
Parallel Algorithms for Routing

in Non-blocking Networks

Geng Lin Nicholas Pippenger

Department of Computer Science

The University of British Columbia

Vancouver, British Columbia V6T 1 W5

CANADA

Abstract Non-blocking networks have many applica-

tions in communications. Typical examples are tele-

phone switching networks and communication networks

among processors or between processors and memory

devices. We construct non-blocking networks that are

efficient not only as regards their cost and delay, but

also as regards the time and space required to control

them. In this paper, we present the first simultane-

ous “weakly optimal” solutions for the explicit construc-

tion of non-blocking networks, the design of algorithms

and the design of data-structures. “Weakly optimal” is

in the sense that all measures of complexity (size and

depth of the network, time for the algorithm, and space

for the data-structure) are within one or more factors

of Iogn of their smallest possible values. In fact, we

explicit ly construct a scheme in which networks with n

inputs and n outputs have size 0(n(/ogn)2) and depth

O(logn). And we present deterministic and random-

ized on-line parallel algorithms to establish and abol-

ish routes dynamically in these networks. The de-

terministic algorithm uses 0((/ogn)5) steps to process

any number of transactions in parallel (with one pro-

cessor per transaction), maintaining a data structure

that use O (n(/ogn)2 ) words and the randomized algo-

rithm uses O((logn)2) expected steps to process any

number of transactions in parallel (with one processor

per transaction), maintaining a data structure that use

0(n(/ogn)2) words.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To cepy otherwise, or to republish,
requires a fee and/or specific permission.

@ 1991 ACM 0897914384/91/0007/0272 $1.50

. “.

1. Introduction

Non-blocking networks have many applications in com-

munications. Typical examples are telephone switching

networks and communication networks among proces-

sors or between processors and memory devices. Given

an acyclic directed graph with a set of distinguished

vertices called inputs and a set of other distinguished

vertices called outputs, it is said to be a “non-blocking”

network if, given any set of disjoint direct routes from

inputs to outputs, and given any input and output not

involved in these established routes, a new route that is

disjoint from the established routes can be found from

the requesting input to the requesting output. Interpre-

tations of the above network in the context of telephone

switching and processor communication are clear. The

most frequently applied measures of complexity for non-

blocking networks are the “size” (the number of single-

pole single-throw switches, i.e. the number of edges)

and the “dept h“ (the largest number of switches, i.e.

edges, on any route from an input to an output). An

extensive literature exists concerning the design of non-

blocking networks, minimizing the size and depth (or

some combination of them) as functions of the num-

ber of inputs and outputs; see Pippenger [P82] for an

introductory account, and Feldman, Friedman and Pip-

penger [FFP88] for recent results. The most basic re-

sults are that, if a non-blocking network has n inputs

and an equal number of outputs, it must have depth at

least 1 (but to achieve this requires size nz, one switch

between each input and each output); it must have size

at least Q(nZogn) (but to achieve this requires depth at

least !2(/ogn); see Pippenger and Yao [PYl).

In this paper we combine this concern for depth and

size with concern for the time taken by an algorithm

that finds the routes guaranteed by the non-blocking

property, and for the space taken by the data-structure

used by the algorithm. Unlike the case of dept h and size

alone, not much progress has been made in this setting.

An exception is that Arora, Leighton and Maggs [ALM]

found an on-line 0(/ogn) steps parallel path selection

L1A



algorithm for non-blocking networks of size O(nlogn)

and of depth O(logn). Their proposal, however, as-

sumes that the number of processors is proportional to

the size of the network, irrespective of the number of

transactions being processed. Our approach, in con-

trast, uses only one processor for each transaction, even

if this number is as small as one.

In this paper, we explicitly construct a scheme in

which non-blocking networks with n inputs and n out-

puts have size O(n(/ogn)2) and depth O(logn). And

we present on-line parallel algorithms to control them.

