
Evaluating the Performance of Photonic

Interconnection Networks

Roger Chamberlain, Ch’ng Shi Baw, Mark Franklin, Christopher Hackmann,
Praveen Krishnamurthy, Abhijit Mahajan, and Michael Wrighton

Computer and Communications Research Center
Washington University, St. Louis, Missouri

ABSTRACT

This paper describes the design and use of the In-
terconnection Network Simulator (ICNS) framework.
ICNS is a modular, object-oriented simulation system
that has been developed to investigate performance is-
sues in multiprocessor interconnection networks that
exploit photonic technology in their design. We de-
scribe the ICNS infrastructure, present two distinct
photonic interconnection networks that have been mod-
eled using ICNS, and give performance results for each
of these networks.

1 Introduction

With the advent of optical fiber, photonic technol-
ogy has become an indispensable component in the de-
sign and deployment of the world’s long-distance com-
munications infrastructure. The bandwidth capacity
of long-distance fiber links is enormous, and the tech-
nical and economic advantages of photonic technol-
ogy in this arena are indisputable. What we haven’t
yet seen is the exploitation of photonic technology for
short-distance communications (e.g., chip-to-chip and
board-to-board links within a single system). The rea-
sons for this are multifold. Generally, however, al-
though photonic interconnection networks have signif-
icantly increased bandwidth, the complexity and cost
of such systems, coupled with the inability of proces-
sor interfaces to cope with high photonic data rates,
usually negates any expected bandwidth advantages.
It is a misconception that merely replacing an existing
electronic interconnect with an optical fiber equivalent
will result in a viable architectural design. To truly
take advantage of photonic technology, the total sys-
tem design must be rethought with an understanding
of the strengths and weaknesses of photonics.

1Research reported herein is supported in part by NSF grant
MIP-9706918 and DARPA contract DAAL01-98-C-0074.

The Interconnection Network Simulator (ICNS)
framework was developed to help evaluate candidate
architectural alternatives that exploit photonic tech-
nology in their design. Our specific interest is the use
of photonics in the processor-to-processor interconnec-
tion network that is an integral part of any multicom-
puter system. The design of ICNS was not limited to
this application, however, and we have modeled both
multicomputer systems and switching fabrics for inter-
net routers.

The use of photonic technologies as building blocks
for multicomputer interconnects is not, as yet, a
well-studied subject. Photonics posses strengths and
weaknesses different from electronics from an inter-
connection network standpoint. Thus, fundamental
design space parameters such as slotted-time versus
asynchronous transmission, buffered versus unbuffered
switching, packet-based versus message-based trans-
port, etc. need to be reconsidered when designing a
photonic interconnect.

ICNS was developed using the MODSIM III lan-
guage in a modular, object-oriented manner. It is de-
signed to be extended as new architectures are pro-
posed and new performance questions are raised. For
this reason, the simulation framework must be flexi-
ble enough to allow various network components with
varied characteristics to be modeled faithfully.

As applications demand higher performance from
the interconnection network, the design of the network
will be more closely guided by the specific targeted ap-
plications. Hence it is important to consider both the
application and the interconnection network together
in the design process. ICNS takes special care to en-
sure that application-level simulation modules can be
easily integrated with the interconnect modules. This
allows application issues to be fully explored in tandem
with interconnect issues in the design process.

At a very high level, an interconnection network

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

terminal

terminal

terminal

terminal

terminal

terminal

terminal

terminal

links links

switches

fabric
switch

links and

Figure 1: A Generic Interconnection Network.

can be abstracted as a system composed of terminals
that generate and consume messages, and links and
switches that facilitate the transportation of messages
from one terminal to another. Figure 1 shows a generic
interconnection network.

To achieve the desired flexibility and extensibility,
a modular, object-oriented approach is adopted as the
principle design and development methodology for the
simulator. For example, a component that models a
simple bufferless switching element can be enhanced to
model a switching element with a simple FIFO buffer.
The FIFO buffer component can be easily extended to
model a prioritized multiqueue buffer. A switching ele-
ment with prioritized multiqueue buffer can further be
enhanced to model a switching element with schedul-
ing capability. The scheduler module can be easily
modified to perform scheduling using different policies.

