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Computing Approximate Blocking Probabilities for
Large Loss Networks with State-Dependent Routing

Shun-Ping Chung, Arik Kashper, and Keith W. Ross

Abstruct— We consider a reduced load approximation (also
referred to as an Erlang fixed point approximation) for estimat-
ing point-to-point blocking probabilities in loss networks (e.g.,
circuit switched networks) with state-dependent routing. In this
approximation scheme, the idle capacity dktribution for each link
in the network is approximated, assuming that these distribu-
tions art independent from link to link. This leads to a set of
nonlinear fixed-point equations which can be solved by repeated
substitutions. We examine the accuracy and the computational
requirements of the approximation procedure for a particular
routing scheme, namely least loaded routing. Numerical results
for six-node and 36-node asymmetric networks are given. A
novel reduced load approximation for multirate networks with
state-dependent routing is also presented.

1. lNTRODuCTION

IN this paper. we examine the accuracy and the com-

putational requirements of a reduced load approximation
applied to estimating point-to-point blocking probabilities for
loss networks with state-dependent routing.

A loss network is typically modeled as a mutlidimensional
Markov process, where the dimension of the process is equal
to the number of routes permitted in the network. It’ alternative
routes are present, the Markov process does not admit a

product form solution, and the equilibrium state probabilities
can be obtained by solving the linear equations associated with

the generator of the process. This approach must be ruled
out. however, since networks of practical interest can have
hundreds of thousands of routes, and the number of states
grows exponential 1y with the number of routes.

It is, therefore. of interest to develop computational proce-
dures that accurately approximate blocking probabilities for
loss networks. One such method, the reduced load approxima-
tion (also referred to as the Erlang fixed-point approximation),
proposed as early as 1%4 15], [20] has enjoyed the attention
of numerous researchers in recent years.

For the case of fixed routing, i.e., no alternative routes,
this scheme assumes that blocking occurs independently from
link to link and that the offered traffic to a given link is
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Poisson but thinned by blocking on other links, This leads to
a set of nonlinear fixed point equations with the approximate
blocking probabilities at the various links as tbe unknown
variables. Repeated substitution is typically suggested for
solving the fixed point equations. The reader is referred to
[40], [23], [24], [29], [7], [16], [18], [43], [421, [13]. [4] and

the references therein for recent developments on the reduced

load approximation for fixed routing.

The reduced load approximation can be extended in a
natural manner to sequential alternative routing with trunk
reservation [ 1], 133]. It is shown in [ 1] that the corresponding
fixed point equations do not necessarily have a unique solution:
however, it has been observed that if there is sufficient trunk
reservation, then there is a unique solution. Moreover, tbe

approximation gives blocking probabilities that are close to

the exact values [33], and the computational effort is not

significantly greater than that for fixed routing. (However, it
has been shown by Hunt [17 I that with alternative routing the
approximation is rro( asymptotically correct under a limiting
regime with large link capacities and large offered loads. )
The approximation can also be extended to cover Dynamic
Alternative Routing (DAR) [ 12]; see also [26], [ Itll, [ I 1I as
well as the excellent survey paper [25] on loss networks.

Recently, telecommunication companies have begun to im-
plement state-dependent routing schemes in circuit-switched

networks by making use of common channel signaling and
stored program control [ 19], [21, [3], 134], [28], [6]. In these
schemes, routing decisions are based on the current number of
idle circuits in each of the links throughout tbe network. For
example, in Least Loaded Routing (LLR ). if the call cannot be
set up along tbe direct route, tbe two-link alternative route with
the largest number of point-to-point free circuits is chosen. A
version of LLR has recent] y been implemented in AT&LT’s
long-distance domestic network [21.

Girmd and Bell [ 151, [ 14] give an approximation procedure
for one such dynamic routing scheme, Dynamic Call Routing
(DCR). They report poor accuracy for a ten-node asymmetric
network (weighted average blocking was overestimated by
more than 27c for a wide range of loads). Krishnan [271
proposes an approximation procedure for a different state-

dependent routing scheme; average blocking probabilities are
again significantly overestimated. In both of these schemes, tbe
offered traffic to a link is approximated as a Poisson process.