The algorithms use time and space within one or more

factors of logn of the smallest possible values that any

control algorithm (on-line or off-line, parallel or serial)

may use. More precisely, we present an on-line deter-

ministic algorithm that uses O((iogn)5) steps to process

any number of transactions in parallel (with one proces-

sor per transaction), maintaining a data structure that

use 0(n(logn)2) words and an on-line randomized al-

gorithm that uses 0((logn)2) expected steps to process

any number of transactions in parallel (with one pro-

cessor per transaction), maintaining a data structure

that use 0(n(logn)2) words. (The meanings of “step”,

“word” and “transaction” will be explained in next

paragraph).

Consider a non-blocking network with n = 2“ inputs

and n = 2“ outputs. We assume that inputs and out-

puts are represented as binary words of length v and

a “processor” is able to perform arithmetic and logi-

cal operations on such words of length v. We reckon

“time” in such operations, and “space” in such words.

We mainly consider the parallel algorithms and their

data-structures. In fact, we consider the algorithm and

data-structure together as an “on-line transaction pro-

cessing system”, in which each “batch” of transactions

(requests to establish a route and requests to abolish

a route) must be processed before its successors are

known. Furthermore, for a batch of t transactions,

which are to be processed in parallel, only t processors

are allowed to be used. In other words, our approach

assumes each transaction “brings its own processor”,

a setting convenient in situations where routing is but

one part of a larger process, and the number of pro-

cesses simultaneously engaged in routing is not easily

predictable.

It is observed that if a non-blocking network has n

inputs and an equal number of outputs, any algorithm

that controls the network must use 0(1) steps to process

a batch of transactions, and the data-structure for it

must have Q(n) words (or their equivalent), since this

much space is needed to represent one of n! bijection

between inputs and outputs.

Our results provide the first simultaneous “weakly op-

timal” solutions for the explicit construction of non,-

blocking networks, the design of algorithms and the

design of data-structures. “Weakly optimal” is in the

sense that all measures of complexity (size and depth of

the net work, time for the algorithm, and space for the

data-structure) are within one or more factors of logn of

their smallest possible values. Our results are very prac-

tical in the sense that the construction of the networks is

simple and the algorithms (both the randomized and the

deterministic one) and their data-structures are easy to

implement. We are optimistic that the results presented

in this paper will find many applications in practice.

Our main result in this paper is summarized in the

following theorem.

Theorem There is an explicit construction for a non-

bloclcing of n inputs and n outputs with size O(n(/ogn)2)

and depth O(logn), and a deterministic on-line par-

allel algorithm that maintains a data-structure usin,g

0(n(logn)2) words and will, for any t in the range

1 < t < n, process t transactions using t processors

in 0((/ogn)5) steps.

2. The Non-Blocking Networks

Suppose that we wish to construct a non-blocking net-

work with n inputs and n outputs. Set y = [log2 (8v)J,

so that 27 > 4V ~ 27-1. Construct a Benei3 rearrange-

able network with m = 2“+~ inputs and m outputs (see

Bene& [B]). Reduce the number of inputs and outputs

in this network to n by retaining only every 2Y-th input

and output and discard links and switching elements

that can not be reached from these n inputs and n out-

puts. This is to be done so that routes originating at

two distinct retained inputs can meet only after pass-

ing at least -y + 1 stages of switches, and similarly for

retained outputs.

Let ~+ denote the resulting network. This net-

work is non-blocking as shown in [P82]. Indeed, con-

sider any idle input of N+. It has access to at least

(2T - V)2V of the 2V+~ links of the (y + v + 1)-st stage

regardless the status of other inputs. Similar propert:y

holds for any idle outputs. Notice that (2V – v)2” is

strictly more than half (to be exact, three quarters)

of 2-~+”. Thus given any idle input and idle output,

a route from the input to the output that is disjoint

with the established routes always exists regardless the

status of other inputs and outputs. This network has

size 0(v2U+~) = 0(v22U) = 0(n(logn)2) and depth

O(y + v) = O(logn). This network is essentially equiv-

alent to the one described by Cantor [C71].