We have used ICNS to model a pair of systems. The
first is the Gemini interconnect, a parallel photonic
and electronic network that utilizes lithium niobate
optical switches to construct a circuit-switched high-
bandwidth data path in the switching fabric. The sec-
ond is a photonic multiring interconnect, in which 2-D
arrays of Vertical Cavity Surface Emitting Lasers (VC-
SELs) and photodetectors are used to provide high-
bandwidth I/O to/from CMOS chips. The variety in
photonic technologies used, as well as the distinct ar-
chitectures that result, point to the flexibility of the
ICNS framework.

Section 2 describes the ICNS implementation en-
vironment, as well as the base classes and basic ob-
ject types that form the core of ICNS. Section 3 de-
scribes the model used to simulate such objects as
links, switches, processing nodes, etc. Section 4 de-
scribes the usage of the simulator. Section 5 provides
a description of the architectures simulated to date us-
ing ICNS, including a description of the photonic com-
ponents that are enabling technology for these archi-

MessageObj

MTMessageObj MHMessageObj MCMessageObj

GMessageObj

NodeObj

MCLinkObj

LinkObj GeOPObj

GoOPObjGSwitchObj

SwitchNodeObj GCPUObj TerminalNodeObj

MQBufferObj

GTerminalObj

GSwitch2x2Obj

OutPortRecObj

GSwitch2x2CCObj

GGeneratorObj

GoOPVOQObj

NetworkObj

GTerminalVOQFQObj

GTerminalVOQObj

Figure 2: ICNS partial class diagram.

tectures. It also gives some performance results that
have been derived using ICNS. Section 6 concludes and
describes the future plans for ICNS.

2 ICNS Implementation Environment
and Base Classes

2.1 The MODSIM III Implementation
Environment

ICNS is implemented using the MODSIM III lan-
guage developed by the CACI Products Company.
The MODSIM III runtime environment is provided in
the form of a shared runtime library. The MODSIM III
compiler takes in MODSIM III source code, compiles
it into C++ code, and then uses the system C/C++
compiler and linker to compile the C++ code and link
the resulting object code with the runtime library to
make an executable program.

MODSIM III is a modular, block structured lan-
guage that supports object oriented programming. Its
runtime environment provides an implicit event queue
and the binding of events to event handlers. Simu-
lation time progression and event scheduling are im-
plicitly handled by the runtime environment. Using
MODSIM III, ICNS is built in an object-oriented fash-
ion. Subclassing and object composition are used ex-
tensively. This will be shown in subsequent sections.

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

A

B

B aggregates one
instance of A

A

B

B is a subclass of A

A

B

B aggregates many
instances of A

Figure 3: Brief nomenclature for the symbols used
above in Figure 2.

2.2 ICNS Base Classes

ICNS is primarily composed of the following base
classes:

• MessageObj
• NodeObj
• NetworkObj

Of the three classes listed above, interactions between
the MessageObj and the NodeObj generate the ba-
sic events that move the simulation forward. Figure 2
shows a class diagram using OMT-notation. The sym-
bols used in Figure 2 are explained briefly in Figure 3.
Only the classes that more directly model particular
network or multicomputer components are shown.

2.2.1 MessageObj

MessageObj models messages in the system. The base
MessageObj class allows source and destination ad-
dresses, time of creation of the message, and the length
of the message to be recorded. There are also a ba-
sic set of interfaces that facilitate interactions between
messages and NodeObj derivatives. The interaction
mechanism will be described later in Section 2.3.

MessageObj has been extended to allow specifica-
tion of message types, communication channels being
used, and link level source/destination addresses via
the MTMessageObj, MCMessageObj, and MHMes-
sageObj subclasses respectively. For example, the
GMessageObj subclassed from all the MessageObj
classes mentioned can model the message shown in
Figure 4.

MessageObj can also model control signals that help
control the network. This is done by assigning reserved
type values to messages that the nodes (e.g., switches
and terminals) recognize as control signals.

To allow the ICNS to be specialized to the appli-
cation, MessageObj also has a reference to a general
object type that may be of any class specified by the
user (shown as ‘data’ in Figure 4). This allows the

network source address network destination address

link source address link destination address

sequence number length

message type channel

time stamp

data

Figure 4: The GMessageObj.

user to attach application specific information to a
MessageObj. Also, in the event that a complex multi-
layered transmission protocol is chosen, the ‘data’ ref-
erence can be used to let one MessageObj encapsulate
another MessageObj. This enables simulation of lay-
ered protocols where data units are encapsulated at
different protocol layers.