Kelly [24] gives a generalized reduced load approximation
that can be adapted to essentially any dynamic routing scheme.
This reduced load approximation is a natural generalization of
those used for fixed routing, sequential routing, and DAR. Here
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the idle capacity distribution for each link in the network is
approximated. For a given link, the idle capacity distribution

is obtained by assuming that interarrival times are exponen-

tially distributed with rate depending on the number of idle
circuits in that link. This assumption enables one to use the
well-known formula for the equilibrium probabilities for a
birth/death process in order to approximate the idle capacity
distributions. Kelly studies neither the computational effort
nor the accuracy of the approximation scheme. Furthermore,

Kelly does not address the problem of calculating the state-
dependent arrival rates from the link occupancy distributions.

Independently, Wong and Yum [41] proposed this same ap-
proximation specialized to LLR on symmetric networks. (In
the case of a symmetric network, the computational effort
becomes significantly reduced.)

Mitra, Gibbens, and Huang [32], [31], [30] have recently
carried out an important theoretical study of this reduced load
approximation applied to an aggregated version of LLR for
symmetric networks. (In the case of aggregated LLR, link

occupancies are grouped into aggregate states, and routing
decisions are based on the aggregate states of the links.)

The empirical testing in [32], [31] shows that aggregate LLR
with a small number of aggregates can give approximate
blocking probability that is very close to that of LLR. The
asymptotic properties of the approximation scheme, applied to
two-aggregate LLR, as the number of nodes becomes large
is also studied in [31]. It is shown that if the offered load
is below a certain critical value, then blocking goes to zero
exponentially fast; however, if the offered load is above the
critical value, the blocking probability converges to a positive
value (depending on the link capacity and offered load). Other
asymptotic regimes are studied in [30], giving rise to additional
theoretical insights.

In this paper, we explore the accuracy and computational
effort of the generalized reduced load approximation for
state-dependent routing over asymmetric networks. In Section
II, we review the reduced load approximation for general
state-dependent routing schemes. In Section 111, we obtain
explicit expressions for the state-dependent arrival rates for
the case of LLR over asymmetric networks. We then outline
two implementations of repeated substitution for LLR. The
first implementation requires 0( ClV4) operations per iteration

of repeated substitution and O (C’N2 ) memory, where C is
the number of circuits in a link and N is the number of
nodes. The second implementation trades off CPU time for
memory-it requires 0(CN3) operations per iteration and
0(CN3) memory. We also introduce a cruder approximation
scheme which attempts to reduce the computational effort of
large values of C. In Section IV, we then compare the various
approximation techniques with simulation for six-node and 36-
node asymmetric networks which employ LLR. In Section V,
we present a novel approximation scheme for state-dependent
routing with multirate traffic.

Finally, in Section VI, we summarize our findings and iden-

tify areas for future research. In particular, we conclude that
the reduced load approximation considered here is significantly
more accurate than the approximation schemes proposed in
[15], [14], [27]. However, if the traffic is in a certain crit-

ical region, the approximation considered here for LLR can

underestimate blocking by a wide margin. Furthermore, the

computational and memory requirements of the scheme can
be important, perhaps excessive, for large networks.

H. A REDUCED LOAD APPROXIMATION

FOR STATE- DEPENDENT ROUTING

We now describe an approximation method, apparently first
noted by Kelly [24], which applies to a large class of routing

schemes. In order to simplify the notation, we present a version

of the method that is applicable to a (slightly) smaller class
of routing schemes.

Consider a network with J links connected in an arbitrary
topology. Denote Cj for the number of circuits in link j. At
a given instant of time, some of the circuits in link j will
be busy and the remainder will be idle. Let mj denote the
number of idle circuits on link j, and let m = (7T~1, . . . . mJ)

denote the network state. The state space is given by A =
{0,....C.X{ O..,CJ},..,CJ},

A r-oufe R is a subset of links from {1,2, . . . . J}. In general,

there can be 2J – 1 routes, although there is much less in
practice. Denote ‘R-j for the set of routes that employ link j.