273



3. A Randomized Algorithm

In this section, we describe a randomized parallel algo-

rithm which processes a batch of transactions in parallel

with 0((logn)2) expected steps by dynamically chang-

ing a data-structure of 0(n(iogn)2) words. Our deter-

ministic parallel algorithm is obtained by eliminating

the randomness from this algorithm.

The data-structure for our randomized algorithm is

very simple. It only keeps the up-to-date busy/idle sta-

tus for each link, input and output of the network (this

is necessary for any data-structure). We describe the

data-structure in terms of the dual graph G of N+. For

each input, output and link of network N+, we create

a node. Two nodes are adjacent if and only if their

correspondents in the network are input and output of

a same crossbar. Thus we see the duality between G

and N+. With each node ( in G, we associate a num-

ber G(<), which is O or 1 according as its corresponding

link (more precisely, link or input or output) is idle or

busy. A simple calculation shows this data-structure

uses 0(rz(logn)2) words.

Notice that N+ has 2(7+ v) + 1 stages. The subnet-

work of stage y + v + 1 to stage 2(7 + v) + 1 is a mirror

image of the subnetwork of stage 1 to stage y+v+ 1. We

refer the former to “the right hand half of N+” called

N’ and the latter “the left hand half of N+” called N.

We observe that, for each input [ of N+, confined to

N, the dual subgraph in G of links that may appear in

some route starting from $ forms a tree T(. Similarly,

for each output q of N+, there is a tree Tv. It is clear

that all the Tc’s and Tq’s are binary trees having depth

-y+ v with 2~+” leaves. We call the common topological

structure of these trees T.

We now proceed to describe our randomized algo-

rithm. Suppose that a batch oft transactions (requests

to establish or abolish a route) are to be processed by

t processors (each transaction “brings its own proces-

sor” ). We need not worry about interference between

requests that establish routes and requests that abolish

routes by the simple device of splitting each batch into

two batches, one comprising only requests to establish

and the other comprising only requests to abolish. As

we will see, the algorithms presented in this paper to

process requests to establish are easily modified to pro-

cess requests to abolish, we only consider the requests

to establish here.

Suppose that when a processor attempts to establish

a route from input f to output q, it pushes two pebbles

in T( and Tq respectively, from their roots to a common

leaf along a path P, and then determines whether or

not the two subroutes (in N and N’ respectively) cor-

responding to the subpaths in Tc and Tq are both idle,

and whether or not no other processor has seized a link

in the two subroutes. If we choose one of the 2~f” pos-

sible paths at random, the probability that the the cor-

responding subroute in N is busy is at most 1/4, since

every idle input in N has access to at least (2T — v)2”

of its 2~+v outputs regardless the status of other in-

puts, noticing 4V <27. Similarly, the probability y that

the subroute in N’ is busy is at most 1/4 too. Thus the

probability that both subparts of the route are idle is at

least 1/2. That is to say, with randomly chosen paths,

half of the requests are expected to be satisfied. For

those failing to choose an idle path, do the same proce-

dure again, and so forth. It is observed that, less than

or equal to t2-i requests are expected not to be satis-

fied after i-th round of choosing. Thus after [log2(t/e)l

rounds of choosing, the probability that all requests are

satisfied is at least 1 – e.