2.2.2 NodeObj

NodeObj models anything that accepts a MessageObj
and later passes the MessageObj to some other en-
tity (such as another NodeObj). Each instance of a
NodeObj has an ID and a set of interfaces that in-
teracts with MessageObj. NodeObj by itself provides
no useful function except to mandate the minimal set
of interfaces that allows any MessageObj subclass to
interact with any NodeObj subclass in a consistent
manner.

For example, MessageObj needs to interact with
switches, links, and terminals. Since the classes that
model switches, links, and terminals are subclasses of
NodeObj, a MessageObj can interact with any one of
them using the same interfaces. Regardless of whether
a MessageObj is interacting with a LinkObj, SwitchN-
odeObj, or GCPUObj, the MessageObj uses the same
interfaces described in Section 2.3. Since these classes
are all subclasses of NodeObj as shown in Figure 2,
they provide MesageObj with a consistent set of inter-
faces.

2.2.3 NetworkObj

NetworkObj is a container object that holds the
NodeObj’s. NetworkObj provides a single point-of-
entry for user programs to access a particular NodeObj
as well as keeping track of the number of terminals and
switches in the system.

2.3 Interactions between MessageObj and
NodeObj

The interconnection network is used to send mes-
sages. This is modeled as messages being passed from

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

one node to another in ICNS. The following describes
how MessageObj and NoteObj interact.

When a MessageObj is passed to a NodeObj, it first
asks if the NodeObj can process it immediately. If the
reply is negative, the MessageObj asks the NodeObj
to place it in the NodeObj’s buffer. Otherwise, the
MessageObj asks the NodeObj how long it will take
to process the MessageObj. The MessageObj will wait
that amount of time and then ask the NodeObj to
finish up the processing.

When asked by a MessageObj whether the
NodeObj can process the MessageObj immediately,
the NodeObj gives a simple yes or no answer. When
asked to buffer a MessageObj, the NodeObj can buffer
the MessageObj as requested, or discard the Mes-
sageObj should the NodeObj not have a buffer or have
a full buffer. When asked how long it will take to pro-
cess a MessageObj, the NodeObj returns a real number
representing the amount of time needed to process the
NodeObj. For example, if the NodeObj concerned is
a link, then processing a MessageObj requires send-
ing the MessageObj through the link. The processing
time is simply the link delay. When asked to finish
processing a MessageObj, the NodeObj usually either
discards the MessageObj or passes the MessageObj to
another NodeObj.

3 Description of Selected Objects in a
Simulated Interconnection Network

This section describes the formulation of specific ob-
jects in an interconnection network simulated using
ICNS. The selected objects are as follows:

• Links
• Terminals

– Message Generator
– Buffer
– Central Processing Unit (CPU)

• Switches

3.1 Links

Links simply accept messages from a node and pass
the messages to another node. A simple link has a
fixed bandwidth, a destination, and a propagation de-
lay parameter. The destination of a link is usually a
switch node or a terminal. A simple link is modeled by
the LinkObj and is depicted in Figure 5. The LinkObj,
shown in the middle left of Figure 2, is a subclass of
the NodeObj.

The MCLinkObj, a subclass of LinkObj, extends
the LinkObj to model multichannel links. MCLinkObj

message length is l

message
going in at time t

node at time t + l/BW + d
coming out, going to another

message
link with bandwidth BW
and propagation delay d

Figure 5: A simple link.

is suitable for modeling such objects as frequency di-
vision or spatial division multiplexed links. The mul-
tichannel link model is depicted in Figure 6.

m
es

sa
ge

s
co

m
in

g
ou

t

channel 4, BW4, delay d4

channel 1, BW1, delay d1

channel 3, BW3, delay d3

channel m, BWm, delay dm

channel 2, BW2, delay d2

m
es

sa
ge

s
go

in
g

in

Figure 6: A multichannel link.

Channel error can also be modeled by specifying
an error probability parameter. Every time a message
enters a channel, it is dropped or marked corrupted
with the error probability specified.

3.2 Terminals

Terminals generate and consume messages. A pro-
cessing node, for example, can be modeled as a ter-
minal. When modeling signal processing applications
the sensor banks can also be modeled as terminals
(i.e., terminals that generate but do not consume mes-
sages). For example, a terminal modeling a processing
node would have a construction similar to that shown
in Figure 7 while a terminal modeling a sensor bank
would look like that shown in Figure 8.

buffer module (MQBuffObj)

CPU Module (GCPUObj)

messages arrive
via input link

new messages
generated as the
result of processing
old messages

via output link
messages sent

buffer module (MQBuffObj)

Figure 7: A processing node model.

