
Published in: Proceedings of the 8th International Parallel Processing Symposium, IPPS’94,
April 26–29, 1994, Cancun, Mexico, pages 260–267. c
1994 IEEE, Reprinted with permission of the IEEE.

Parallel Evaluation of a Parallel Architecture by means of Calibrated Emulation

Henk L. Muller� Paul W.A. Stallard� David H.D. Warren� Sanjay Rainay

Department of Computer Science, University of Bristol, Queen’s Building, Bristol. BS8 1TR, UK.

Abstract

A parallel transputer-based emulator has been devel-
oped to evaluate the DDM—a highly parallel virtual shared
memory architecture. The emulator provides performance
results of a hardware implementation of the DDM using
a calibrated virtual clock. Unlike the virtual clock of a
simulator, the emulator clock is bound to a fixed fraction of
real time so individual processors may time actions inde-
pendently without the need for a global clock value. Each
component of the emulator is artificially slowed down so
that the balance of the speeds of all components reflects the
balance of the expected hardware implementation.

The calibrated emulator runs an order of magnitude
faster than a simulator (the application program is executed
directly and there is no overhead for the maintenance of
event lists) and more importantly, the emulator is inherently
parallel. This results in a peak emulation speed of 16
million instructions per second when simulating a machine
with 81 leaf nodes on a 121 node transputer system.

1 Introduction

Shared memory machines are convenient for program-
ming but do not scale beyond tens of processors. The Data
Diffusion Machine (DDM) [1], overcomes this problem by
providing a shared memory abstraction on top of a dis-
tributed memory machine. A DDM appears to the user as a
conventional shared memory machine but is implemented
using a distributed memory architecture. This approach is
generally known as Virtual Shared Memory, or VSM.

The key issues for evaluating the merits of the DDM
are the complexity of the design, the performance, and the
scalability of the performance. In this paper, we focus on
performance evaluation of the machine design. In general
there are several ways to evaluate the performance: using
a performance model, a simulator, or a prototype of the
architecture. In this paper we use a combination of the last

�Working at PACT/SRF, 10 Priory Road, Bristol. BS8 1TU, UK.
e-mail: {henkm,paul,warren}@pact.srf.ac.uk.
Work supported by ESPRIT P7249, OMI/HORN.

ySeconded from Meiko Limited, Aztec West, Bristol.

two: a prototype of the machine developed in software (an
emulator), enriched with a virtual clock to provide realistic
timings, an approach similar to the WWT [2]. The emula-
tor thus provides the complete functionality of a hardware
prototype. Although it runs slower than a prototype, it is
much cheaper to produce and gives the flexibility to exper-
iment with the architecture. Compared with a simulator,
the emulator is slightly less flexible but it runs significantly
faster, and in parallel.

The rest of this introduction gives some background on
the DDM. In Section 2 we address the evaluation strategy.
An emulator implements both the functionalityand the tim-
ing aspects of a future DDM realisation, and can be used to
run benchmark programs, measure their performance, and
study various architecture details. The emulator has been
validated as is described in Section 3 in which we show that
the results of the emulator have reasonable correspondence
with figures from existing machines. In Section 4 we show
some preliminary results of emulating the DDM, and of the
emulator performance.

1.1 Data Diffusion Machine background

The purpose of the DDM architecture is to provide a scal-
able shared memory architecture to the user. The DDM is
not the only architecture that provides virtual shared mem-
ory. Other machines such as the DASH [3], KSR-1 [4]
and MIT-Alewife [5] also implement virtual shared mem-
ory. There are however some essential differences between
these machines. The DDM and KSR-1 are described in the
literature as cache only memory architectures or COMAs.
A data item is stored at the processors where it is needed
and does not have a home location where it will always
be found. Instead data is located by means of directories.
Data addresses no longer correspond to physical locations,
but simply represent names (or tags) for data. As the data
is free to move around the system the programmer sees a
uniform memory access (UMA) system in which all data is
equally accessible. In contrast, the DASH and Alewife ar-
chitectures have the data stored in some home location and
cache the data where it is frequently used. In these archi-
tectures memory accesses are non-uniform (NUMA) which

260



generally means that the programmer is more restricted in
how data is laid out in the address space.