In order for a call to be set up on route R, at least one
circuit must be idle in each link ~ c R. Denote the rate at
which calls are sef up on route R when the network is in state
m by ~n(~). Clearly ~~(m) must satisfy

~R(rn) = 0 if m~ = O for some j E R. (1)

As an example, consider the case of jixed routing where
calls arrive to route R with rate aR. and a call is set up on
route R if and only if mj > 0 for all j ~ R. Thus,

aR if rrll >0 for all j E R
(2)AR(m) = { 0 Othemise.

Expressions for ~R(rn) for least loaded routing will be given
in Section 111.

Returning to general state-dependent routing schemes, let
X~ be a random variable equal to the number of idle circuits
on link j in equilibrium. Let X = (Xl. . . . . XJ) and let

9j(~) = ~(xj = m). 7TL=0, . ..q Cj

be the idle capacity distributions. Throughout, the following
approximation is made: the random variables Xl. . . . . XJ are
mutually independent. Denote

J

9(m) = ~9j(wLj)~ mEA (3)
j=l

and q = (g(m): m E A) for the probability measure over A
defined by (3).

The second approximation that is made is: When there are
m idle circuits in link j. the time until the next call is set up
on link j is exponentially distributed with parameter ~j (m),
where
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In (4), Eq[An(X)j.YJ = nt] is the expected setup rate of calls
on route R when 71t circuits are available on link j. By adding

this quantity over R E ‘R,. we obtain the total expected setup
rate on link j when there are ~tjcircuits available on link j.
Note that we have subscripted the expectation operator with
q to emphasize the dependence on the marginal probabilities
q,(. ),j = 1., . . , J. Also note that ( 1) implies n~ (O) = () for
all ,j = 1,. . ~, J. We also assume that the holding times of all
calls are exponentially distributed with unit mean.

Since interamivals to links are assumed to be exponentially
distributed with parameter ftj ( r// ). it follows that

I07

between the pair of nodes directly connected by link 1, setup is
first attempted along link 1. If rr~, = [). then setup is attempted

in the route {2. 3}. The call setup is completed in {2. 3} if

and only if rI~2 > 12 and rn:$ > r:j. where rl. r2. r:j are given

trunk reservation thresholds, Routing for a call that requests a
connection between the other two pairs of nodes is carried out
in an analogous manner. Examples of some state-dependent
call setup rates for this routing scheme are given below:

~11)(~) =all(7rll > ())

AlI,3}(rn) = (121(J)J2 = (). ml > rl. ru:j > r;j)

C,(C-l)(C’, -rrl+l) A{l.z}(r7z) = fl:Jl(rJ/:3 = O.rJ/l > vl.rr12 > U)

w(?~~’)= “ ‘ ~ ~ J
{/j(()).

(r,(l)~t,(2)...[l,(rr).)

rll=l...,,’, (5)

where

(/, (()) =

Equations (3)–(6) lead to an iterative algorithm that produces

an approximation for the idle capacity distributions:

1. Choose ~~jo.j = 1. . .J. arbitrarily.
7 Determine q from (5), (6), and (3).
~ Obtain new values of ~~,,( ). ,j = 1. ~ ..1 through (4).

Go to (2).

Because this scheme is a generalization of the reduced load
approximation applied to sequential routing (see below), con-
vergence is not guaranteed [ I], although it will occur in many

practical circumstances.
For certain dynamic routing schemes. it may be a nontrivial

task to calculate the expectations in (4) (with q given).

However, we shall see below and in Section 111that tractable
expressions are available for the expected arrival rate ~j (m)

for many important routing schemes.

A, Examples

In order to gain some insight into the reduced load approx-
imation (3)–(6), we consider three particular examples. First,
we consider tixed routing. With ?rr > 0. we have

HER

‘z (JRPq(X; > (). i E R – {,;})
RER,

= ~ (/JJ [1- q,(o)]
RE’17 IeR

/#l

where we have used (2) to obtain the second equality. Note
that this is the standard approximation [40], [23] for the offered
load to link j for fixed routing. Also note that only aj ( 1) and

qj (0). j = 1, ..1 must be calculated at each iteration of
repeated substitution.

