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Abstract

In heterogencous networks sending messages may incur dif-
ferent delays on different edges, and each processor may have a
different switching time between messages. The well studied Tele-
phone model is obtained when all edge delays and switching times
are equal to one unit,

We investigate the problem of finding the minimum time re-
quired to multicast a message from one source to a subset of the
processors of size k. The problem is NP-hard even in the basic
Telephone model. We present a polynomial time algorithm that ap-
proximates the minimum multicast time within a factor of O(log k).
Our algorithm improves on the best known approximation factor for
the Telephone model by a factor of O (l_o%lség_k)' No approximation
algorithms were known for the general model considered in this

paper.

1

Introduction

The task of disseminating a message from a source node to the
rest of the nodes in a communication network is called broadcasting.
The goalis to complete the task as fast as possible assuming all nodes
in the network participate in the effort. When the message needs to
be disseminated only to a subset of the nodes this task is referred to
as multicasting. Broadcasting and multicasting are important and
basic communication primitives in many multiprocessor systems.
Current networks usually provide point-to-point communication
only between some of the pairs of the nodes in the network. Yet,
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in many applications, a node in the network may wish to send a
message to a subset of the nodes, where some of them are not
connected to the sender directly. Due to the significance of this
operation, it is important to design efficient algorithms for it.

Broadcast and multicast operations are frequently used in many
applications for message-passing systems (see [8]). It is also pro-
vided as a communication primitive by several collective commu-
nication libraries, such as Express by Parasoft [6] and the Message
Passing Library (MPL) [1, 2] of the IBM SP2 parallel systems, This
operation is also included as part of the collective communication
routines in the Message-Passing Interface (MPI) standard proposal
[5). Application domains that use broadcast and multicast opera-
tions extensively include scientific computations, network manage-
ment protocols, databasetransactions, and multimedia applications,

There are two basic models in which trivial optimal solutions
exist. In the first model, all nodes are assumed to be connected
and it takes one unit of time (round) for a message to cross a
link. Therefore, in each round the number of nodes receiving the
message can be doubled. If the target set of nodes is of size k, then
this process terminates in [log k] rounds. In the second model the
communication network is represented by an arbitrary graph, where
each node is capable of sending a message to all of its neighbors in
one unit of time. Here, the number of rounds required to deliver a
message to a subset of the nodes is the maximum distance from the
source node to any of the nodes in the subset.

The model in which a node may send a message to at most
one other node in each round is known as the Telephone model,
It is known that for arbitrary communication graphs, the problem
of finding an optimal broadcast in the Telephone model is NP-
hard [9], even for 3-regular planar graphs [17]. It is not hard to
verify that in the Telephone model two trivial lower bounds hold
for the minimum broadcast time. The first one is [logn], where
r denotes the number of nodes in the graph, and the second one
is the maximum distance from the source node to any of the other
nodes. Research in the past three decades has focused on finding
optimal broadcast algorithms for various classes of graphs such as
trees, grids, and hypercubes, Also, researchers have looked for
graphs with minimum number of edges for which a broadcast time
of {log n] can be achieved from any source node. Problems related
to broadcast which were extensively investigated are the problems
of broadcast multiple messages, gossiping, and computing certain
functions on all » inputs in a network, See, e.g,, {4, 10, 11, 12, 16,
19, 21, 22].

An assumption central to the Telephone model is that both
sender and receiver are busy during the whole sending process.
That is, only after the receiver received the message, both ends may



send the mesaage to other nodes, More realistic models in this con-
text are the Postal model (see [3]) and the LogP model (see [151).
The idea there is that the sender may send another message before
the messageis completely received by the receiver, and the receiver
is free during the early stages of the sending process. We note that
in both the Postal model and the LogP model it is assumed that the
delay of a message between any pair of nodes is the same.

Optimal solutions for broadcast in the Postal model are known
for the case of a complete graph, and for some other classes of
graphs, However, not much is known for arbitrary graphs. In the
Postal model, researchers have also concentrated on other dissemi-
nation primitives and almost always assumed that the communica-
tion graph is complete.