The DDM supports a strong consistency model. Like
the KSR-1 and the MIT Alewife, the DDM offers the same
form of consistency as a machine equipped with a single
memory. The DASH provides a weak form of consistency
known as release consistency in which the memory is only
known to be consistent after explicit synchronisation points.
In general, a stronger consistency model complicates the
implementation, but simplifies programming.

The DDM is organised hierarchically. The leaves of the
hierarchy consist of processors with large set-associative
memories that comprise the sole store for data. The nodes
above the leaves are directories that keep track of the data
items below. Data can be either writable in the memory of
exactly one processor, or read-only in multiple memories.
When the data required by a processor is not available lo-
cally, a request is posted upwards in the tree. The request
is propagated upwards until a directory indicates that the
data is available in some branch of the tree below. This di-
rectory then fetches the data and returns it to the requesting
node. If necessary, ordinary caches can be placed between
the processor and the DDM memory, or local memory can
be attached to nodes to store, for example, program code.

The DDM architecture can be built with many types of
interconnect. At SICS in Sweden a DDM is prototyped
with a hierarchy of busses [6]. We are particularly inter-
ested in a DDM constructed with a point-to-point network,
as supported by transputers for example. The protocol used
is different, but the basic properties (the latency in all op-
erations scales only with the logarithm of the number of
nodes) are identical. The version of the architecture that
is described in this paper consists of a single tree, that is
interconnected with links.

2 The emulator

To evaluate the performance of the DDM architecture, a
software emulator has been developed. The first emulator
was described in [7]. The emulator presented in this paper
employs a more powerful calibration scheme, giving rise
to more reliable results, and more flexibility.

Software emulation has a number of advantages over
other strategies, such as simulation or measurements on a
prototype hardware implementation. A hardware imple-
mentation is expensive, inflexible and takes considerable
time to develop whereas a software emulator can provide
a flexible experimentation platform as well as accurate re-
sults. The emulator runs orders of magnitude faster than
a detailed simulator and provides results of comparable
accuracy. The emulator itself runs on a parallel machine
with near perfect speedup, as opposed to the far from per-
fect speedup resulting from parallelising simulators. As a

T

T T

T T T T T T

� � �

� � �

XXX

���
HHHHHHH

















J
J
JJ

J
J
JJ �

�
�
�

Assoc.
mem

�
AAK
AAU�

�
�



Application
program

dr
6
6

Queue

dr?
?
�
�
�
�

Directory

Protocol
- Queues

td6
6-

?

�
�
�
��

%
%
%
%
%%

d d dr r r

666
666
Queue

dr?
?-

d d dt t t

???

???
Queues

dt6
6-

�
�
�
�

Directory

Protocol

Figure 1: The DDM emulator. The boxes marked ‘T’
are transputers, the right hand side shows which pro-
cesses run on each transputer.

consequence, the emulator is capable of simulating real ap-
plications with a speed of over 300,000 emulated processor
instructions per second per node.

The emulator is presented in two stages. In Section 2.1
the process of developing a functionally correct emulator is
presented. The calibration scheme employed in the emula-
tor, that causes the emulator to have timing characteristics
that are identical to an expected hardware implementation,
is presented in Section 2.2.

2.1 Emulation

The basic structure of the emulator is shown in Fig-
ure 1. A network of T800 transputers [8] is used for the
emulation. The lowest level of transputers emulates both
the parallel application program, and the leaf nodes of the
DDM hierarchy—the set-associative memory nodes. The
transputers higher in the hierarchy emulate the DDM direc-
tories.

The right hand side of Figure 1 shows the processes
needed for the emulation in more detail. Each interior trans-
puter (in this particular example with a fanout of 3) executes
9 processes: one process implementing the DDM-directory
management, four receiving transactions from above and
below, and four that are transmitting transactions. The re-
ceivers and transmitters decouple the protocol engines of
the various nodes, which is necessary since the protocol
works with asynchronous transactions while a transputer
supports synchronous communication. The communica-
tion between the directory and receiving and transmitting
processes is implemented by means of shared queues.

