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Abstract 

In heterogeneous networks sending messages may incur dif- 
ferent delays on different edges, and each processor may have a 
different switching time between messages. The well studied Tele- 
phone model is obtained when all edge delays and switching times 
are equal to one unit. 

We investigate the problem of finding the minimum time re- 
quired to multicast a message from one source to a subset of the 
processors of size k. The problem is NP-hard even in the basic 
Telephone model. We present a polynomial time algorithm that ap- 
proximates the minimum multicast time within a factor of O(log k). 
Our algorithm improves on the best known approximation factor for 
the Telephone model by a factor of 0 (e). No approximation 
algorithms were known for the general model considered in this 
paper. 

1 Introduction 

The task of disseminating a message from a source node to the 
rest of the nodes in a communication network is called bruudcczsting. 
The goal is to completethetask as fast as possible assuming all nodes 
in the network participate in the effort. When the message needs to 
be disseminated only to a subset of the nodes this task is referred to 
as mulricarring. Broadcasting and multicasting are important and 
basic communication primitives in many multiprocessor systems. 
Current networks usually provide point-to-point communication 
only between some of the pairs of the nodes in the network. Yet, 
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in many applications, a node in the network may wish to send a 
message to a subset of the nodes, where some of them are not 
connected to the sender directly. Due to the significance of this 
operation, it is important to design efficient algorithms for it. 

Broadcast and multicast operations are frequently used in many 
applications for message-passing systems (see [S]). It is also pro- 
vided as a communication primitive by several collective commu- 
nication libraries, such as Express by Parasoft [6] and the Message 
PassingLibrary (MPL) [I, 21 of theIBM SP2pamllel systems. This 
operation is also included as part of the collective communication 
routines in the Message-Passing Interface (MPI) standard proposal 
[S]. Application domains that use broadcast and multicast opcm- 
tions extensively include scientific computations, network manage- 
ment protocols, databasetransactions, and multimedia applications. 

There are two basic models in which trivial optimal solutions 
exist. In the first model, all nodes are assumed to be connected 
and it takes one unit of time (round) for a message to cross a 
link. Therefore, in each round the number of nodes receiving the 
message can be doubled. If the target set of nodes is of size k, then 
this process terminates in [logkj rounds. In the second model the 
communicationnehvorkis representedby an arbitrary graph, where 
each node is capable of sending a message to all of its neighbors in 
one unit of time. Here, the number of rounds required to deliver a 
message to a subset of the nodes is the maximum distance from the 
source node to any of the nodes in the subset. 

The model in which a node may send a message to at most 
one other node in each round is known as the Telephone model, 
It is known that for arbitrary communication graphs, the problem 
of finding an optimal broadcast in the Telephone model is NP- 
hard 191, even for 3-regular planar graphs [17]. It is not hard to 
verify that in the Telephone model two trivial lower bounds hold 
for the minimum broadcast time. The first one is [log tal, where 
n denotes the number of nodes in the graph, and the second one 
is the maximum distance from the source node to any of the other 
nodes. Research in the past three decades has focused on finding 
optimal broadcast algorithms for various classes of graphs such as 
trees, grids, and hypercubes. Also, researchers have looked for 
graphs with minimum number of edges for which a broadcast time 
of rlognl can be achieved from any sourcenode. Problems related 
to broadcast which were extensively investigated are the problems 
of broadcast multiple messages, gossiping, and computing certain 
functions on all n inputs in a network. See, e.g., [4, 10, 11,12,16, 
19,21,22]. 

An assumption central to the Telephone model is that both 
sender and receiver are busy during the whole sending process, 
That is, only after the receiver received the message, both ends may 
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ocnd the message to other nodes, More realistic models in this con- 
text are the Postal model (see [3]) and the LogP model (see [15]). 
The idcn there is that the sender may send another message before 
Ihc mcosagc is completely received by the receiver, and the receiver 
la free during the early stages of the sending process. We note that 
in both the Postal model and the LogP model it is assumedthat the 
dclny of n meosngc between any pair of nodes is the same. 