As a second example, we consider sequerztiafrouting for the
simple three-node fully connected network. We assume that
routing is done as follows. When a call requests a connection

where (LJ is the exogenous arrival rate for the node pair directly

connected by link ,j. Inserting the above
gives

,,1(,rL,=[::+(L2(2(01[,,:+:(1)]

equations into (4)

rrl = ()

() < rr) ~ r]

( Ln=r,+I J

Note that this is the standard formula for the offered load to
a link for sequential routing with trunk reservation {e.g., see
11], 133]).

As a third example. we consider the same three-node
network with the state-dependent routing scheme that always
seeks the most available route. That is, when a call requests

a connection between the pair of nodes directly connected by

link 1, the call is set up on link 1 if and only if 1)11> (1 and
rrll z llli~l(rrla, 7J/,j). If rr~l < lIlit)(/r/2. rr):j). then the call is
set up in the route Ii’ = {2. 3}. Note that min(rrij. rrl:j) is the
number of idle point-to-point circuits on route 1/ = {2. :J}.
The routing policies for calls with direct link 2 and direct link
3 are defined in a completely analogous manner. [n this case,
we have the following state-dependent call setup rates:

~[l](m)=(lll(trll >l). rr/l ~ rrt2Alr/))

~{1.:~}(rn) = fJ21(Tr12 < rrll A rrt:j)

~{1,2} (m) = {i:jl(IrI,,j < /r/l A rr/2)

where J, A !l := Iliill(,r. !/). Inserting the above eqUatiOnS lntO

(4) gives for /r/ > ()

~Y1(?r/) = ulp~(rr) z X2 A k:}, + f]z~q(.~z< rJIA .~”:j)

+ w3Pq(.Y:j< rrl A .Y2 ).

111. LEAST LOADED ROUTING

In this section, we show how o, ( rn ) can be calculated for
least loaded routing for a fully connected network with an
arbitrary number of nodes. For notational convenience, we
suppose that the trunk reservation level is the same for each
link, and we denote it by r. Let V be the number of nodes so

that the number of links is .) = ,Y(,Y – 1 )/2.

Each pair of nodes has an associated direct route {j} and a

set of ,Y – 2 alternative two-link routes, denoted by A,. Let
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the routes in Aj be ordered in some manner. Let

mR = min{’mi:i E R}

which is the number of free point-to-point circuits on route R.
The routing algorithm operates as follows. When a call arrives,
it is set up on the direct route {j} if mj >0. Otherwise, setup
is attempted on the least loaded alternative route R*, where R*
maximizes mR over R E A3. In the case of ties, R is chosen

from the tie set according to the ordering of Aj. (Another
possibility is to choose at random from tie set. It turns out that
this minor change complicates the analysis significantly for
asymmetric networks.) If mR. S r, then the call is blocked;
otherwise it is set up on the route R*. Let aj be the exogenous
arrival rate for the node pair directly connected by link j.

We need to introduce some additional notation in order

to give an explicit expression for the expected setup rate
aj (m) for this routing scheme. If link j belongs to one of

the routes in the ordered set dh, where k is some other link,
let A;(j) C Ah be the set of routes that precede that route,
and A:(j) C #ik be the set of routes that succeed that route.
Let Sj be the set of links adjacent to link j (Sj contains
2(J’V – 2) links). If links j and k are adjacent, then there is
a third link that forms a triangle with links j and k. Let Xj~
denote the number of idle circuits on this third link. Finally,
let YR = min{Xi: i E R} be the number of idle point-to-
point circuits on route R (i.e., YR is the random variable
corresponding to mR). With this notation, we have ~j (0) = O,

aj(rn) =ajforl < m< T, and form> ~

(rj(m) = aj + ~ ~k~(x~ = O)
kCS,

P(m A X3k > YR, R E A~(.i),

m A Xjk ~ YR, R E A~(~),xjh > ~). (7)

The first term in (7) is due to the direct traffic on link j,
whereas the second term is due to the indirect traffic on link

j. Indirect traffic on link j results from direct traffic on any of
its adjacent links k G Sj that overflows and is then carried on
the alternative route containing link j. The probabilityy that a
call overtlows on link k is ~(xk = O): the probabilityy that it
is then carried on the alternative route containing link j is