Let us consider how the randomized algorithm up-

dates the data-structure to reflects the addition of new

routes to the state. Suppose that a processor estab-

lishes a route from input ~ to output q, i.e. two pebbles

along the subpaths in Tt and Tq reach a common leaf

a (Tc and Tn are embedded in graph G). It sends two

bubbles back from a to & and q along the subpaths. It

changes the value G(() (from O) to 1 for each node (

that the bubbles encounter. Since the path is of length

2(7 + v) + 1 = O(?ogn), the updating of data-structure

to reflect the addition of new routes is performed with

O(logn) arithmetic operations. On the other hand, de-

termining whether or not a path is idle, and whether or

not two processors seize a same link in the path is per-

formed in O(logn) arithmetic operations since G is of

bounded degree (the maximum degree is 4). Thus the

parallel randomized algorithm establishes (and/or abol-

ishes) t transactions in O((logt) (logn) = 0((logn)2) ex-

pected steps.

4. The Data-structure for the Determin-

istic Parallel Algorithm

In this section, we extend our simple data-structure

for the randomized algorithm to support efficient de-

terministic parallel algorithms. Roughly speaking, we

maintain some redundant information about the dist ri-

bution of established routes, so that we can save some

computation by retrieving the redundant information.

For each pair of inputs & and (2, we say their dis-

tance, dist(&, ~2) = dist(&2, cl), is d (1 < d < v), if

and only if the routes starting from the two inputs may

share a link after (d+ -y)-th stage but cannot share any

link before (d+ y)-th stage. Similarly, we define the

distance dist(qq, q2) of two outputs ql and q2.

It is observed that, for each input ~ there are 2d- 1

other inputs (’ with dist(.$, <’) = d, for any d with

274



l~d~v. A similar result holds for each out-

put. Furthermore, for any inputs <, <’ and ~“, if

disi(& ~’) = d, then dist(f, ~“) = d + 6 (6 > O) if and

only if dist(f’, ~“) = d + 6 for any 1 ~ 6 < v – d. That

is to say, if the distance of two inputs is d, they share

the same group of inputs of which the distance is d + 6

from them. It will be much clearer if we describe the

distance relationship among inputs in terms of a binary

tree IND. IND is a binary tree of depth v with 2“

leaves. Let the leaves correspond to the inputs of N+

in the following way. Two leaves are siblings if and only

if their distance is 1; two nodes rl and r2 at depth 1

are siblings if and only if the distance between leaves in

the subtree rooted at T1 and that in the subtree rooted

at 72 is v – 1 + 1 (the distance is unique, as observed

above). Similarly, the dist ante relationship among out-

puts is described in terms of a binary tree OUTD. It is

observed that two inputs (outputs, resp.) have distance

d if and only if their lowest common ancestor in IND

(OUTD resp.) is at depth v – d.

In order to obtain an efficient deterministic parallel

algorithm, we need to keep some redundant information

about the distribution of established routes. The infor-

mation in the data structure, on the other hand, can

not be too redundant, since our algorithm dynamically

updates the data structure to reflect the addition of new

routes (and the subtraction of old ones). For any two

inputs with distance d, the fate of whether or not the

routes starting from them will block each other is de-

termined within the first 7 + d + 1 stages in N+. Thus

for each input <, for inputs with distance d, we confine

the route distribution information to the first 7 + d + 1

stages; for inputs with distance d to ~, however, we keep

their route distribution information as a whole instead

of as individuals. Therefore, for each input .$, we keep

v binary trees, of depth y + d having 2~+d leaves for

1 s d < v, with each representing the route informa-

tion of 2d-1 other inputs (inputs with distance d to f).

Associated with each node [ in such a tree is a number,

measuring the number of routes that start from one of

the 2d– 1 inputs , say &, and contain the corresponding

node of< in T(). Thus, for each input ~, there are v such

trees; each input is involved in v such trees and there

are 2. 2“ – 1 such trees in total (due to the large quantity

of overlapping). Similar properties hold for outputs.