Optimal solutions for broadcast in the Postal model are known 
for lhe cnsc of a complete graph, and for some other classes of 
Brapho, However, not much is known for arbitrary graphs. In the 
Poatnl model, researchers have also concentrated on other dissemi- 
nation primitives nnd almost always assumed that the communica- 
tion graph is complete. 

1,l Our reoulto 

In lhls paper we dclinc n more general model basedon the Postal 
model and cnll it the heterogeneouspostal model. Assume node u 
acnds n message to node w at time 0 and the message arrives at u at 
lime X,*, The nssumption is that 41 is free to send a new message 
at time ou, and w Is free from time 0 to time X,, - r,,. We call L 
(he delay of the link (96, u), s,, the sending (or switching) time of 
tl, and rv the receiving time of w). By definition, both s,, and rv are 
amaller than Xuv. A common assumption is that r,, = 3% for alI 
nodes 46, Observe thnt when the delay, sending time, and receiving 
Ilmc are nil cqunl to 1, we obtain the Telephone model. 

We believe that our model captures modem communication 
nclworks, where the major components - the processors and the 
communication links -arc not homogeneous. Some processors are 
faster thnn others, and some links have more bandwidth than others. 
These disparities are captured by the different values of the delay 
nnd the switching time. 

Since finding the minimum multicast timeis NP-hard eveninthe 
Telephone model, we turn our focus to approximation algorithms. 
The mnin result we present is an approximation algorithm for com- 
puting n multicast scheme in the heterogeneous Postal model. The 
approximation factor is 0 (logb), where k denotes the number of 
proceanore in the tnrget set, Previous approximation algorithms for 
muhlcnsting were known only in the Telephone model. Kortsarz 
nnd P&g [I41 gnve an approximation algorithm that produces a 
aolullon whose vnlue is bounded away from the optimal solution 
by an O(6) ndditive term. This term is quite large, especially for 
Crapha in which the broadcast (multicast) time is polylogarithmic. 
Lntcr, Rnvi [18], gave an algorithm that achieves a multiplicative 
npproximnlion fnctor of 0 (w). 

WC nlno show that it is NP-hard to approximate the minimum 
brondcatit Lime within a factor of three in a model which is only 
nllghtly more complicated than the Telephone model, 

The rcr;t of the paper is organized as follows. In Section 2 we 
deflnc our model. In Section 3 WC describe our solution. Finally, 
In Sccllon 4 we show that this problem is hard to approximate by a 
amall constant factor. 

2 The Model and Problem 

WC define our model as follows. Let G = (V, E) be an undi- 
rected grnph representing a communication network, where V is a 
act of tz node5 nnd E is the set of point to point communication 
linko, Let II C V denote n special set of terminals, and let P be a 
opcclnl node termed the root. Let the cardinality of the set U be k. 

We associate with each node v E V a parameter sv that denotes 
the sending time. We sometimes refer to sv as the switching time 
of TV to indicate that this is the time it takes node TV to send a new 
message. In other words, l/.s, is the number of messages node 
v can send in one round (unit of time). We associate with each 
node u E V a parameter rv that denotes the receiving time. We 
assume that rv = sv, for each node u. We associate with each 
link (u, w) E E a length X,, that denotes the communication delay 
between nodes u and v. By definition, X,, is greater than both a,, 

andr, (= 3”). We can think of the delay X,, as taking into account 
the sending time at u and the receiving time at v. 

Let the generulizeddegreeof vertex u E V be the achlal degree 
of u in the graph G multiplied by the switching time sv. Observe 
that the generalized degree measures the time it would have taken 
the node 1) to send a message to aII of its neighbors. 

Our goal is to find a minimum time multicast scheme; that is, 
a scheme in which the time it takes for all nodes in tbe set U to 
receive the message from the root r is minimized. Without loss of 
generality, we may consider onIy multicast schemes that are “not 
lazy”; i.e., schemes in which a node that has not finished sending 
the message to its neighbors, (but has aheady started) is not idle. 
Such multicast schemes can be represented by an ouhvard directed 
tree T that is rooted at r and spans alI the nodes in U, together with 
orderings on the edges outgoing from each node in the tree. The 
mukicast scheme corresponding to such a tree and ordedngs is a 
multicast in which each nodein the tree upon receiving the message 
(through its single incoming edge) sends tbe message along each 
of its outgoing edges in the specified order. From now on, we refer 
to the tree in tbe representation of a multicast scheme as the tree 
“used” by the scheme. 