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

Message Generator
(GGeneratorObj)

via output link
messages sent

buffer module (MQBuffObj)

Figure 8: A sensor bank model.

3.2.1 Message Generation

The GGeneratorObj is implemented to model a mes-
sage generator. Messages can be generated according
to a Poisson process with user specified rates. Mes-
sage lengths can be exponentially distributed or fixed.
Support for generating messages according to other
statistical models (such as Gaussian, Gamma, Erlang,
Weibull, etc.) can be easily added. An important
class of applications, Space Time Adaptive Process-
ing (STAP), generate messages that are either very
large (on the order of hundreds of kilobytes (KB) or
larger) or very small (on the order of tens or hundreds
of bytes) [1]. This type of traffic can also be simulated
using GGeneratorObj.

GGeneratorObj is used within a terminal since only
terminals can generate messages. After a message has
been generated, it may not be possible to send the
message immediately because of network contention.
In this case, a message needs to be buffered. Buffering
is simulated using the MQBuffObj described in the
following section.

3.2.2 Buffer

Buffering is an important aspect of interconnection
network design. MQBuffObj implements a flexible
multi-queued buffer module so that various buffering
techniques and policies (such as prioritized queue, vir-
tual output queues, fair queueing, etc.) can be simu-
lated. MQBuffObj does not implement queueing poli-
cies but merely provides basic enqueue/dequeue, state
reporting, and queue management functions to other
classes that make use of it. For example, GTermi-
nalObj’s output ports (modeled using the GeOPObj
and GoOPObj) use MQBuffObj as their buffering
modules. Buffering policy is implemented in GeOPObj
and GoOPObj.

When a message arrives at a switch node, that mes-
sage may not be processed immediately because some
other messages are being processed. In this case, the
incoming message can be buffered in MQBuffObj.

intput link 2

input link 1 output link 1

output link 2

buffer
buffer

buffer

Figure 9: A 2× 2 switch.

3.2.3 Central Processing Unit (CPU)

To facilitate application-level simulation, the
GCPUObj class is provided. GCPUObj accepts
and processes messages and keeps such statistics as
CPU utilization. MQBuffObj is used by GCPUObj
to buffer messages that arrive faster than it can
process. GCPUObj may also generate new messages
in response to messages received. GCPUObj can
be subclassed to simulate specific applications in
conjunction with attaching application specific data
to the MessageObj.

We note that GCPUObj performs application-level
simulation only and does not simulate data transmis-
sion protocols. Simulation of transmission protocols is
performed by the terminal node itself.

3.3 Switches

At the heart of the switching fabric of a network are
the switches. Generally, an n × m switch accepts an
incoming message from any of the n inputs, determines
which of the m outputs the message should be sent to
using the message’s header information, and sends the
message to the output. The GSwitchObj provides a
framework upon which a general n×m switch capable
of performing packet- as well as circuit-switching can
be built.

Routing a message to its output destination is a pro-
cess that takes time. In the event that message arrival
outpaces the routing process, the incoming messages
are buffered. In addition, the rate at which messages
are routed to the output may also outpace the rate at
which messages can actually be sent out on the output
link. Messages are also buffered in this case. Again,
MQBuffObj can be used to maintain the buffers.

Figure 9 shows a 2 × 2 switch with a central-
ized input buffer and separate output buffers. The
GSwitch2x2CCObj (a subclass of SwitchNodeObj) im-
plements a switch similar to that depicted in Figure 9.

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

4 ICNS Usage

Previous sections have described various objects
provided by ICNS that can be used to simulate vari-
ous components in an interconnection network. These
components need to be connected together to form
a network. ICNS provides a procedure that can be
used to build a network using the available compo-
nents. The procedure, called BuildGNetwork, reads in
a plain text file that describes the topology of the de-
sired network. The procedure instantiates component
objects as needed, and connects them according to the
topology specified.1

Each component has various parameters that need
to be specified. For example, the BuildGNetwork
procedure needs to be told what types of terminals,
switches, and links it should instantiate as it processes
a topology descriptor file. Each terminal needs to be
told at what rate it should generate messages, what
the messages’ length distribution should be; what are
the link bandwidths, etc. Thus ICNS provides the
ParamObj class that reads in a list of parameter val-
ues from a text file. The parameter values are then
used by the BuildGNetwork procedure to configure the
relevant components as they are instantiated. The pa-
rameter descriptor file is simply a list of parameter
name-value pairs.