Our data-structure for deterministic algorithms is

precisely described as follows. In addition to the dual

graph G of N+, we keep some redundant information

about the distribution of established routes. For each

node r at depth v — 1 (v – 1 ~ I ~ O) in IND, we keep

a binary tree T& (TR stands for “traffic77 ), which is

of depth -y + 1 with 2 . 2~+~ — 1 nodes. Recalling the

common structure T of T<’s and Tq ‘s, we see TR~ is a

subtree of T truncated at depth y + 1. For each node (

in TR,, there is a corresponding node in each tree X(;

for the sake of simplicity of our notation, we also denc)te

this node by <. Now we associate with each node ( in

TR, a number TRT((J, which is the sum of Tt(<) (i.e.

the value G(()) over every input ~ which is a leaf in the

subtree rooted at r in lN1l. Similarly, for each node P

at depth v – 1 (v– 1 z 1 ~ O) in OUTD, make a binary

tree TRfl, which is of depth y + 1 with 2. 27+1 – 1 node.

Associated with each node ( is the value TRp(<), which

is the sum of Tq(() over every output q which is a leaf

in the subtree rooted at ~ in OUTD.

Let us consider the space requirements of the data

structure. The graph G has less than 2(v + 1)27+”

nodes, and there is one number (O or 1) associated with

each node. There are 2 . 2“-1 nodes T and ~ at depth

v — 1 in trees IND and OUTD. For each r or /3, there

is a tree of 2. 27+1 — 1 nodes, and associated with each

node is a number (in the range [0, 2“ – 1]). Thus there

are less than

2(V + 1)27+” + ~;;:(2 . 2“-9(2 . 27+1 – 1)

< 6(v + 1)2~+” = O(V22”) = O(n(logn)2)

numbers to be stored. Therefore, the space requirement

of the data-structure is 0(n(logn)2) words.

5. A Deterministic Parallel Algorithm

The elimination of randomization from the randomized

parallel algorithm of Section 3 is accomplished in two

stages. In the first stage we greatly reduce the num-

ber of random bits (independent coin flips) used by the

algorithm, by deterministically computing a large num-

ber of bits from a smaller number. In the second stage

we show how to deterrninistically compute this smalller

number of bits.

In the randomized parallel algorithm, each proces-

sor makes a random choice uniformly distributed over

2~+” possibilities; we may therefore regard it as mi~k-
ing y +V successive independent random binary choices,

corresponding to the 7 + v successive moves involved in

pushing a pebble from the root to a leaf in T (T is the

common structure of trees T( and Tq ). We may there-

fore imagine all of the choices of all the processors as

being made in 7 + v successive “phases”, with each of

the t processors making its first choice in the first phase,

and so forth.

We next observe that the analysis of the randomized

algorithm was based on the assumption that all routes

were independently chosen, but actually only relied on

the routes being pairwise independent. Thus the anaJy-

sis will remain valid if the binary choices in each phase

are not completely independent, but are pairwise in-

dependent. These t pairwise independent bits can be

275



computed deterministically from a set of v = logz n com-

pletely independent random bits, using the following

well known scheme.

Let ill be an v x t matrix over GF(2) in which each

column is a distinct input index of the t requests (input

indices are in their binary representations). Let X be

a row of v completely independent random elements of

GF(2), and let Y be the product XA4 (a row oft ele-

ments of GF(2)). Then the elements of Y are uniformly

distributed over GF(2) and pairwise independent. We

may thus deterministically compute t pairwise indepen-

dent bits in Y from the v = log2n completely indepen-

dent random bits in X.

Let us now return to the picture of pebbles being

pushed from the root to a leaf in the trees Tc’s and

Tq ‘s. As before, established routes will be replaced by

pebbles at the leaves, and each processor is responsible

for pushing two pebbles, one in a tree T( and the other

in a tree Tq. For the sake of simplicity, we label the

two corresponding pebbles ( and q as well. Given a

disposition of pebbles in these trees, associate with each

pebble a quantity called the “congestion”, defined in the

following way.