P(mAX1h > YR, R E A~(~),mAxjk 2 YR,

R E A:(j), xjk > T). (8)

In words, (8) is the probability that the number of idle point-
to-point circuits in the alternative route that includes link j is
greater than the number of idle circuits in the preceding routes
R E AI(j) and is greater than or equal to the number of idle
circuits in the succeeding routes R 6 d:(j). Note that the last
event in (8) reflects the requirement that in order to set up a
call on an alternative route, the number of free circuits in each
of its links must be greater than the trunk reservation level.

Conditioning on Xjk in (7) and employing the independence
assumption gives for m > r

(~j(m) = aj + ~ ak~(xk = O)[h(j, k, m)

keS3

+ f’(xjk > m) 9(~, k, m)] (9)

where
m

h(j. k,m) = ~ P(xjk = 1)9(~,~,~) (10)
l=r+l

and where

Note that

Thus, given q, the expected setup rate ffj (m) can be calcu-
lated with (9)–( 12). Once all the ctj (m)’s are obtained, a new
value of q can be calculated with (5). Once having converged

on a q, the blocking probability for the traffic between the
node pair directly connected by link j is approximated by

[ 1
Lj = qj(0) ~ 1 – ~ Pq(X1 > ~) . (13)

RcA, i~R

A. Computational Considerations

Suppose, at a given iteration of repeated substitution, we
have a current value of q = (qj(n); O ~ n ~ Cj, j =
1,.. , J). How much computational effort is required to obtain

a new value of q via (9)–( 12)? To answer this question, let us
assume for simplicity that Cj = C for j = 1, . . . . J. Note
that 0( C’N2) memory is required to store g. Since q must be
updated at each iteration, it follows that 0( ClV2 ) is a lower
bound for both memory and computational requirements. In
the discussion that follows, assume that along with q. the

values P(Xj z 1),1 = 0,. ... C,j = 1.-. .,J are stored in
memory.

Calculating q from ffj(.), j = 1,..., J requires 0(CN2)
operations. Consider the following algorithm to calculate
aj(.).j = 1,. ... J from q.

First Algorithm:

l. Do forj=l, . . ..J.
2. Do fork E Sj.

3. Do forl=r,..., C.
4. calculate P(YR ~ 1) via (12)

for all R E d~(j) u d~(j).

5. Do forl=r,.. ,C.
6. Calculate g(j, k, t) via (11).

7. Calcualte h(j. k, m) for m = r-+

1,. . C recursively via (10).

8. Do form =r+l, ... C.
9. Calculate aj(m) via (9).

Steps 4 and 6 each require O(N) operations; therefore,
Steps 3-6 require O(CN) operations. And since Step 7
requires O(C) operations and lSj I = 2(N - 2), it follows
that the Do loop in Step 2 requires 0( C’N2) operations. Since
Step 2 is called J = IV(N – 1)/2 times, it follows that the
above algorithm requires a total of O (CN4 ) operations. It can
also be seen that the memory required by this approach is
0( CN2).
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[n the previous algorithm, for a given 1 and Z?, the value
~(~R < /) will be calculated many times. The following
algorithm, which also calculates {rj (7JL), m = T + 1,.””, C.

removes this redundancy at the expense of additional memory.
Second Algorithm:

1. Do fork =l...7.
2. Do forl=r. .C.

3. Calculate T’(}’R S 1) via ( 12) for all

R ● Ak.
4. Do for/ =r. .C.

5. Calculate g(j. k. 1) via ( I 1) for all

j E Sk.
6. Do forj=l . . ..J.

7. Calculate h(.j. k. m) for ?I1= r + 1, ..-, C
recursively via ( 10).

8. Do forrrt=r+l. .,C.

9. Calculate fl,l (7rf) via (9).

Note that, in this algorithm, each F’(l’n s 1) is calculated

exactly once in the Do loop of Step 1. Also note, that for
a given k and 1. Step 5 can be done with 0(N) operations.