For a rooted tree T, denote by AT its maximum generalized 
degree, and by LT the maximum distance from r to any of the 
nodes. By definition, tbe multicast time of tree T is greater than AT 
and greater than LT. Hence, 

Lemma 1 Let OPT denote the multicast time of an optimal solu- 
tion using tree T’, then OPT 2 $(AT* + LT. ) 

3 The Approximation Algorithm 

In this section we describe the approximation algorithm for 
mukicasting a message from a mot vertex r to a set of terminals U. 
To simplify notation assume that r E U. 

Tbe main tool used by our algorithm is a procedure core(U’) 
that computes for a given set of terminals U’: (1) a subset W C U’ 
which we calI tbe “core” of U’, of size at most $U’l. where r E W, 
and (2) a scheme to disseminate a message known to all tbe nodes 
in W to the rest of the nodes in U’ in time which is proportional to 
the minimum multicast time from r to U’. 

The algorithm that computes the multicast scheme proceeds in 
.! phases. Let UO = U. Upon termination, UC = (r}. In the ith 
phase,4= l,..., e, procedure core(U+l) is invoked to compute: 
(l)thecoreofUi-l,denotedbyUi;and(2)aschemetodisseminate 
tbe message from UC to the set UC-1 in time which is proportional 
to the minimum multicast time from r to U&l. 

Since IUil 5 f * IU<-ll. and lUol = k, we have that .! = 
O(logk). The resulting multicast scheme is given by looking at 
the rounds of tbe algorithm in backward order. Namely, starting 
at i = L downwards, in each round of the multicast scheme the 
messageis disseminated from Ui to U<-1. 

Since Ur c U;--I c . - - C UO = U. each dissemination phase 
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takes time which is proportional to the minimum multicast time 
from r to U. It follows that the multicast time is up to O(logk) 
times the optimal multicast time. 

In the rest of the section we describe the procedure core(U’). 
Let OPT be the minimum multicast time from r to U’. Lemma 1 
implies that there exists a tree T’ spanning the set U’ such that 
AT* + LT. 5 2. OPT. (Unfortunately, we are unable to compute 
such a tree, but are just guaranteed that it exists.) 

The procedure core(U’) has two main parts. In the first part, 
we find a set of IV’1 paths, one for each terminal, where the ith path 
connects the terminal ui to another terminal called m&(ai). The 
paths have the following path properties: 

Length Property: The length of each path is at most 4. (AT. + 
LT.). 

Congestion Property: The generalized degree of the nodes in the 
graph induced by the paths is at most 6 s (AT. + LT*). 

In the second part we design a dissemination scheme using the 
above paths. We do it by transforming the paths into a set of at least 
[U’l/4 star-shaped graphs with the following starproperties: 

l Each star contains at least two terminals from U’. 

l The diameter of each star is at most 4. (AT* + LT.). 

l The generalized degree of the “center” of a star is at most 
6 - (AT* $ LT.). 

Now, we arbitrarily select one node from each star to the core of 
U’. Note that each such node can multicast the message to the rest 
of the terminals in its star in O(AT* + LT* ) time (linear in OPT). 
We add all the terminals not contained in any of the stars to the core 
of U’. We claim that the size of the core is at most :lU’l. To see 
this, let z denote the number of stars. Since z 2 IU’l/4 and each 
stcu contains at least hvo terminals we get that the size of the core 
is bounded by z + IV’1 - 2x = IV’1 - z 5 $lU’l. 

We now turn to describe each of the two parts of the procedure 
corc(U’). 

3.1 Finding a set of paths 

We first claim the following lemma which is analogous to the 
“tree pairing” lemma of Ravi [lS]. 

Lemma 2 Let T be a tree that spans a set U’ E V, and suppose 
that IV’1 is even. There exists a way to pair the nodes of U’, andfind 
paths (in the tree T) connecting each pair such that (I) the paths 
are edge disjoint, (2) the length of each path is bounded by 2LT, 
and (3) the generalized degree of each node in the graph induced 
by the paths is at most AT. 