The process structure on the leaf-transputers is similar,
but these transputers additionally execute the application
program as a separate process. This process communicates
with the directory process and the (single) receiver pro-
cess via soft-channels. The data structure containing the
set-associative memory is maintained by the directory but

261



accessible to the application program. The structure of the
top node is also slightly different, because there is no level
above. Since no transaction should ever try to leave the
DDM, a special process is connected to the top directory
that generates a fatal error if a transaction emerges from the
top-level directory.

The directory processes on each node do the bookkeep-
ing necessary for the DDM architecture. When a transac-
tion enters the directory process, the address carried by the
transaction is indexed and matched with the keys of the data
items, and when a match is found, a state machine imple-
ments the data diffusion coherency protocol. The process
also maintains statistics (described in [9]) that are required
to evaluate the architecture and applications.

The number of receiving processes at each level depends
on the number of nodes in an architecture but can never
exceed four—the number of physical links of a transputer.
This limits the architectures to be emulated to a fanout of
three for the interior nodes, and four for the top node. We
plan to remove this limitation in the near future.

The application program is compiled to the transputers.
It is thus not simulated, but actually executed on the leaf
nodes. To emulate the virtual shared memory each shared
memory reference must be trapped and directed through
the protocol handler to ensure the data is available locally
and in the correct state before the operation is performed.
As the transputer does not provide memory management,
these references cannot be trapped by hardware so must
be intercepted in software. To achieve this the code is
annotated after the compilation stage (as in Tango [10] and
MiG [11]).

After the compiler has generated transputer assembler,
the assembly code is modified so that each non-local read
and write operation is replaced by a function call to the
protocol handler. The protocol handler first tests if the
trapped reference is indeed a shared access and then either
returns the data (in the case of an access to local data)
or passes the reference on to the protocol engine. The
non-local accesses are references to potentially shared data
whereas local accesses are in the local stack of a node. In
the current emulator we do not allow process migration
(in which running processes could move from processor to
processor depending on load and data locality) so that a
private stack for each processor suffices.

The code annotation process is completely transparent
to the user. The user simply compiles the application pro-
gram with dcc—a compiler driver analogous to cc which
performs the additional code translations after the compila-
tion stage. After linking, the program is executed under the
control of the DDM emulator. We provide support for the
p4 programming model [12]—a portable library providing
parallel programming facilities (such as synchronisation,

T800 Projected
Component Emulation Hardware Ratio
Integer Instruction 50–300 ns 10 ns 5–30
Floating Point .4–1.6 µs 40 ns 10–40
Local Memory time 33.8 µs 100 ns 338
Protocol Delay 81.0 µs 200 ns 405
Header Latency 24.0 µs 400 ns 60
Message Latency 86.0 µs 1040 ns 83

Table 1: DDM Component Timings of the uncalibrated
emulator. The projected hardware column shows the
timings expected to be achievable before the end of
this decade.

process control and timing). By implementing a p4 li-
brary for the DDM, we are able to compile and run existing
p4-based parallel programs on the emulator without modi-
fication.

2.2 Calibration

The emulator presented above represents a functional
model of the DDM, working exactly like a real DDM ex-
cept that it is comparatively slow. Unfortunately, it is not
simply some factor slower than a hardware implementation
because the balance of speeds of the various components
are very different from those of a real DDM. This im-
balance is illustrated in Table 1. The ratio of speeds of the
various components differ widely: the speed of the network
is only 60 times slower than the expected implementation,
while the protocol engine is 405 times slower.

The imbalance extends to the speed of the T800 itself and
its interconnection network—the T800 transputers used in
the emulator are much slower than the processors that will
be available by the end of this decade. All these differences
make the temporal performance of the emulator of little
use as a comparison with a hardware implementation. As
the scalability of the architecture depends crucially on the
actual timing parameters of the system, we have devised a
method to make the emulator reflect the hardware timings
more accurately.