1.1 Our results

In this paper we define a more general model based on the Postal
model and call it the heterogeneous postal model. Assume node u
sends a message to node v at time 0 and the message arrives at v at
time Auy, The assumption is that u is free to send a new message
at time ay, and v is free from time 0 to time Auy — ry. We call Auy
the delay of the link (u,v), su the sending (or switching) time of
4, and ry the receiving time of v, By definition, both sy, and r,, are
smaller than Ayy. A common assumption is that ry, = s, for all
nodes u, Observe that when the delay, sending time, and receiving
{ime are all equal to 1, we obtain the Telephone model,

We believe that our mode! captures modern communication
networks, where the major components ~ the processors and the
communication links — are not homogeneous. Some processors are
faster than others, and some links have more bandwidth than others.
These disparitics are captured by the different values of the delay
and the switching time,

Since finding the minimum multicast time is NP-hard evenin the
Telephone model, we turn our focus to approximation algorithms.
The main result we present is an approximation algorithm for com-
puting a multicast scheme in the heterogeneous Postal model. The
approximation factor is O (log k), where k denotes the number of
processors in the target set, Previous approximation algorithms for
multicasting were known only in the Telephone model. Kortsarz
and Peleg [14] gave an approximation algorithm that produces a
golution whose value is bounded away from the optimal solution
by an O(y/n) additive term, This term is quite large, especially for
graphs in which the broadcast (multicast) time is polylogarithmic.

Later, Ravi [18], gave an algorithm that achieves a multiplicative
op i lop k ) .

approximation factor of O (SEn1e]

We also show that it is NP-hard to approximate the minimum
broadeast time within a factor of three in a model which is only
slightly more complicated than the Telephone model,

The rest of the paper is organized as follows. In Section 2 we
define our model, In Section 3 we describe our solution. Finally,
in Scction 4 we show that this problem is hard to approximate by a
small constant factor.

2 The Moadel and Problem

We define our model as follows. Let G = (V, E) be an undi-
rected graph representing a communication network, where V is a
set of n nodes and E is the set of point to point communication
links, Let U € V denote a special set of terminals, and let r be a
specinl node termed the root, Let the cardinality of the set U be k.
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We associate with eachnode v € V a parameter s, that denotes
the sending time. We sometimes refer to s, as the switching time
of v to indicate that this is the time it takes node v to send a new
message. In other words, 1/s, is the number of messages node
v can send in one round (unit of time). We associate with each
node v € V' a parameter r, that denotes the receiving time. We
assume that r, = 3., for each node v. We associate with each
link (u,v) € E alength My, that denotes the communication delay
between nodes u and v. By definition, Au, is greater than both sy
andry (= sy). We canthink of the delay Ao as taking into account
the sending time at u and the receiving time at v,

Let the generalized degree of vertex v € V be the actual degree
of v in the graph G multiplied by the switching time s,. Observe
that the generalized degree measures the time it would have taken
the node v to send a message to all of its neighbors.

Our goal is to find a minimum time multicast scheme; that is,
a scheme in which the time it takes for all nodes in the set U to
receive the message from the root r is minimized. Without loss of
generality, we may consider only multicast schemes that are “not
lazy"; i.e., schemes in which a node that has not finished sending
the message to its neighbors, (but has already started) is not idle.
Such multicast schemes can be represented by an outward directed
tree T' that is rooted at r and spans all the nodes in U, together with
orderings on the edges outgoing from each node in the tree. The
multicast scheme cormresponding to such a tree and orderings is a
multicast in which each node in the tree uponreceiving the message
(through its single incoming edge) sends the message along each
of its outgoing edges in the specified order. From now on, we refer
to the tree in the representation of a multicast scheme as the tree
“used” by the scheme.

For a rooted tree T', denote by A its maximum generalized
degree, and by Lz the maximum distance from r to any of the
nodes. By definition, the multicast time of tree T’ is greater than Ap
and greater than Lp. Hence,

Lemma 1 Let OPT denote the multicast time of an optimal solu-
tion using tree T*, then OPT > -;-(Azu + Lg+)

3 The Approximation Algorithm

In this section we describe the approximation algorithm for
multicasting a message from a root vertex r to a set of terminals U,
To simplify notation assumethatr € U.

The main tool used by our algorithm is a procedure core(U’)
that computes for a given set of terminals U’: (1) asubset W C U’
which we call the “core” of U”, of size at most 3[U’|, wherer € W,
and (2) a scheme to disseminate a message known to all the nodes
in W to the rest of the nodes in U” in time which is proportional to
the minimum multicast time from r to U’

The algorithm that computes the multicast scheme proceeds in
£ phases. Let Up = U. Upon termination, Uz = {r}. In the ith
phase, ¢ = 1,...,¢, procedure core(U;-1) is invoked to compute:
(1) the core of U;—, denoted by Us; and (2) a scheme to disseminate
the message from U; to the set Ui, in time which is proportional
to the minimum multicast time from r to U;—_;.