Using the ParamObj and BuildGNetwork facilities,
a simple top level program can be built to accept two
file names (one parameter file and one topology file),
use ParamObj to register all parameter values (in the
parameter file), then use the BuildGNetwork proce-
dure to build a network according to the topology file,
start simulation, and finally, collect and display statis-
tics from various components at the end of simulation.

To support both the verification of the simulation
models as well as improved understanding of the oper-
ation of modeled systems, a set of visualization tools
has been developed. The visualization tools are driven
from a static topology description file and trace data
derived from the simulation execution.

The topology description defines the structure of
the network: terminal objects, switching node ob-
jects, queues within terminals and switching nodes,
and links between objects. Links (both electrical and
optical) form connections between the terminals and
the switching nodes. Within each of the terminals and
switching nodes, the message queues are represented
graphically. Different message types (e.g., setup, tear-
down, data) are represented by distinct colors. When

1Users can build a network by directly manipulating the ob-
jects if the BuildGNetwork procedure provided proves too re-
strictive to the particular application.

in use, links take on the color of the message type in
transit.

Simulator derived trace data encapsulates the dy-
namic activity present in the network. This reflects
the state of the queues, links, and switches, and other
components. The visualization tools are implemented
in Java (primarily for portability reasons).

5 Photonic Interconnection Networks

There are two primary system designs that the
ICNS framework has been used to model to date. Each
of these two systems relies on a distinct photonic tech-
nology, and as a result, the architectures are apprecia-
bly different from one another. The ability for ICNS
to be applied to both of these systems attests to its
flexibility.

5.1 The Gemini Interconnect

The Gemini interconnect is an experimental im-
plementation of a novel processor-to-processor inter-
connection network for tightly-coupled multicomput-
ers [1, 3, 7, 8]. It includes an end-to-end optical data
path (including switching of the optical signals) for
high-bandwidth, large data volume message delivery.
The optical switching is accomplished using LiNbO3

electrooptical 2 × 2 switches [11, 15]. In addition,
Gemini includes an electrical path (in parallel with
the optical path) that both controls the optical path
(i.e., setup of the electrooptical switches) and delivers
low-latency, small data volume messages.

The Gemini interconnect uses a Banyan topology.
Although this is a blocking network, it provides the
minimum number of switching stages through the net-
work, and has the additional advantage that each sig-
nal goes through the same number of switches. An
8 × 8 Gemini network is illustrated in Figure 10. As
can be seen in the figure, each optical switch has an
associated electrical counterpart.

Due to the absence of buffering in the optical do-
main, the optical network is circuit switched. This
implies that it will perform well for large data volume
messages, for which the latency associated with circuit
setup and teardown can be amortized over a large mes-
sage insertion time. By contrast, the electrical network
is packet switched. Here, the design can be optimized
for low-latency delivery of small messages (either data
messages or control messages) that do not have signif-
icant bandwidth requirements.

Electrooptical 2× 2 switching elements are the key
devices in the fabrication of the Gemini N × N opti-
cal data path. [11, 15]. These switching elements rely
on the electrooptic effect (i.e., the application of an

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

terminal

terminal

terminal

terminal

terminal

terminal

terminal

terminal

terminal

terminal

terminal

terminal

terminal

terminal

terminal

terminal

e

o

e

o

e

o

e

o

e

o

e

o

e

o

e

o

e

o

e

o

e

o

e

o

e

electrical path

o
electrical control
and switch optical switch

optical path

Gemini Switch Fabric

Figure 10: An 8× 8 Gemini network.

electric field to an electrooptical material changes the
refractive index of the material). The result is a 2 × 2
optical switching element whose state is determined by
an electrical control signal. This is illustrated in Fig-
ure 11, which shows a switching element in the pass-
through state as well as in the crossover state.

optical
outputs

optical
inputs

= pass through

optical
outputs

optical
inputs

= crossover
electronic control electronic control

Figure 11: Electrooptical switching elements.