Imagine all pebbles being pushed in T (the common

structure of T(’s and Tq ‘s). If the pebble ~ is at a node

u at depth K in T, the congestion of ~ is the sum of

a contribution of min{l, l/2~+d-K } for every pebble &

in the subtree rooted at u, where d = dist(<, f’), plus

a contribution of min{l, l/2y+d-’ } for every pebble (“

at a node p at depth t on the path from the root to u,

where d = dist(f, <“). This quantity is easy to compute.

Consider the 2“ – 1 inputs other than f. Based on their

distances to f, they fall into v groups with size 2d- 1

and of distance d to ~, for 1 ~ d < v. Of the inputs

in the group of distance d to <, their lowest common

ancestor in lND is at depth v — d+ 1 (recall that inputs

correspond to leaves in lN.D). Let these ancestors be

TI, . ..> TV. The congestion of & equals to the sum of

rnin{l, l/27+ d-~ } . Tl?,.(o) over every d, 1< d < v,

plus for each involved p, the sum of rnin{l, l/27’+ d-’ } .

TRTd (p) over every d. We say that the congestion of a

request is the sum of the congestions of its two pebbles,

and that the congestion of a batch of requests is the

sum of the congestions of the t requests in the batch.

The success of the randomized algorithm may now be

ascribed to three simple observations. Firstly, when all

the pebbles of the requests in the batch are at the root

of T (K = O), the congestion of a pebble is less than

or equal to ~:_l(l/27+d) . 2d = v/27 < 1/4, corre-

sponding to cont~ibutions of l/2~td for each of the other

pebbles at leaves or at the root. Secondly, if a pebble is

moved from a node u to one of its two children (chosen

at random with equal probability), the expected conges-

tion of each pebble is unaffected; indeed, each contribu-

tion to the congestion is either unaffected or undergoes

a “double-or-nothing” transformation with equal prob-

abilities. Finally, when all pebbles are pushed to leaves

(K = ~ + v), the congestion of a pebble is an integer

greater than or equal to 1 if it is blocked, is O if it is

not blocked. Therefore, the number of pebbles being

blocked is less than or equal to the congestion of the

batch of requests. It follows from these observations

that on the average, at least one-half of requests finish

with both pebbles not being blocked, and are successful.

Let us now combine this picture with the notion of

phases, so that each processor pushes its two pebbles

down one level in their trees during each phase. If all of

the binary choices involved in these pushes were com-

pletely independent, the expected congestion would be

unaffected. Since the congestion is defined as a sum

of pairwise contributions, its expectation is unchanged

if completely independent binary choices are replaced

by pairwise independent binary choices. So let t pair-

wise independent choices be deterministic ally computed

from v completely binary choices, as described above.

Since the expectation over all v choices is unaffected, it

follows that there is a particular way of making the first

choice for which the expectation (over the remaining

v — 1 choices) does not increase. After the first choice

has been made in this way, there is a particular way

of making the second choice for which the expectation

(over the remaining v – 2 choices) does not increase.

Proceeding in this way, we arrive at particular ways of

making all v choices, from which we may deterministi-

cally compute the t pushes of pebbles.

It remains to observe that the “particular ways”

whose existence was argued in the preceding paragraph

can in fact themselves be deterministically computed in

a simple way. For if we assign particular values to some

of the v choices, the expected congestion over the re-

maining choices can be computed as follows. Assigning

particular values to some of the choices commits some

of the t pebbles to move from the node u at which they

began the phase to one of their two children, while leav-

ing the other pebbles equally likely to move to either of

their two children (the fate of a particular pebble is

sealed when all of the entries of X for which its col-

umn of A4 contains a 1 have been assigned particular

values; otherwise, its fate is uncompromised ). Thus an

advantageous value for a choice can be found by tenta-

tive y assigning one value, recomputing the congestions,

and rescinding the tentative assignment in favour of its

alternative if the congestion increases.