Since U] < 3 - |Ui-1), and |Up| = ¥, we have that £ =
O(logk). The resulting multicast scheme is given by looking at
the rounds of the algorithm in backward order. Namely, starting
at 1 = £ downwards, in each round of the multicast scheme the
message is disseminated from U; to U;—1.

Since Uy C Uz—1 C -+ C Up = U, each dissemination phase




takes time which is proportional to the minimum multicast time
from r to U. It follows that the multicast time is up to O{logk)
times the optimal multicast time.

In the rest of the section we describe the procedure core(U”).
Let OPT be the minimum multicast time from r to U’. Lemma 1
implies that there exists a tree 7" spanning the set U’ such that
Age + Lpe < 2-OPT. (Unfortunately, we are unable to compute
such a tree, but are just guaranteed that it exists.)

The procedure core(U’) has two main parts. In the first part,
we find a set of [U’] paths, one for each terminal, where the ith path
connects the terminal u; to another terminal called mate(u;). The
paths have the following path properties:

Length Property: The length of each path is at most 4 - (Ags +
Lr+).

Congestion Property: The genecralized degree of the nodes in the
graph induced by the paths is at most 6 - (Ape + L ).

In the second part we design a dissemination scheme using the
above paths, We do it by transforming the pathsinto a set of at least
|Ur’] /4 star-shaped graphs with the following star properties:

¢ Each star contains at least two terminals from U”’.
¢ The diameter of each star is at most 4 - (Ag+ + L+ ).

o The generalized degree of the “center” of a star is at most
6-(Aqs + L )

Now, we arbitrarily select one node from each star to the core of
U’. Note that each such node can multicast the message to the rest
of the terminals in its star in O(Ag+ + L+ ) time (linear in OPT).
We add all the terminals not contained in any of the stars to the core
of U'. We claim that the size of the core is at most 3|U’|. To see
this, let = denote the number of stars. Since ¢ > ]U ’| /4 and each
star contains at least two termmals we get that the size of the core
is bounded by z + |U'| — 2z = |U'| — = < 3|U’|.

We now turn to describe each of the two parts of the procedure
core(U”).

3.1 Finding a set of paths

We first claim the following lemma which is analogous to the
“tree pairing” lemma of Ravi [18].

Lemma 2 Let T be a tree that spans a set U' C V, and suppose
that \U'| is even. Thereexists away to pair the nodes of U’, andfind
paths (in the tree T) connecting each pair such that (1) the paths
are edge disjoint, (2) the length of each path is bounded by 2L,
and (3) the generalized degree of each node in the graph induced
by the paths is at most Ar.

Proof: The proof follows directly from the tree pairing lemma used
by Ravi [18]. This lemma claims that there exists a pairing such
that the paths in T° connecting each of the pairs are edge disjoint.
Consider these paths. Clearly the length of each of these paths is
bounded by 2Lp. The degree, and hence the generalized degree,
of every node in the graph induced by the paths is no more than the
(genemhzed) degree in T since we only use the edges of the iree T
Hence, it is bounded by Ap.
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Corollary 3 LetT beatreethatspansasetU' C V. Thereexistsa
way to pazr the nodes of U’, and find paths (in the tree T') connecting
each pair such that (1) the length of each path is bounded by 2LT,
and (2) the generalized degree of each node in the graph induced
by the paths is at most 2Ap.

Proof: The corollary clearly holds if [U] is even, If |U’] is odd,
we pair [U’] — 1 of the nodes as in Lemma 2, and pair the last node
with any other node. The length of the path connecting the last pair
is still bounded by 2L. However, the degree of the subgraph may
double up to 2A7.

Recall that the tree T'* spans the nodes of U and (Aga-+Lrs ) <
2. OPT. Our objective is to find the set of paths as guaranteed
by Corollary 2 with respect to 7'*. However, we do not know T°°,
Thus, instead, we find a set of fractional paths satisfying similar
properties. To this end, we write a linear program for finding a
set of (fractional) paths that minimizes the sum of the maximum
average length of the paths connecting each pair and the maximum
generalized degree of the subgraph induced by these paths.