Our aim is to map the timing model of the DDM emulator
on to the model of the timings of the expected DDM im-
plementation. This mapping is achieved using a technique
called calibration and results in a system with very similar
temporal properties to a real implementation. As we cannot
be sure exactly what the future hardware specification will
be, the timings are a parameter of the calibration process.
The mapping of the functional model to the hardware model
is shown schematically in Figure 2. The execution trace of
a program accessing data that currently resides on another

262



Emulator

Calibrated Emulator

Hardware Model

Node 1

0 2 3 4 5 6

0.50

0 1 2 3

0 1 2

Real Time

Virtual Time

Calibrated Time

Directory

Node 0

Executing Protocol
Application Running

Link Traffic

Real Time

0.40.30.20.1

Figure 2: The Calibration Process.

node is shown in the top three lines (denoting the activity
of the two nodes involved and the directory in between).
The calibration process increases the time spent in certain
phases so that the temporal characteristics of the emulator
are only a constant factor different from the characteristics
of the hardware model. This leads to the execution paths
shown in the middle three lines. By reducing the time scale
we manage to get the execution trace as it would have been
on the real DDM architecture, shown in the bottom lines.

The calibration scheme sketched above is implemented
by using a virtual clock. The virtual clock is defined to
run at a fraction of real-time dependent on the worst of the
ratios between emulation speed and hardware speed. In the
case of Table 1, the virtual clock would run at 1 / 405 th

of real-time. Each element of the emulator monitors the
virtual clock and after performing its task, waits for the
appropriate virtual time to pass. The protocol in the above
example will take 81 µs of real time to complete during
which time the virtual clock will have advanced exactly
200 ns. A memory access however will take 33.8 µs of
real-time which corresponds to only 33. 8 / 405 = 83 ns of
virtual time. This code will therefore block until the whole
operation has taken 100 ns � 405 = 40. 5 µs, so that the
virtual clock will have advanced 100 ns as dictated by the
hardware model. In contrast with the approach described
in [2], the introductionof an artificial delay means that there
is no need to maintain event lists.

To model various processor speeds, we have to adjust
the execution speed of the emulation processor to the ex-
ecution speed of the emulated processor. The calibration
scheme is designed so that it adjusts for differences in the
instruction set between the emulation processor (the T800)
and the emulated processor (we are aiming at the successor

of the T9000). Each instruction of the T800 is classified
according to the expected execution speed on the target
processor. Currently there are three classes of instructions:
null-instructions, floating point instructions and all other
operations. The null instructions are the T800 instructions
which will be executed on the target processor in zero in-
struction cycles, or which are not required by it. The most
prominent member of this class is the prefix instruction that
the T800 needs to construct operands. Null instructions are
not accounted for by the emulator. The floating point in-
structions comprise all instructions for performing floating
point arithmetic. It is assumed that all these instructions are
executed in one single “floating point cycle” (addition and
division operations thus run at the same speed). The rest
of the instructions (jumps, integer operations, loads, stores)
are classified as integer operations. The emulator assumes
that they execute in a single integer instruction cycle as
long as no memory is accessed. The calibration scheme is
flexible enough to extend the number of instruction classes,
but we have found that a simple division into null, floating
point and other instructions gives reasonable results. It is
possible however, as more informationon the target proces-
sor becomes available to formulate a more accurate model
of those components.

The calibration for the processor is achieved by anno-
tating the application assembler code from the C compiler
and inserting time costs in the code at the end of each basic
block. The number of instructions between jump/call in-
structions are counted and a delay of the appropriate time is
inserted at the end of the block. At that point the program
is descheduled until the value of the real time clock and the
value of the virtual clock (which has been incremented be-
cause of the executed instructions)match again. In this way
both the time used by the actual execution of the instruc-
tions, and the time that has been used by the protocol (if
that had been scheduled in because there was some request
from above) are accounted for.

The annotation with the timing calls is performed trans-
parently by the same program that generates the traps for all
accesses to shared memory. Using basic blocks as the unit
of calibration overcomes the potential code explosion of
annotating individual instructions. Because the calibration
of long basic blocks at the end may result in less accurate
results, the calibration is performed at regular intervals in-
side large basic blocks as well. Only 10% of code is added,
while the errors in the calibration are negligible.