Proof: The proof follows directly from the tree pairing lemma used 
by Ravi [ 181. This lemma claims that there exists a pairing such 
that the paths in T connecting each of the pairs are edge disjoint. 
Consider these paths. Clearly the length of each df these paths is 
bounded by 2LT. The degree, and hence the generalized degree, 
of every node in the graph induced by the paths is no more than the 
(generalized) degree in T since we only use the edges of the tree T. 
Hence, it is bounded by AT. q 

Corollary 3 LetT be a tree that spans a set U’ C V. There exists a 
way to pair thenodesof U’, andJindpaths(in the treeT)connccthts 
each pair such that (I) the length of each path is bounded by 2LT, 
and (2) the generalized degree of each node in the graph induced 
by the paths is at most 2&. 

Proof: The corollary clearly holds if IU’l is even. If IV’1 is odd, 
we pair IV’1 - 1 of the nodes as in Lemma 2, and pair the last node 
with any other node. The length of the path connecting the last pair 
is still bounded by 2LT. However, the degree of the subgmph may 
double up to EAT. q 

RecallthatthetreeT’ spansthenodesofU’and(A\~~+L~*) $ 
2. OPT. Our objective is to find the set of paths as guamnteed 
by Corollary 2 with respect to T’. However, we do not know T’, 
Thus, instead, we find a set offractional paths satisfying similar 
properties. To this end, we write a linear program for finding n 
set of (fractional) paths that minimizes the sum of the ma..imum 
average length of the paths connecting each pair and the ma,ximum 
generalized degree of the subgraph induced by these paths. 

The linear program is a variant of multicommodity flow. For 
eachedge (u, u), wedefinethe directed edges (u, u) and (u, u) both 
of length Xu, . With each node u, E U’ we associate commodity 
j. Node u, is the source of commodity j and we create an artificial 
sink tj with rtj = stj = 0. We connect each of the nodes u’ E U’, 
where t’j # u’, to tj by a directed edge (w’, I$) of length 0. The 
objectiveis to minimize (L+A), whereexactly oneunit of tlow has 
to be shipped from each uj to tit such that the avemge length of the 
flow paths from uj to tj is at most L, and the maximum congestion 
of the induced subgraph is at most 3d 

More formally, let A denote the set of directed edges, and let 
f’(u, u) denote the flow of commodity i on directed edge (u, w), 
The linear programming formulation is as follows. 

Minimize A + L 

subject to: 

for all v E V - {ui, ti} 

c f’(u, ti) = 1 
(u,t,)EA 

C f’(lfi,U) = 1 
(%4EA 

c fi(U,U)XU” < 2L 

sw.~~(fi(u,~)+fi(u,u)) I 3A 
i uEV 

f’h.‘) 2 0 

We now show that the set of paths guaranteed by Corollary 3 
with respect to T’ can be modified so as to obtain an integml 
solution for the linear program as follows. If IV’1 is even, the 
solution is obtained by using each path connecting a pair (ui, uJ) to 
ship one unit of flow from uj through ui to tj, and another unit of 
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flow from ~(1 through Uj to ti. The length of each path is bounded 
by ~LT*, and since WC use each path twice, the generalized degree 
is bounded by2AT*, If IV’1 is odd, the solution is obtained by using 
each of the z(lU’l - 1) paths connecting the first IV’1 - 1 nodes 
of Y’ twkc (once in each direction), and using the path connecting 
lhe last node in U’ to its mate to ship tlow out of this node. The 
length of each path is still bounded by 2&, However, becauseof 
lhe additional path, the degree is only bounded by EAT*. 

It follows that the value of the objective function for this solution 
ia AT* + LT., and thus the linear program is guaranteed to find a 
aolutlon whose value is upper bounded by this value. Let AT and 
LT denote the values of the length and congestion in the optimal 
solution of the above linear program. 

