/ 2 ones may come through “Schwiegelshohn” edges to the
right border. Hence, we get immediately the following property:

Fact 3.7. If step t is a B-step, then w(K1, t) # w(K1, t 2 1) 1 p/ 2.

Let Kg be the first column of XR
1 .

Fact 3.8. There is a constant c1 such that if Kg is an R-column immediately
after horizontal step ht, t $ g, then w(Kg, ht) $ c1p.

PROOF. The idea of the proof is essentially the same as in the case of Fact
2.9. The main difference is that during Step C the number of 1’s in K1 may
increase by p. Only during Step B this increase is bounded by p/ 2. Additionally,
some complications are caused by the slanted edges of ZL, ZR and the definition
of the Si’s must be changed accordingly. Below we sketch the details.

Let w(Kg, ht) 5 x and Kg be an R-column immediately after step ht, t $ g 2
zl. Let t1 5 t 2 g 1 zl.

Let Si consist of columns K1 through Kzl1i immediately after step ht11i. The
number of 1’s in Si, denoted by w(Si) may be estimated as follows:

w~S0! # zl z p

(since S0 contains zl z p nodes);

w~Si11! # w~Si! 1 x if ht11i11 is an A-step

(indeed, during an A-step no new 1’s come through “Schwiegelshohn” edges to
K1; on the right side the number of 1’s increases by at most x, since w(Kzl1i11,
ht11i11) # x and w(Kzl1i, ht11i11) # w(Kzl1i, ht11i));

w~Si11! # w~Si! 1 x 1
p

2
if ht11i11 is a B-step
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(additionally, we have to take into account the increase of the number of 1’s in
K1, which is at most p/ 2 by Fact 3.7);

w~Si11! # w~Si! 1 x 1 p if ht11i11 is a C-step

(we estimate the increase of the number of 1’s in K1 by p). Step D does not
influence the number of 1’s in Si. Observe that every second horizontal step is an
A-step, every fourth horizontal step is a B-step, and every fourth horizontal step
is a C-step. It follows that

w~Sg2zl
! # zl z p 1 x z ~ g 2 zl! 1 g 2 zl

4  z
3

2
p.

Since Sg2zl
comprises of the columns K1 through Kg, the total number of 1’s in

3N is at most w(Sg2zl
) 1 (q 2 g) z p. Recall that we have assumed that the

total number of 1’s is at least ( pq)/ 2. Therefore, it follows that x $ c1 z p for
some constant c1 provided that q $ c2 z T, where c2 is an appropriately large
constant. We may assume that Y is wide enough so that this assumption is
satisfied. e

By Facts 3.6 and 3.8, each R-column arriving on the left side of ZR after some
step t2 5 O(q), t2 5 q 2 O(T) 2 O(1), contains a foot of height x 5 V( p).
By Fact 3.3, such a foot is not destroyed while an R-column moves to the right
through ZR; obviously, it is not destroyed while the R-column moves through
XR

2 . Therefore we have proved the following fact:

Fact 3.9. There is a t3 5 O(q), t3 5 t2 1 O(T) 1 O(1), such that

if t $ t3, then immediately after step t every R-column inside ZR ø XR
2 has a

foot of height x.

At the right border, R-columns are affected alternately by the Steps B and C.
In the case of a C-step, the foot of Kq is moved to K1 (except the one from the
lowest node). This gives rise to a new R-column on the left border that contains
a foot of height x 2 1. In the case of Step B only one half of the 1’s contained in
the foot of height x of Kq is moved to K1. Also, since these 1’s are moved to
every second of the lowest x registers in K1, they do not form a foot. However,
such an R-column created in K1 moves to the right through XL

2 . By Fact 3.6,
when this R-column arrives at ZL, the mentioned 1’s form a foot of height x/ 2.
Therefore, there is a t4 5 O(q), (t4 5 t3 1 O(T)), such that

if t $ t4, then immediately after step t every R-column entering ZL has a foot
of height x/ 2.

Observe that Step D cannot destroy feet of height x/ 2 after step t4. Indeed, the
slanted edges effect columns both with feet of height x/ 2. Therefore, there is a
t5 5 O(q), t5 5 t4 1 O(1), such that

if t $ t5, then immediately after step t every R-column leaving ZL has a foot of
height x/ 2.

(Note that after step t each R-column in ZL has also a foot of height x/ 2.) In
O(q) steps the first R-column that leaved ZL after step t5 reaches ZR. Then

964 M. KUTYŁOWSKI ET AL.



every R-column outside XL
2 contains a foot of height x/ 2, since by Fact 3.9

R-columns in ZR ø XR
2 contain feet of height x. This property remains true

afterwards, since all R-columns emerging from ZL have feet of height x/ 2. So
there is a t6 5 O(q), (t6 5 t5 1 O(q)), such that

if t $ t6, then immediately after step t every R-column outside XL
2 has a foot

of height x/ 2.

Now let us consider what happens on the right side of 3N. After step t3, every
second L-column generated at Kq has x/ 2 ones in x lowest registers. These 1’s
remain left-running at least until they reach XR

1 , because every R-column inside
ZR ø XR

2 contains a foot of height x. Therefore, by Fact 3.6, it follows that

if t $ t4 5 t3 1 O(T), then immediately after step t every second L-column
arriving in ZR has a foot of height x/ 2.