Unlike the interior nodes of the DDM hierarchy that run
only the directory protocol engine, the leaf nodes run both
the protocol engine and the application itself. The cali-
bration mechanism ensures that the application appears to
be the sole consumer of the leaf CPU and that the proto-
col engine that cohabits the node is also able to operate

263



unhindered. The calibration scheme decouples these two
processes completely and ensures that each one operates
seemingly on separate hardware at the speed dictated by
the hardware model. This is achieved by deducting the
time spent in the directory from the calibration of the time
of the application. The calibration factor is increased to
ensure that both the application and protocol have enough
idle periods to allow each other to run. The extra slowdown
depends on the slowdown factors, the instruction mix and
the utilisations of processor and protocol but is at most a
factor of two. This is an upper bound (as it effectively
provides two processors) but in practice one can run with
only 20% extra slowdown and a run time check that verifies
that the clocks are able to catch up, saving a considerable
amount of time.

At this stage we can only estimate the properties of fu-
ture hardware. We have specified the hardware model in a
separate file that allows us to define various machines and
compare the DDM performance on these. This configura-
tion file is read by the emulator at start-up time whereupon
the emulator measures the speed of each of the compo-
nents. It then calculates the calibration factors necessary to
simulate the hardware model specified and distributes these
to each processor. This ensures that the calibration is kept
constantly in tune with any changes in the emulator.

The major advantage of the calibrated emulator (from
now on referred to simply as the emulator) over an event
driven simulator is the speed. The emulator can run in
parallel on an arbitrary number of nodes without having to
perform any synchronisation. The speed of the emulator
however critically depends on the slowdown of each com-
ponent: one component with a huge slowdown will lead
to slow emulation. The lack of synchronisation makes the
emulator non-deterministic and for this reason, the emula-
tor has an option to maintain a log for debugging. Lastly,
developing an emulator is a bit (but not much) harder than
developing a discrete event simulator, an investment that is
repaid when emulating large computations.

3 Validation

When an emulator (or simulator) is used to measure per-
formance figures, it must first be validated. This validation
will give an indication of the errors in the modelling pro-
cess, invaluable when judging the merits of an architecture.
A complete validation will compare the results of an em-
ulator with the results of the existing machine. As we do
not have real DDM hardware to compare with, we have
performed three other validations. First the robustness of
the emulator and its calibration scheme is verified. Using
the calibration mechanism, the emulator can be used to
mimic many architectures. Section 3.2 presents a valida-
tion against T800 and Sparc/10 uniprocessor systems and

Access on on on on
Link on on on on
Protocol on on on on
Time (µs) 80.9 79.1 78.9 77.6 78.3 78.5 78.3 78.2
Error (%) 2.2 2.5 4.1 3.2 3.0 3.2 3.3
Emulation 119 168 168 217 197 202 200 222

Table 2: Errors on the robustness test.

Section 3.3 compares the emulator against a shared mem-
ory multiprocessor. In general, the errors in the modelling
are less than 10%. This is very acceptable as we are un-
able to predict the specification of future hardware within
a margin of 10%.

3.1 Robustness

The calibration process described in the previous section
takes care of the timing of the emulator. This means that
the timings should not depend on any delay in the emu-
lator or the underlying hardware. To verify this, we have
added delay loops at three places in the emulator, and com-
pared the predicted performance with the performance of
the emulator without the delay loops. One program of the
test suite was used (Barnes 64) on a three level binary tree
architecture topology.

The timings are shown in Table 2. The row labelled
“Time” shows the execution time for 8 different settings
of the emulator, without any delay loops, or with one or
more of the delay loops enabled. The next row shows the
error in the performance relative to the case without any
delay loops, the last column shows the number of seconds
needed for the emulation. Although the time needed by
the emulator varies considerably (almost a factor of two),
the error is somewhere between 2 and 4 percent, which is
very acceptable. Notice that in contrast with a simulator
the emulator is non-deterministic. The exact behaviour of
the machine, or in some cases also the behaviour of the
program, depends on the exact timings of the hardware. In
the case of a race condition, the emulator might choose any
of them at random. The variation of the figures is about
0.7% for this example.