By now we have finished the description of our deter-

ministic parallel algorithm. Let us consider the perfor-

mance of this algorithm. It establishes and/or abolishes

any number of routes in parallel in 0((iogn)5) with one

276



processor per transaction, maintaining a data structure

of 0(n(iogn)2) words. To estimate the time complex-

ity, we observe the following facts. Firstly, each time

pebbles being pushed to their leaves, there are at least

one half of the requests being satisfied, which implies

[/og2tl = O(logn) “rounds” of pushing are sufficient to

satisfy all the requests. Secondly, within each “round”

of pushing, -y + v = O(logn) “phases” are sufficient to

push a pebble from its root to a leaf. Thirdly, in each

“phase”, v = O(logn) bits in X are deterministically

computed. Finally, in order to determine the value of

one bit, the congestion of the batch of requests is com-

puted, this is done with 0((iogn)2) steps, as the con-

gestion of a pebble is computed in 0((iogn)2) steps by

one processor (sum of rnin{ 1, l/2~+d-6 } . TR,~ (u) over

every d, 1< d s v, plus for every p involved, the sum of

mirt{l, l/2~+d-t }. TRT~ (p) over every d)l, and after the

congestion of each pebble is computed, the congestion

of a batch of requests in computed in O(logn) steps by t

processors in parallel; and the update of the data struc-

ture after determination of a bit (committing some of

the t pebbles to move to one of their two children) needs

0((iogn)2) steps, of which one O(logn) factor comes

from the fact that O(v) = O(logn) numbers in TR7d ‘s,

1 ~ d < v, are to be updated (at most two numbers in

each TR7a ), and the other comes from the fact that to
any one of these numbers, up to t = O(n) processors

may want to update it simultaneously (with each one

adding 1 or subtracting 1).

References

[ALM]

[B]

[C53]

[C71]

S. Arora, T. Leighton and B. Maggs, “On-Line

Algorithms for Path Selection in a Nonblock-

ing Network”, ACM Symp. on Theory of Com-

puting, 22 (1990) 149-158.

V. E. Benei, “Optimal Rearrangeable Multi-

stage Connecting Networks”, Bell Sys. Tech.

J., 43 (1964) 1641-1656.

C. Clos, “A Study of Non-blocking Networks”,

Bell Sys. Tech. J., 32 (1953) 406-424.

D. G. Cantor, “On Non-blocking Switching

Networks”, Netwmks,l (1971) 367-377.

[FFP88] P. Feldman, J. Friedman and N. Pippenger,

“Wide-Sense Non-Blocking Networks”, SIAM

J. Discr. Math., 1(1988) 158-173.

1In fact, our algorithm computes the congestion of a pebble in

0(20gn) steps, since pebbles are pushed “phase by phase”, at most

one p, i.e. the parent node of & is involved. This, in turn, implies

the congestion of a batch of requests is computed in O(logn) steps.

[LPV] G. Lev, N. Pippenger and L. G. Valiant, “A

[L86]

[L88]

[PY]

[P73]

[P82]

Fast Parallel Algori~hm for Routing in Permu-

tation Networks”, IEEE Trans. on Computers,

30 (1981) 93-100.

M. Luby, “A Simple Parallel Algorithm for the

Maximal Independent Set Problem”, SIAM J.

Computing, 15 (19886) 1036-1053.

M. Luby, “Removing Randomness in Parallel

Computation without a Processor Penalty”,

IEEE Symp. on Foundations of Computer Sci-

ence, 29 (1988) 162-173.

N. Pippenger and A. C. Yao, “Rearrangeable

Networks with Limited Depth”, SIAM J. A/g.

Disc. Me~h., Vol. 3, No. 4, (1982) 411-417.

N. Pippenger, “The Complexity Theory of

Switching Networks”, Ph. D. Thesis, Electri-

cal Engineering, MIT, August 1973.

N. Pippenger, “Telephone Switching Net-

works”, AMS Proc. Symp. Appl. Math., 26

(1978) 101-133.

/ill