Network 3N is designed so that when an L-column with feet x/ 2 mentioned
above enters ZR, then Step D is executed when it is the third from the left
column of ZR. Indeed, the L-column is generated at the right side of the network
at Step B. Then, the L-column moves two positions to the left, that is, to the
third column from the right, before Step D is executed for the next time. Then
between two consecutive steps D, the L-column moves 4 positions to the left.
Since the number of columns in XR

2 is divisible by 4, the L-column occurs at the
third from the right column of ZR, when Step D occurs. Then, the foot of the
L-column is splitted and a half of the ones of the foot is sent into the L-column
next to the right. In this way, we sent 1’s into an L-column for which we had no
guarantee about the number of 1’s contained. Hence,

if t $ t5 5 t4 1 O(1), then immediately after step t every L-column leaving
ZR contains at least x/4 ones.

Applying Lemma 3.6 for the L-columns that leave ZR with at least x/4 ones
after step t6, we see that these L-columns arrive in Y with feet of height x/4.
Therefore, there is a t7 5 O(q), (t7 5 t6 1 O(T)), such that

if t $ t7, then immediately after step t every L-column arriving in Y has a foot
of height x/4.

Since all R-columns outside XL
2 have feet of height x/ 2, the L-columns with

feet of height x/4 move intact through ZL ø XL
1 ø Y. In O(q) steps after step

t7, the first such L-column reaches the left end of ZL, say at step t8. Afterwards
all L-columns in ZL ø XL

1 ø Y have feet of height x/4, since new L-columns
arriving at Y have such feet. On the other hand, all R-columns in ZL ø XL

1 ø Y
have already feet of height x/ 2. Therefore,

if t $ t8 5 t7 1 O(q), then immediately after step t every column in ZL ø XL
1

ø Y has a foot of height x/4.

Since every second R-column created in K1 has a foot of height x and since the
1’s from the x/4 lowest registers of such an R-column cannot move out of XL

2 ,
these feet fill the x/4 rows of XL

2 in O(T) steps. Hence, there is a t9 5 O(q),
(t9 5 t8 1 O(T)), such that
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if t $ t9, then immediately after step t every column in XL
2 ø ZL ø XL

1 ø Y
has a foot of height x/4.

After step t9, column K1 contains always a foot of height x/4. Then, at Steps B
and C, the x/4 lowest registers of Kq retain 1’s. In this way, L-columns with feet
of height x/4 are created. They move to the left and once the first such
L-column reaches the end of XR

1 , all L-columns in XR
1 ø ZR ø XR

2 have feet of
height x/4. All R-columns in XR

1 ø ZR ø XR
2 have feet of height x/ 2, as

previously observed, so all columns in XR
1 ø ZR ø XR

2 have feet of height x/4.
All other columns have such feet already for every step t $ t9. Hence, finally,

if t $ t10 5 t9 1 O(T), then immediately after step t every column in 3N has
a foot of height x/4.

Since t10 5 O(q) and x 5 V( p), this concludes the proof of Lemma 3.2. e

4. Conclusions and Final Remarks

The best sorting time that we have obtained using periodic networks with a
constant period is O(log2 n). There is no known lower bound for sorting time on
periodic comparator networks with constant period other than V(log n), which
holds for arbitrary comparator networks. Despite many efforts no progress has
been made until now to close this gap and it seems to be a very difficult
mathematical problem.

The periodification scheme can be modified so that we get networks with
period 3. The idea is to generalize construction for the two-dimensional mesh in
a little different way. Instead of embedding copies of N to cope with broken feet
that occur at the borders of 3N, we embed special networks that sort sequences
obtained by breaking feet. Generally, there are many ways to achieve this goal.
For instance, we may apply a network from Merge Sort algorithm. This is
efficient in the sense that the network that we embed has logarithmic depth and
need only few columns on the sides of 3N [Oesterdiekhoff 1997]. The price we
have to pay for it is an increase of the layout area so that we cannot guarantee
the bound from Theorem 1.2. This is not a fault of Merge Sort, since due to the
AT2 bound, any fast algorithm of this kind needs a large layout area. For
Batcher’s sorting networks, which themselves require a large layout area, it does
not matter and we improve Corollary 1.3 by replacing period 5 by period 3.
Similarly, there is a tailored version of periodification scheme for multi-dimen-
sional meshes yielding networks of period 3 (see Loryś et al. [1994] and
Oesterdiekhoff [1997] and a forthcoming journal version for technical details).

Periodification has shown to be a useful technique in other contexts. It is
hidden in some way in a construction of periodic merging networks of a constant
period [Kutyłowski et al. 1998]. Recently, Stachowiak [2000] came up with an
idea of a correction network that is based on the periodification paradigm.
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LORYŚ, K., KUTYŁOWSKI, M., OESTERDIEKHOFF, B., AND WANKA, R. 1994. Fast and feasible
periodic sorting networks of constant depth. In Proceedings of the 35th IEEE Symposium on
Foundations of Computer Science (FOCS). IEEE Computer Society Press, Los Alamitos, Calif., pp.
369 –380.

OESTERDIEKHOFF, B. 1997. On periodic comparator networks. Dissertation, University of Pader-
born, Paderborn, Germany.

SADO, K., AND IGARASHI, Y. 1986. Some parallel sorts on a mesh-connected processor array and
their time efficiency. J. Parall. Distrib. Comput. 3, 398 – 410.

SAVARI, S. A. 1993. Average case analysis of five two-dimensional bubble sorting algorithms. In
Proceedings of the 5th ACM Symposium on Parallel Algorithms and Architectures (SPAA). ACM, New
York, pp. 336 –345.

SCHERSON, I. D., SEN, S., AND SHAMIR, A. 1986. Shear-sort: A true two-dimensional sorting
technique for VLSI networks. In Proceedings of the IEEE International Conference on Parallel
Processing. IEEE Computer Society Press, Los Alamitos, Calif., pp. 903–908.
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