3.2 Validation against uniprocessors

To test the completeness of the processor modelling, we
have compared the emulator with two existing uniproces-
sor systems: the T800 and the Sparc/10. The emulator
calibration files for the T800 and the Sparc/10 are set so
that the net speed of instructions and memory correspond
with our transputer and Sparc platforms. Four programs
from the SPLASH suite [13] were tested: Water, Barnes,
Mp3d and Pthor. Water and Barnes are heavily floating

264



T800 Sparc 10
Program Real Emu Error Real Emu Error
Water 64 7 31.8 33.7 6.0 1.65 1.87 13.3
Barnes 128 17.6 15.4 12.5 1.12 0.98 12.5
Mp3d 30000 10 19.6 18.1 7.7 1.76 1.77 0.6
Pthor 500 9.3 7.5 19.4 0.81 0.74 8.6

Table 3: Execution time in seconds and percentage er-
ror between the emulator and real world processors.

point (double precision) bound, Mp3d uses single preci-
sion floating point, and Pthor is mainly integer and pointer
manipulation. The last program has been adjusted to re-
move a large number of system calls: the emulator allows
the clock value to be read without any time overhead; on
our UNIX system the clock references accounted for 50%
of the total execution time. For the same reason the I/O
calls were removed.

The run times as measured on the real hardware and the
emulator are shown in Table 3. The errors between the real
implementation and the hardware are in the order of 10%
with an extreme up to 20%. Given the high level nature of
the modelling that is used we consider these errors as quite
acceptable.

3.3 Validation against a Sequent Symmetry

The Symmetry is based on 16 MHz 80386 processors
that have a CISC architecture: each instruction requires
around 4 clock cycles to execute. The instructions of a 386
are more powerful than the instructions of our emulated
RISC processors so around half as many instructions are
actually required. We have calibrated the DDM emulator
to run with a clock cycle of 133 ns, which roughly compen-
sates for both the cycles per instruction and the power of
the instructions. Executing two instructions on the DDM
takes 266 ns, equivalent to a single 386-instruction of 4
clock cycles on a 16 MHz 80386. The memory is set to
respond in one cycle (133 ns), and the network is set to have
negligible delay. The results of running Aurora (a parallel
Prolog system [14]) on the DDM and on the Sequent are
summarised in Table 4. The error is around 5%, indicating
that the emulator gives good results in this case as well.

4 Experiments

The emulator has been used to run a number of experi-
ments on a (hypothetical) DDM using a machine with 131
T800 transputers (allowing up to 81 leaf nodes). Each
transputer is equipped with 4 MB of memory. 2 MB are
used to emulate the DDM memory, 1.5 MB is reserved for

Nodes Sequent Symmetry Emulation Error
2 25.56 27.14 5.8%
3 17.37 18.52 6.2%
4 13.53 14.33 5.6%
6 9.73 10.19 4.5%
8 7.77 8.04 3.4%
9 7.05 7.41 4.9%

Table 4: Execution times in seconds when running Au-
rora Hamilton on the Sequent and on the emulator.

Component Proj. Time Slow Cali-
hware down brated

Integer instruction 0.010 3.0 300 4.86
Floating point 0.040 3.0 75 19.4
Local memory access 0.100 33.8 338 48.6
Protocol transaction 0.200 81.0 405 97.2
Header latency 0.400 24.0 60 194.0
Message latency 1.040 86.0 83 505.4

Table 5: The calibration parameters and resulting tim-
ings in microseconds.

program code and local data and stack, and 0.5 MB for sys-
tem and emulator code. The experiments were run on trees
with up to 4 levels. A DDM with up to 4 leaf processors is
simulated on a single level tree with 5 transputers, up to 12
nodes on a two level tree with 17 processors, up to 36 leaf
processors on a three level tree with 53 transputers and a
DDM with 81 leaf nodes on a system with 121 transputers
organised in a four level tree.

We have measured one instance of the DDM, of which
the characteristics are summarised in Table 5. These pa-
rameters are a first estimate of the specification of the pro-
cessor and the network that we expect to use for the DDM.
The table also shows the timings of the individual emulator
components and the resulting slowdown factors. The an-
notation of the code (for calibration) makes the emulation
of instructions slower than shown in Table 1. The limiting
factor is the protocol implementation, all other components
run faster. According to the calibration strategy, the whole
machine is slowed down to run a factor 486 (405 plus the
20% explained in Section 2.2) slower than real time, lead-
ing to the timings shown in the fourth column. Note that
this is a factor of 486 slower than the emulated machine,
not than the emulating processor: in comparison with the
T800, the emulator runs only 20–30 times slower.