The linear program is a variant of multicommodity flow. For
eachedge (u, v), we definethe directed edges (u,v) and (v, u) both
of length Au,. With each node v, € U’ we associate commodity
j. Node v, is the source of commodity 5 and we create an umﬁcial
sink ¢; withr,; = s¢; = 0. We connecteach of the nodes v’ € U,
where v; # o', to ¢; by a directed edge (v', ;) of length 0. The
objective is to minimize (L +A), where exactly one unit of flow has
to be shipped from each v; to £;, such that the average length of the
flow paths from v; to ¢; is at most L, and the maximum congestion
of the induced subgraph is at most 3A,

More formally, let A denote the set of directed edges, and let
F(u,v) denote the flow of commodity i on directed edge (u, v).
The linear programming formulation is as follows,

Minimize A4- L

subject to:
forallv € V — {v;, £}

> fm)- > flew) = 0

(uv)eA (vw)ea
Z f':(u,t.') = 1

(uit,)EA
> flenw) =1

(vs,u)€EA
Z f‘(u,v)/\w < 2L

(uyv)€A
forallv e V — {t1,...,%}
Sy * ZZ (fi(u, v) + f“(u,u)) < 3A
t uev

fimv) = 0

We now show that the set of paths guaranteed by Corollary 3
with respect to T* can be modified so as to obtain an integral
solution for the linear program as follows. If |U| is cven, the
solution is obtained by using each path connectinga pair (u:, u, ) to
ship one unit of flow from u; through u; to ¢;, and another unit of



flow from u; through u; to ¢;. The length of each path is bounded
by 2L+, and since we use each path twice, the generalized degree
js bounded b?' 2Age, IfJU’| is odd, the solution is obtained by using
each of the 5(JU’| — 1) paths connecting the first JU’| — 1 nodes
of U’ twice (once in each direction), and using the path connecting
the last node in U’ to its mate to ship flow out of this node. The
length of each path is still bounded by 2Lz . However, because of
the additional path, the degree is only bounded by 3Ap..

It follows that the value of the objective function for this solution
is Ape + Lpe, and thus the linear program is guaranteed to find a
solution whose value is upper bounded by this value. Let A and
L denote the values of the length and congestion in the optimal
solution of the above linear program.

‘The optimal solution is a “fractional” solution in the sense that
the (unit) flow of each commodity is split between several flow
paths, We round the fractional solution into an integral solution
using an algorithm proposed by Srinivasan and Teo [20]. This
algorithm builds on a theorem proved by Karp et al. [13]. For
compicteness and since the details are slightly different, we now
describe the rounding of the fractional solution.

Theorem4 [13] LetA be a realvaluedr x s matrix, andy be a real
valued a-vector. Let b be a real valued vector such that Ay = b.
Let t be a positive real number such that in every column of A,

1, the sum of all positive entries < t, and

2, the sum of all negative entries > —t.

Then, we can compute (in polynomial time) an integral vector §
such that for every i, either §; = |y| or §i = [y] and A = b,
whereby —b; < ¢,

We now show how to find an integral flow of congestion at most
6Ap 4Ly, where each flow path (of eachcommodity) haslengthat
most 4L, We first decompose the flow into (polynomially many)
flow paths, If any path in this decomposition is longer than 4L,
we discard it, We observe that this leaves at least half of a unit of
flow between each pair (vg, ¢;). We scale the flows appropriately
such that the total flow to each ¢; is exactly 1. This can at most
double the flow on an edge, and the total congestion is now at most
6Ar,

Let Py, P3,... denote the length bounded flow paths. Denote
the set of nodes in a path P; by V(P:) and the set of edges by
L(P). Let f(P;) denote the amount of flow pushed on path P;.
Define the set P? as the set of all paths that carry flow of the jth
commodity, Observe that each path belongs to exactly one P?. The
malrix A needed for Theorem 4 is defined as follows.

8y Z f(P) < 6Ar  foreachv
vV (F)

~4Lp: Y f(P) = —4Lr forallj
PP

The second set of inequalities captures the fact the flow on all
the paths corresponding to commodity J is exactly 1. Now the sum
of the positive entries in a column is

PMET DY

vev(P;) (viw)€EE(ps)

Avw + Stz
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= ( length of path P,) <4Lr

The second part of the inequality follows since s, < Ayw for all

v, w and s¢; = 0. The sum of the negative entries in a column is
at most 4L, this follows due to the fact that each P; belongs to

AVUSY GLITy 1S AVLTUN S LU LU WU A48 LA LAl (o2 in 03¢

exactly one P?. Invoking Theorem 4 gives us a set of paths such
that,

svy . F(P) < 6Ar+4Lr foreachv
GvEV(F;)
—4Lr- Y. f(R) < 0

: P, ePI

forall §

The second set of inequalities implies that each commedity has
at least one flow path. So we have a set of flow paths such that the
congestion is at most 6Ar + 4L+ and their length is at most 4 L.
Since Ar 4+ Lz < Ape + Lo+ these paths satisfy the length and

Amaactinn meanartiac ac dacirad

CUuscauuu PiUpeliULs as uvonvud,.