The ICNS model of the Gemini interconnect is de-
scribed next. The terminals connected to the Gem-
ini network are modeled as general purpose processors
with electrical and optical interfaces. Figure 12 de-
picts the model of a terminal. Network control signals
are assumed to be processed at line rate. Hence there
is no input buffer for the terminal. The terminal has
separate output buffers for messages intended for dif-
ferent networks. The controller marked ‘A’ dispatches
incoming packets according to packet type. The con-
troller marked ‘B’ dispatches outgoing traffic according
to message type and length.

Figure 13 shows the model of a Gemini 2 × 2 elec-
trical switch. The electrical switch has a shared input
buffer and separate output buffer at each output. A

messages
and signals

electrical
outgoing

messages
optical
outgoing

datalong or
short

data or signal

long
data

short

data message generator

signal

signal

buffer

buffer

data

B

signal

incoming

data

signal signal

CPU Module

optical

A
data
or

signal

(process at line speed)

and signals
messages

electrical
incoming

messages
Electrical Output Port

Optical Output Port

control signal processor

data

Figure 12: Model for a terminal attached to the net-
work.

routing function module informs the controller where
to forward a packet as well as how to control its com-
panion optical switch when a path setup request is
being processed.

routing function
or

routing table

controller
input buffer

OutputPort 0

Output Port 1

output 0

output 1

input 0

optical switch controller

input 1

to optical switch

output buffer

output buffer

Figure 13: Model for the Gemini electrical switch.

In the simulation, the optical and electrical switches
are modeled as one object. The links that connect
the switches are modeled as one link entity with two
channels, one channel carries the electrically switched
traffic, the other the optically switched traffic.

The following performance results come from
discrete-event simulations using ICNS. Figure 14
shows performance results (mean message delay ver-
sus offered load) for four Gemini networks using both
a basic setup-teardown protocol and a virtual output
queueing protocol. The setup-teardown protocol uses
the electrical control network to establish a path in
the optical network, sends the data via the optical
network, and then tears down the path. The virtual
output queueing protocol maintains separate queues
for each destination at the source, uses the electrical
control network to attempt to establish a path to all
destinations that have messages to be delivered, and

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

selects one of the successfully reserved paths to deliver
data.

The parameters chosen for the simulated networks
are such that the ratio of average message length to
control signal length is 16K and the ratio of optical
link bandwidth to electrical link bandwidth is 12.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

10
0

offered load

av
er

ag
e

de
la

y
(s

)

Comparison of setup−teardown (ST) and VOQ protocol (Exp. Dist. Lengths)

4x4 ST

8x8 ST

16x16 ST

32x32 ST

4x4 VOQ

8x8 VOQ

16x16 VOQ

32x32 VOQ

Figure 14: Average optical message delay using the
basic setup-teardown protocol and the virtual output
queueing protocol [3].

The four networks were simulated using the same
set of parameters. Messages are generated at each
terminal according to an independent and identi-
cally distributed Poisson process. Their destinations
are uniformly distributed to all outputs and message
lengths are exponentially distributed. In the figure,
the load axis is normalized to the theoretical maxi-
mum throughput.

While throughput is clearly limited using the basic
setup-teardown protocol, we see that the optical net-
work can provide close to 100% throughput using the
VOQ protocol2. At the same time the figure also shows
that without VOQ saturation occurs at an offered load
of between 30% and 50% capacity.

Table 1 shows the load experienced by the control
signals on the electrical network. We see that for the
parameters chosen, sending multiple setup requests
(as required by the VOQ protocol) does not lead to
significant congestion in the electrical network. This
supports the use of the electrical network for send-

2McKeown et al. have proven in [14] that 100% through-
put is achievable in a non-blocking, input-queued switch using
a non-FIFO queueing scheme such as VOQ assuming random,
homogeneous traffic. It remains to be seen whether such perfor-
mance is achievable in a blocking network such as the Banyan
network used in Gemini.

ing short, latency-sensitive messages (both control and
data) without incurring significant queueing delays.

Table 1: Electrical network load using the VOQ pro-
tocol [3].

Network size Electrical network load
4 × 4 < 0.6%
8 × 8 < 1.2%

16 × 16 < 2.4%
32 × 32 < 4.6%

The above set of example performance simulations
illustrate the utility of ICNS for evaluating alterna-
tive queuing protocols. In [7], the ICNS framework
is used to demonstrate the importance of a fairness
protocol in the circuit-switched optical data path as
well as present performance results with the fairness
protocol in place.