We have run the SPLASH benchmark suite [13] and
the Aurora [14] and Andorra-I [15] parallel Prolog sys-
tems on our emulator. The SPLASH benchmark programs

265



0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80

Sp
ee

du
p 

of
 th

e 
em

ul
at

or

Processors

Mp3d 30000 5

Water 343 7

Barnes 1000 10

Aurora tina

Figure 3: Speedups of the emulator running on multiple processors.

Appli- Parameter SharedShared Emu- Proj.
cation settings Reads Writes lation run
program 106 106 time time

hr:mn secs
Andorra Fly-Pan 50 1.1 0:13 1.9
Aurora tina 15 1.9 0:18 2.7
Water 343 7 40 6.0 6:25 57.0
Barnes 1000 10 36 0.5 2:08 19.0
Mp3d 30000 5 3.5 2.3 0:07 1.0
Locus Primary1 6.8 1.1 0:16 2.4
Cholesky bcsstk14 7.7 1.0 0:14 2.0
Pthor risc 500 5.0 0.7 0:06 0.9

Table 6: Running the programs on a single processor.

are written using the p4-parallel programming library, so
they are compiled for the DDM without change. Aurora
and Andorra-I are written for existing shared memory ma-
chines (Sequent Symmetry, BBN Butterfly) using native
operating system and compiler primitives for interfacing to
the parallel hardware. We have modified the source to use
the p4-library calls.

The results of running the programs on a single proces-
sor are shown in Table 6. The factor 486 slowdown can be
seen in the ratios between emulation time and projected run

time. On a single node system, 107–108 shared memory
accesses can be emulated within only a couple of hours.
Multiprocessor DDMs are evaluated by running the emula-
tor on the desired processor configurations. Notice that the
speedup of the emulator itself is identical to the speedup
that the program would have on a multiprocessor DDM.
The speedups are shown in Figure 3 (only a subset of the
graphs from both good and bad performing programs are
shown). Mp3d cannot be emulated faster on a multipro-
cessor system because Mp3d has negligible speedup on the
DDM (and on other architectures as well). Barnes shows a
speedup of 30 on 81 nodes.

With these parameters it is possible to emulate 100�81
486 =

16 million instructions per second although in practice the
applications cannot fully utilise every processor. Barnes,
for example, executes about 6 million instructions per sec-
ond. The emulation strategy gives performance orders of
magnitude higher than that obtained with ordinary simula-
tion. Our emulation performance is similar to that of the
WWT [2], even though our emulator is running on proces-
sors an order of magnitude slower.

The DDM design that is currently emulated is not yet
optimal. No latency hiding is implemented and the fanout
of the tree is too low. We are working to refine the DDM
protocol and to find the optimal design parameters. When
the DDM design is improved, the emulator will run faster
as well.

266



The emulator speed is limited by the component with
the highest slowdown factor. At this moment the protocol
is the bottleneck, although there is little to be gained from
improving this speed. Table 5 shows that two other com-
ponents, the local memory emulation and the instruction
emulation, would otherwise become the bottleneck, with
only a small performance improvement.

5 Conclusions

The emulator presented in this paper provides us with
a fast and reliable evaluation platform. The emulator can
run in parallel without explicit synchronisations over the
network, leading to a speedup that is only bounded by
the speedup of the architecture and application that we are
emulating. The price paid is that parts of the emulator are
artificially slowed down. On a single node, a discrete event
simulator may run faster than the emulator because it takes
discrete time steps. On a multiprocessor, the emulator wins
because the simulator needs a synchronisation scheme to
keep the clocks synchronised.

The emulation speed critically depends on the match
between the timings of the emulator and the architecture
to be emulated. For each component the ratio between
the speed of the emulator and the speed of the architecture
is calculated. The worst of these ratios determines how
slowly the emulator will finally run. In the example DDM
case the emulator runs only a factor 486 slower than the
real hardware. If the expected hardware characteristics
change because better estimations of future technology can
be made, we will end up with other emulation speeds.