The optimal solution is a “fractional” solution in the sense that 
the (unit) flow of each commodity is split between several flow 
paths, We round the fractional solution into an integral solution 
uoing an algorithm proposed by Srinivasan and Teo [20]. This 
algorithm builds on a theorem proved by Karp et al. [13]. For 
completeness and since the details are slightly different, we now 
describe the rounding of the fractional solution. 

Thcorcm4 [13]L.&A bearealvaluedr xsmarrir, andy beareal 
valued o+ec/or: Let b be a real valued vector such that Ay = b. 
Let t be a positive real number such that in every column of A, 

I, he ,wm of all positive entries 5 t, and 

2, llre sum of all negative entries 2 -t. 

Tlren, we can compute (in polynomial time) an integral vector 9 
WC/I Ihat for every 6 either ai = [yJ or gi = [yJ and Ag = b, 
wlrerc6i - bi < .k 

WC now show how to find an integral Ilow of congestion at most 
GA~~4LT,~vhcrecach~ov~path(ofeachco~odity)h~lengthat 
mO3t 4&, We first decompose the flow into (polynomially many) 
flow paths. IP any path in this decomposition is longer than 4LT, 

we discard it, We observe that this leaves at least half of a unit of 
flow between each pair (vi, ti). We scale the flows appropriately 
such that the total flow to each ti is exactly 1. This can at most 
double the flow on an edge, and the total congestion is now at most 
GAp 

Let A, A, I * * denote the length bounded flow paths. Denote 
the act of nodes in a path Pi by V(R) and the set of edges by 
B(P{), Let f(Pr) denote the amount of flow pushed on path P;. 
Define the set ‘pJ as the set of all paths that carry flow of @e jth 
commodity, Observe that each path belongs to exactly one P. The 
matrix A needed for Theorem 4 is defined as follows. 

sv 1 c f(Pi) 5 6&r for eachv 
i:VBV(P~) 

-~LT l C f(Pi) = -~LT for all j 
kPcEF5 

The second set of inequalities captures the fact the Row on all 
the paths corresponding to commodity j is exactly 1. Now the sum 
of the positive entries in a column is 

c sv < c XVW $ stj 

VBV(Pi) (v,wW(~i) 

= ( length of path P,) < ~LT 

The second part of the inequality follows since sv 5 &, for all 
v,w and stj = 0. The sum of the negative entries in a column is 
at most 4LT, @is follows due to the fact that each Pi belongs to 
exactly one P. Invoking Theorem 4 gives us a set of paths such 
that, 

sV z RP’) < BAT + 4& foreachv 
i:VEV(P<) 

-4LT. c f(pi) < 0 forall j 
LP.& 

The secondset of inequalities implies that each commodity has 
at least one flow path. So we have a set of flow paths such that the 
congestion is at most EAT + 4&r and their length is at most 4LT. 
Since AT + LT < AT* + LT* these paths satisfy the length and 
congestion prop&&s as desired. 

3.2 Finding a star decomposition 

We now show how to obtain a star decomposition satisfying the 
star properties previously defined. Recall that we are now given 
a set of paths connecting each terminal uj with another terminal 
mak(uj), and that this set of paths satisfies the length and conges- 
tion properties. 

We find a set of at least IV’!/2 trees that satisfy the following 
properties which are similar to the star properties. 

l Each tree spans at least two terminals from U’. 

l Thediameterofeachtreeis atmOst4LT 5 ~.(AT* 9 LT.). 

l The generalized degree of eaih node in each of the trees is at 
most EAT + 4& 5 ~(AT* -I- LT.). 

We show how to transform these trees into the required stars. Re- 
peatedly, consider the tree edges, and remove a tree edge if it 
separates the tree into two subtrees such that either, both subtrees 
contain at least two terminals, or one of them contains no terminals 
(in this case this subtree is removed as well). Repeat this process 
until no more edges can be removed. The process terminates since 
the number of edges is finite. Observe that upon termination, if 
a connected component is not a star, then another edge could be 
deleted. Thus, we get the following claim. 