5.2 A Photonic Multiring

The photonic multiring is a system that exploits
new developments in Vertical Cavity Surface Emit-
ting Laser (VCSEL) technology [2, 4, 6, 12]. The en-
abling technology for this system is the availability of
2-dimensional arrays of VCSELs and detectors bonded
to silicon circuitry [10]. The union of silicon processing
with GaAs-based optoelectronics provides a powerful
combination, significantly increasing the communica-
tions bandwidth available off-chip.

Prototype interconnects have been constructed with
16×16 arrays of VCSELs and photodetectors on a sin-
gle chip [16]. In this system, the VCSELs arrays and
photodiode arrays were flip-chip bonded to a CMOS
chip using heterogeneous integration techniques. Al-
though the demonstration of [16] used bulk optics to
deliver light between ICs, optical paths have been de-
signed using both rigid optical links [5] (useful for chip-
to-chip links on a board), and flexible fiber imaging
guides [9] (useful for board-to-board links).

The availability of a large number of VCSEL-
detector pairs in the optical interconnect suggests the
partitioning of the optical links into sets with each
set being associated with an individual channel (i.e.,
space-division multiplexing). Figure 15 illustrates the
allocation of VCSELs and detectors for a four chan-
nel system utilizing 16× 16 arrays of optical elements.
As shown in the top of the figure, one quarter of the
elements are used for each channel. Each square in
the top view of Figure 15 contains a single VCSEL or
detector. If the individual element communicates at

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

1 Gb/s, this yields 162/4 = 64 Gb/s per channel. The
side view of the figure illustrates (conceptually) how
two adjacent chips might communicate.

Transmitter

1 3 42

16

16

Side
View

Top
View

41 2 3 124 3

Receiver

4 23 1

16

16

ReceiverTransmitter

Free space interconnection network

channel 1

channel 2

channel 3

channel 4

Figure 15: Allocation of VCSEL-detector pairs to a
four channel system. 16× 16 VCSEL-detector arrays
are used, with a 4×16 array allocated to each channel.

The photonic technologies used in this design are
most cost-effective when used with a fan-in and fan-
out of one and a topology meeting this fan-in/fan-out
goal is a ring. While there are many approaches to
developing a ring based interconnect, given the very
high bandwidths available, the multiring [13] design of
Figure 16 has been chosen.

1

24

3

Figure 16: Multiring.

In the 4-node example of Figure 16, each of the four
rings is associated with a given destination node. The

outside ring, for example, is associated with node 1
and the next-to-outside ring is associated with node 2.
The inside ring is associated with node 4. With the
multiring topology, each ring can be thought of as a
daisy chain terminating at the destination node. Thus,
communication between node i and node j requires
that node i send its message on the ring which has
node j as the destination.

The performance evaluation for this system explores
the ability to reconfigure the bandwidth associated
with each ring in the multiring by changing the number
of VCSEL-detector pairs associated with each channel
(and hence the input bandwidth available to each des-
tination).

The applications of interest are ones in which com-
putation and communication alternate with one an-
other (i.e., proceed in phases). The performance re-
sults presented here are derived from 2 real applica-
tions (synthetic aperture radar (SAR) image forma-
tion and a beamforming application) and 5 synthetic
applications. The synthetic applications have from 3
to 6 communications phases. Their communications
patterns are randomly chosen from the following set:
broadcast, reduce, all-to-all, and point-to-point. The
flows and message sizes are also randomly generated.

An ICNS simulationmodel was used to evaluate the
performance of the reconfigurable photonic multiring.
An 8 node system was simulated, with communication
traffic generated according to the 2 real applications
and 5 synthetic applications described above. For each
application, the system was simulated twice. The ini-
tial simulation utilized a uniform bandwidth allocation
to each potential flow (all source-destination pairs are
allocated an equal fraction of the total bandwidth).
In the second simulation the interconnection network
was reconfigured at the start of each communication
phase to provide an optical bandwidth allocation best
suited to the communication pattern required by the
algorithm in that phase.

Figure 17 shows the mean, minimum, and maxi-
mum speedup obtained for each type of communica-
tion pattern, independent of the application in which
it is found. The speedup is defined as the ratio of the
communication completion time with a uniform band-
width allocation to the completion time with a recon-
figured allocation. The performance improvement is
significant across the board, indicating a clear benefit
to reconfigurability in the interconnection network.