The emulator presented can emulate 16 million instruc-
tions per second on a system with 81 leaf transputers
(200,000 instructions per second per transputer). This
means that the emulator allows us to run a program that
executes 1010 instructions in about 10 minutes, under the
assumption that the program has linear speedup. If the
program reaches an efficiency of for example 40%, the
emulation time will be a factor 2.5 longer.

The current emulator runs on T800 transputers. We
plan to port the emulator to a T9000 (the successor of the
T800) based system which should improve the emulation
speed by an order of magnitude, hopefully allowing us to
emulate over 200 million instructions per second on a 100
node system. Additionally, the T800 imposes a maximum
fanout of three which is a serious limitation for the DDM
since we expect an optimal DDM tree to have a fanout of
8 to 16. The T9000 processor will make it possible to
evaluate architectures with more optimal fanouts.

References

[1] David H. D. Warren and Seif Haridi. The Data Diffusion

Machine—A Scalable Shared Virtual Memory Multiproces-
sor. In Proceedings of the 1988 International Conference on
Fifth Generation Computer Systems, pages 943–952,Tokyo,
Japan, December 1988.

[2] S.K. Reinhardt, M.D. Hill, J.R. Larus, A.R. Lebeck, J.C.
Lewis, and D.A. Wood. The Wisconsin Wind Tunnel: Vir-
tual Prototyping of Parallel Computers. In Proceedings of
the 1993 ACM SIGMETRICS conference. Association for
Computing Machinery, May 1993.

[3] Daniel Lenoski, James Laudon, Kourosh Gharacharloo,
Wolf-Dietrich Weber, Anoop Gupta, John Hennessy, Mark
Horowitz, and Monica S. Lam. The Stanford DASH multi-
processor. IEEE Computer, 25(3):63–79, March 1992.

[4] KSR. KSR Technical Summary. Kendall Square Research,
Waltham, MA, 1992.

[5] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS
Directories: A Scalable Cache Coherence Scheme. In Pro-
ceedings of the 18th Annual International Symposium on
Computer Architecture, pages 224–234, 1991.

[6] E. Hagersten and S. Haridi. The Cache Coherence Protocol
of the Data Diffusion Machine. In Proceedings of the Par-
allel Architectures and Languages Europe, PARLE, 1989.

[7] Sanjay Raina and David H. D. Warren. Traffic Patterns in a
Scalable Multiprocessor through Transputer Emulation. In
Proceedings of the 25th Hawaii International Conference
on System Sciences, pages 267–276, 1992.

[8] INMOS Ltd. Transputer Reference Manual, 1988.
[9] Paul W. A. Stallard, Henk L. Muller, and David H. D. War-

ren. Performance Evaluation of Parallel Programs on the
Data Diffusion Machine. In Performance Evaluation of
Parallel Systems, PEPS ’93, pages 94–101. University of
Warwick, UK, November 1993.

[10] Helen Davis, Stephen R. Goldschmidt, and John Hennessy.
Multiprocessor Simulation and Tracing using Tango. In
International Conference on Parallel Processing, pages II–
99–II–107, August 1991.

[11] H. L. Muller. Simulating computer architectures. PhD the-
sis, Department of Computer Systems, University of Ams-
terdam, February 1993.

[12] Ewing Lusk, Ross Overbeek, James Boyle, Ralph Butler,
Terence Disz, Barnett Glickfeld, James Patterson, and Rick
Stevens. Portable Programs for Parallel Processors. Holt,
Rinehart and Winston, Inc., 1987.

[13] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop
Gupta. SPLASH: Stanford Parallel Applications for Shared-
Memory. Technical report, Computer Systems Laboratory,
Stanford University, 1991.

[14] E. Lusk, D.H.D. Warren, and S. Haridi et. al. The Aurora
Or-Parallel Prolog System. New Generation Computing,
7:243–271, 1990.

[15] V. Santos Costa, D.H.D. Warren, and R. Yang. Andorra-I: A
parallel Prolog system that transparently exploits both and-
and or-parallelism. In Proceedings of the Third ACM SIG-
PLAN Symposium on Principles and Practices of Parallel
programming, pages 83–93, April 1991.

267