3.2 Finding a star decomposition

We now show how to obtain a star decomposition satisfying the
star properties previously defined. Recall that we are now given
a set of paths connecting each terminal u; with another terminal
mate(u;), and that this set of paths satisfies the length and conges-
tion properties.

properties which are similar to the star properties.

o Each tree spans at least two terminals from U”.
o The diameter of eachtree is at most 4L < 4+ (A + L+ ).

¢ The generalized degree of each node in each of the trees is at
most 6Az + 4Ly < 6(Ape + Lp+).

We show how to transform these trees into the required stars. Re-
peatedly, consider the tree edges, and remove a tree edge if it
separates the tree into two subtrees such that either, both subtrees
contain at least two terminals, or one of them contains no terminals
(in this case this subtree is removed as well). Repeat this process
until no more edges can be removed. The process terminates since
the number of edges is finite. Observe that upon termination, if
a connected component is not a star, then another edge could be
deleted. Thus, we get the following claim.

Claim 5 When the process terminates each connected component
is a star.

Clearly, all the terminals spanned by the trees are also spanned
by the stars. The diameter of each of these stars is at most 4L,
since the distance between every pair of nodes in U’ spanned by
a tree is at most 4L to begin with. Also, the generalized degree
of the “center” of the star is at most the generalized degree of its
originating tree since we have not introduced any new edges in
the process. We conclude that the stars satisfy the desired star
properties.

Now, we show how to find the required trees. Define G, to be
the undirected graph induced by the paths from each terminal to its
mate. Observe that a spanning forest of this graph may not satisfy
the required properties above and hence some extra refinement is
necessary.




For each node u in Gp, find a unique terminal in U’ that is
closest to u (with respect to the lengths Azy associated with each
edge (z, y)). Ties are broken arbitrarily but consistently.

We modify the paths starting at each terminal as follows. From
each terminal u begin tracing the path connecting u to mate(u).
At some node v along this path, the closest terminal to v will not be
u. We are guaranteed to encounter such a node because the closest
node to mate(u) is mate(u) itself. From this node v trace the
path to its closest terminal. This creates a path from u to another
terminal denoted new — mate(u). Note that new — mate(u) may
be different from mate(u). However, we are guarantezd that the
path from u to new — mate(u) is not longer than the path from u
to mate(u) and thus bounded by 4L,

Define an auxiliary directed graph H on the set of terminals U’
with the set of edges (u = new — mate(u)), foru € U'. By
definition each node in H has outdegree one. Thus, each connected
component of (the undirected skeleton of) H contains exactly one
directed cycle. Discard one edge from each such connected compo-
nent to make it a rooted tree in which all edges are oriented towards
the root, (The root is unique since the outdegree of each node is
one.) Note that every non-trivial strongly connected component of
H is a cycle. Thus, this can be done just by discarding an arbitrary
edge from each strongly connected component of H. Let H' be the
resulting forest.

Define the level of a node in A’ to be its distance from the root
of its component. (We flip the direction of the edges in H' for
the purpose of measuring distances.) Distinguish between nodes
of even level and nodes of odd level. Each edge of H' goes either
from an odd level node to an even level node or vice-versa.

Consider two collections of stars in H'. (Not to be confused
with the stars in the original graph.) One collection consisting
of edges from odd level nodes to even level nodes, and the other
consisting of edges from even level nodes to odd level nodes. Every
terminal with positive indegree and outdegree (in H ') is spanned
by a star in each one of the two collections. Every terminal with
cither indegree or outdegree zero (in H') is spanned by a star in
only one of the two collections. However, by a simple pigeon-hole
argument, at least one of the collections spans at least half of the
terminals.

Consider such a collection. First, note that each star in this
collection induces an undirected tree in the original graph when
replacing each star edge by its originating path. We now claim the
following,

Lemma 6 Theinduced treesaf any two stars belonging to the same
collection are vertex disjoint.