Claim 5 When the process terminates each connected component 
is a stal: 

Clearly, all the terminals spanned by the trees are also spanned 
by the stars. The diameter of each of these stars is at most 4-k. 
since the distance be&veen every pair of nodes in U’ spanned by 
a tree is at most 4LT to begin with. Also, the generalized degree 
of the “center” of the star is at most the generalized degree of its 
originating tree since we have not introduced any new edges in 
the process. We conclude that the stars satisfy the desired star 
properties. 

Now, we show how to find the required trees. Define GP to be 
the undirected graph induced by the paths from each terminal to its 
mate. Observe that a spanning forest of this graph may not satisfy 
the required properties above and hence some extra refinement is 
necessary. 
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For each node u in Gp, find a unique terminal in U’ that is 
closest to u (with respect to the lengths X,, associated with each 
edge (s, y)). Ties are broken arbitrarily but consistently. 

We modify the paths starting at each terminal as follows. From 
each terminal u begin tracing the path connecting u to mate(u). 
At some node u along this path, the closest terminal to 1) will not be 
u. We are guaranteed to encounter such a node because the closest 
node to mate(u) is mate(u) itself. From this node w trace the 
path to its closest terminal. This creates a path from u to another 
terminal denotedncw - mate(u). Note that new -mate(u) may 
be different from mate(u). However, we are guaranteed that the 
path from u to new - mate(u) is not longer than the path t?om u 
to mate(u) and thus bounded by 4LT. 

Define an auxiliary directed graph H on the set of terminals U’ 
with the set of edges (u + new - mate(u)), for u E U’. By 
definition each nodein H has outdegree one. Thus, each connected 
component of (the undirected skeleton of) H contains esactiy one 
directed cycle. Discard one edge from each such connected compo- 
nent to make it a rooted tree in which all edges are oriented towards 
the root. tJhe root is unique since the outdegree of each node is 
one.) Note that every non-trivial strongly connectedcomponent of 
H is a cycle. Thus, this can be done just by discarding an arbitrary 
edge from each strongly connected component of H. Let H’ be the 
resulting forest. 

Define the level of a node in Hi’ to be its distance from the root 
of its component. (We flip the direction of the edges in H’ for 
the purpose of measuring distances.) Distinguish behveen nodes 
of even level and nodes of odd level. Each edge of H’ goes either 
from an odd level node to an even level node or vice-versa. 

Consider hvo collections of stars in H’. (Not to be confused 
with the stars in the original graph.) One collection consisting 
of edges from odd level nodes to even level nodes, and the other 
consisting of edges from even level nodes to odd level nodes. Every 
terminal with positive indegree and outdegree (in H’) is spanned 
by a stir in each one of the hvo collections. Every terminal with 
either indegree or outdegree zero (in H’) is spanned by a star in 
only one of the hvo collections. However, by a simple pigeon-hole 
arkvment, at least one of the collections spans at least half of the 
terminals. 

Consider such a collection. First, note that each star in this 
collection induces an undirected tree in the original graph when 
replacing each star edge by its originating path. We now claim the 
following, 

Lemma 6 The induced treesofuny tu’o stars belonging to the same 
collection are t’ertex disjoint. 

Proof: To obtain a contradiction assume they are not disjoint. 
Then, there exist two distinct terminals with the same even or odd 
parity, say u and u, such that new - mate(u) # new - mate(u), 
but the paths traced from u to new - mate(u) and from w to 
new - mate(u) have a common vertex 2. Consider the terminal 
chosen by x as its closest terminal. We distinguish behveen hvo 
cases. 
Case 1: The terminal chosen by x is u. Then u must be new - 
mate(v), contradicting the fact that u and II are of the same parity. 
The case where w is the chosen terminal of x is symmetric. 
Case2: Theterminal chosenbyzisnew-mate(u). Thennew- 
mate(u) must be the same as new-mate(u) a contradiction. The 
casewherenew-mate(u)isthechosenterminalofxissymmetxic. 

0 

It is easy to see that the trees induced by the stars in the collection 
satisfy the required properties. This concludes the construction. 