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

0

1

2

3

4

5

6

7

8

9

P2P Bcast Reduce A2A

S
p

e
e

d
u

p

Figure 17: Communications speedup with a reconfig-
urable multiring. [2]

6 Conclusions and Future Work

In this document we have presented the design of
the interconnection network simulator, ICNS. We have
described the classes that form the core of ICNS. We
have also shown how various components in a multi-
computer interconnection network can be modeled us-
ing the classes provided by ICNS. The classes can be
subclassed and extended to model components with
richer functions.

ICNS has been used to study the Gemini network
and a photonic multiring network. We are currently
extending the multiring network simulation to include
dynamic reconfigurability and exploring its use as a
switching fabric for an internet router.

References

[1] R. Chamberlain, M. Franklin, R. Krchnavek, and
B. Baysal. Design of an optically-interconnected
multicomputer. In Proc. of 5th Int’l Conf. on
Massively Parallel Processing Using Optical In-
terconnections, pages 114–122, June 1998.

[2] R. Chamberlain, M. Franklin, and P. Krishna-
murthy. Performance evaluation of a reconfig-
urable, embedded photonic multiring interconnec-
tion network. In Proc. of 5th High Performance
Embedded Computing Workshop, November 2001.

[3] R.D. Chamberlain, M.A. Franklin, and Ch’ng Shi
Baw. Gemini: An optical interconnection network
for parallel processing. IEEE Trans. on Parallel
and Distributed Systems, (in press).

[4] R.D. Chamberlain, M.A. Franklin, and A. Ma-
hajan. VLSI photonic ring interconnect for em-
bedded multicomputers: Architecture and perfor-
mance. In Proc. of 14th Conf. on Parallel and
Distributed Computing Systems, August 2001.

[5] M. Chateauneuf et al. Design, implementation
and characterization of a 2-D bi-directional free-
space optical link. In Proc. of Optics in Comput-
ing, pages 530–538, June 2000.

[6] Ch’ng Shi Baw, R.D. Chamberlain, and M.A.
Franklin. Design of an interconnection network
using VLSI photonics and free-space optical tech-
nologies. In Proc. of 6th Int’l Conf. on Parallel
Interconnects, pages 52–61, October 1999.

[7] Ch’ng Shi Baw, R.D. Chamberlain, and M.A.
Franklin. Fair scheduling in an optical intercon-
nection network. In Proc. of 7th Int’l Symp. on
Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, pages 56–65,
October 1999.

[8] Ch’ng Shi Baw, R.D. Chamberlain, M.A.
Franklin, and M.G. Wrighton. The Gemini in-
terconnect: Data path measurements and perfor-
mance analysis. In Proc. of 6th Int’l Conf. on Par-
allel Interconnects, pages 21–30, October 1999.

[9] H. Kosaka et al. A two-dimensional optical par-
allel transmission using a vertical-cavity surface
emitting laser array module and an image fiber.
IEEE Photon. Tech. Lett., 9:253–255, 1997.

[10] Y. Li, E. Towe, and M. Haney, eds. Proc. on
Short Distance Optical Interconnections in Digital
Systems. IEEE, 2000.

[11] Lucent Technologies. Guided wave optical switch
products. Preliminary data sheet, 1997.

[12] A. Mahajan, M.A. Franklin, and R.D. Chamber-
lain. Fairness issues in an embedded photonic
ring interconnect. In Proc. of 4th High Perfor-
mance Embedded Computing Workshop, Septem-
ber 2000.

[13] M. Marsan et al. All-optical WDM multi-rings
with differentiated QoS. IEEE Communications
Magazine, pages 58–66, February 1999.

[14] N.W. McKeown, V. Anantharam, and J. Wal-
rand. Achieving 100% throughput in an input-
queued switch. In Proc. of Infocom, March 1996.

[15] E.J. Murphy, T.O. Murphy, R.W. Irvin, R. Gren-
cavich, G.W. Davis, and G.W. Richards. En-
hanced performance switch arrays for optical
switching networks. In Proc. of ECIO, April 1997.

[16] D. Plant et al. A 256 channel bi-directional optical
interconnect using VCSELs and photodiodes on
CMOS. In Proc. of Optics in Computing, pages
1046–1054, June 2000.

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