Proof: To obtain a contradiction assume they are not disjoint.
Then, there exist two distinct terminals with the same even or odd
parity, say u and v, such that new — mate(u) # new — mate(v),
but the paths traced from u to new — mate(u) and from v to
new — mate(v) have a common vertex z. Consider the terminal
chosen by = as its closest terminal. We distinguish between two
cases.
Case 1: The terminal chosen by z is u. Then « must be new —
mate(v), contradicting the fact that u and v are of the same parity.
The case where v is the chosen terminal of z is symmetric.
Case 2: The terminal chosenby = is new — mate(u). Thennew —
mate(v) must be the same as new — mate(u) a contradiction. The
case where new—mate(v) is the chosen terminal of  is symmetric.
0

Itis easy to see that the trees induced by the stars in the collection
satisfy the required properties. This concludes the construction.
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4 Hardness of approximations

In this section we show that the best possible approximation
factor is 3 — e. We show this hardness result even for a restricted
model in which s; € {0, 1} and Auy € {1,d} for some constant
d. Note that when s; = 0 node u; can broadcast the messape
concurrently to all of its neighbors. The proof is by a reduction to
the set-cover problem. In the unweighted version of the set-cover
problem we are given a set U of elements and a collection S of
subsets of U. The goal is to find the smallest number of subsets
from .S whose union is the set U. Feige [7] proved the following
hardness result.

Lemma 7 Unless NP C DTIME(n"t'8™), the sct-cover prob-
lem cannot be approximated by a factor which is better than Inn.

In our proof, we will only use the fact that it is NP-Hard to approx-
imate the optimal set-cover within any constant factor. Notice that
since the size of the optimal set-cover is polynomial, the problem
of constructing an optimal set-cover remains NP-Hard cven if we
know the value of the optimal set-cover.

Theorem 8 It is NP-Hard to approximate the minimum broadcast
time of any graph within a factor of 3 — .

Proof: Assume to the contrary that there exists an algorithm that
violates the claim of the theorem for some e. We show how to
approximate the set-cover problem within a constant factor using
this algorithm.

Consider an instance of set-cover I = (U, S) where U is the set
of elements, and S a collection of subsets of U. Let [U] = n and
]S| = m. Let the size of the optimal set-cover be k. We construct
the following graph G. The graph G, consistsof | +n 4 m - k
vertices: a distinguished root vertex r, vertices ey, ...en corme-
sponding to the elements of U, vertices uy, . . ., um corresponding
to the subsets, and k& additional vertices ai,...,ax.

U, (sets)

e (elements)
n

The root r has switching time s(r) = 0 and is connected to
ai,...,ax by edges with delay Arq, = 1. Each vertex ag has
switching time s(a;z) = 1, and is connected to all u, with delay
Aagu; = 1. Each vertex u; has switching time s(u;) = 0 and is
connected to a vertex e; iff the jth set contains the ith clement. The
delay of such an edge is Ay;e, = d, where d > “;}"- is a constant,
Each vertex e; has switching time s(e;) = 1. Finally, to complete
the instance of the multicasting problem, the target multicast sct
consists of all vertices e;.

We first show that if there is a set-cover of size k, then there is
amulticast scheme of length d + 2. After time 1, all the vertices a;



recelve the message. After time 2, all the vertices u; corresponding
1o sets which are in this cover, receive the message. This is possible
since all a, are connected to all u;. Finally, these vertices send the
mesgage to all the elements that they cover. Since s(u;) = 0 and
Augo; = d it follows that the multicast time is d + 2,

Suppose that the algorithm for the multicasting problem com-
pletes the multicasting at time &, By the contradiction assumption,
Its approximation factoris 3—e, Hence,t < (3—¢)(d+2) < 3d+2,
since the optimal multicast time is d + 2. The strict inequality fol-
lows from the choice of d,

We first claim that all the vertices u; that participate in the
multicast recelve the message from some a,. Otherwise there ex-
ists a vertex ey that received the message via a path of a type
(ryae,uj, i) 45, eq0), This means that ey received the messageat
or after time 3d 4 2 > ¢, Our second claim is that each vertex a,
sends the message to at most 2d vertices u;. This is because the
2d -t 15t vertex would receive the message at time 2d -2 and would
not be able to help in the multicast effort that is completed before
time 3d 4 2,

Combining our two claims we get that the multicasting was
completed with the help of 2dk vertices u;. The corresponding
2dF: sets cover all the elements e;, This violates the fact that the
set-cover problem cannot be approximated by any constant factor.
a

Remark: In our proof we considered a restricted model in which
the switching time may only get two possible values and the delay
may get only three possible values (assuming that when an edge
does not exist then the delay is infinity). Observe that this hardness
result does not apply to the Telephone model in which the switching
time i3 always [ and the delay is either I or infinity. We have similar
hardness results for other special cases, However, none of them is
better than 3 and all use similar techniques.
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