4 Hardness of approximations 

In this section we show that the best possible approslmation 
factor is 3 - B. We show this hardness result even for a restricted 
model in which s; E {0, 1) and X,, E (1,d) for some constant 
d. Note that when si = 0 node ui can broadcast the message 
concurrently to all of its neighbors. The proof is by a reduction to 
the set-cover problem. In the unweighted version of the net-cover 
problem we are given a set U of elements and a collection S of 
subsets of U. The goal is to find the smallest number of suhsets 
from S whose union is the set U. Feige [7] proved the following 
hardness result. 

Lemma 7 Unless NP E DTIME(n’“G *°Cn), the sct-coverprob- 
lem cannot be approximated by a factor \vhich is better than Inn. 

In our proof, we will only use the fact that it is NP-Hard to appros- 
imate the optimal set-cover within any constant factor. Notice that 
since the size of the optimal set-cover is polynomial, the problem 
of constructing an optimal set-cover remains NF-Hard even if we 
know the value of the optimal set-cover. 

Theorem 8 It is NP-Hard to approximate the nrinitnwr broadcast 
time of any graph Ivithin a factor of 3 - E. 

Proof: Assume to the contrary that there exists an algorithm that 
violates the claim of the theorem for some e. We show how to 
approximate the set-cover problem within a constant factor using 
this algorithm. 

Consider an instance of set-cover I = (U, S) where U is the set 
of elements, and S a collection of subsets of U. Let IV1 = n and 
ISI = m. Let the size of the optimal set-cover he k. 1% construct 
the following graph G. The graph G, consists of 1 I- n -I- m + k 
vertices: a distinguished root vertex r, vertices el, . . . efl corre- 
sponding to the elements of U, vertices UI, . . . , urn corresponding 
to the subsets, and k additional vertices 01,. . . , ak. 

e 
1 

The root r has switching time s(r) = 0 and is connected to 
(II,. . . , Uk by edges with delay XraC = 1. Each vertex a~ has 
yitcfing time s(uf) = 1, and is connected to all u, with delay 

= 1. Each vertex uj has switching time s(uj) = 0 and is 
c%kted to a vertex ei iff the jth set contains the ith element. The 
delay of such an edge is X,,, = d, where d > F is a constnnt. 
Each vertex ei has switching time s(ei) = 1. Finally, to complete 
the instance of the multicasting problem, the target multicast set 
consists of all vertices ei. 

We first show that if there is a set-cover of size b, then there is 
a multicast schemeof length d + 2. After time 1, all the vertices at 

452 



fCCC~VC t11C messngc. After time 2, all the vertices Uj corresponding 
to oets which nre in this cover, receive the message. This is possible 
since all ad arc connected to all Uj. Finally, these vertices send the 
rrage to all the elements that they cover. Since s(uj) = 0 and 
ujs( = d it follows that the multicast time is d + 2. 

Sttpposc that the algorithm for the multicasting problem com- 
pletes the multicasting at time t. By the contradiction assumption, 
itnapproximntionfnctoris3-e. Hence,t 5 (3-a)(d+2) < 3d+2, 
since the optimnl multicast time is d + 2. The strict inequality fol- 
lows from the choice of d, 

We first claim that all the vertices uj that participate in the 
multicast receive the message from some al. Otherwise there ex- 
ists a vertex e(l that received the message via a path of a type 
(r, UL, UJ, e(, Ujr, eil), This means that ee received the messageat 
or nfter time 3d I- 2 > t. Our second claim is that each vertex al 
sends the message to at most 2d vertices uje This is because the 
2d+ 1st vertex would receive themessageat timeti+2 and would 
not be nble to help in the multicast effort that is completed before 
time 3d I- 2. 

Combinlng our two claims we get that the multicasting was 
completed with the help of 2& vertices uj. The corresponding 
2dk sets cover all the elements ei. This violates the fact that the 
set-cover problem cannot be approximated by any constant factor. 
0 

Remark: In our proof we considered a restricted model in which 
the switching time may only get two possible values and the delay 
mny get only three possible values (assuming that when an edge 
does not exist then the delay is infinity). Observe that this hardness 
result does not apply to theTelephone model in which the switching 
tlmc fs always I and the delay is either 1 or infinity. We have sin&r 
hardness results for other special cases. However, none of them is 
better than 3 and all use similar techniques. 
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