Thus, this algorithm requires a total of 0( CJV3) operations;

however, since all of the g(j. k. /)’s must now be stored,

0( C’fV3) memory is required.

Now consider fixed routing for the same fully connected

network with N nodes. Again, suppose all one-link routes

and all two-link routes with adjacent links are employed.
This again gives .V( N – 1)2/2 routes. It is easily seen that

the computational effort for one iteration of the repeated
substitution algorithm is 0( ,VJ + CN2 ] and that the memory

requirement is C)( N2 + ~). Sequential routing in a fully

connected network can be seen to have the same computa-

tional and memory requirements. 7’bus, the computational and
memory requirements ,fbr least loaded routing are greater than
those for jixed and sequential routing.

We should mention that if the number of alternative routes

is limited to less than the maximum possible. then significantly
less computation may be needed. For example, suppose that

the number of alternative routes per node pair is equal to

,41, where Al << V – 2. In this case, we have (on average)
IS, I = 2~11, and a straightforward modification of the first
algorithm has 0( C,V2 ilf2 ) computational effort.

B. Truncated Distributions

The approximation schemes for least loaded routing require

an amount of computation that is linearly proportional to C’.

the capacity of the links. In order to minimize this effect, we

set yi (m) = () for all m > M,. where ,11,. the truncation level,

changes from iteration to iteration as discussed below. Once
the It4j. j = 1. . .J are determined, then the state-dependent

arrival rates

are calculated only for ?ri = O.. . ~ , Mj. Then, a new set of
distributions q, ( nt ). rt~ = (). ~ . Af, are obtained from the
state-dependent arrival rates via (5).

TABLE I

TEST NETWORK: LIGHT, MOOERATE,A?JDHEWY TRAFFK
CONDITIONSARE OBTAINEDBY MULTIPLYINGTHE ABOVE

OFFEREDTRAFFICBY 1, 1.2, AND 1.5, RESPEC-RVFLY

Link

1,2

1,3

1,4

1,5

1,6

2,3

2,4

2,5

2,6

3,4

3,5

3,6

4,5

4,6

5.6

#(Trunks)

36

24

324

48

48

96

96

108

96

12

48

24

192

84

336

Offered Traffic Rate

27.47

6.97

257.81

20.47

29.11

25.11

101.61

76.78

82.56

11.92

6.86

13.25

79.42

83.00

127.11

To obtain the truncation levels hf,. .j = 1. ~. ...1. we do the

following. Before the first iteration, ~or-each link j we consider
an Erlang loss system with capacity 0, and with calls arriving

at rate u, (the exogenous arrival rate to the node pair connected
directly by link j). We then find the smallest ,11, such that

.tl,

~ q,(m)> T (14)
111=0

where T is the truncation factor and q,(. ) is the idle capacity

distribution for the Erlang loss system and the truncation factor
could be any number near I; for example, 0.999. We then
determine the state-dependent arrival rates (r, ( rr/) and a new

set of distributions q,(m) for rn = (), . . ?lf,. j = 1.. . ..1
as discussed above. We then obtain new .41,. j = 1., . . .J
according to ( 14) and repeat the whole process.

In very light traffic, the truncation method discussed above

does not give a substantial savings in CPU time since ,?1, x
C’j. However, significant savings can be gained in moderate

and heavy traffic.

IV, COMPUTATIONAL RESULTS

A. A Six-Node Test Netwwrk

We now compare the approximation schemes for LLR with
simulation results for a test network. Consider the six-node
fully connected network described in Table I; for each pair
of nodes, the number of circuits and the offered traffic are
specified. Note that the network is highly asymmetric and

that the exogenous offered load to the node pair 2, 4 exceeds
the number of circuits in its direct link. We consider three
cases: light, moderate, and heavy traffic. In the case of light
traffic, trunk reservation is not used. [n the cases of moderate
and heavy traffic, we use trunk reservation with the same
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TABLE 11

WEIGHTED AVERAGE PERCENT BLC!CKING FOR SIX-N• DETEST NETWORK

~

TABLE 111

PERCENTAGEOF CALLS BLOCKEDIN THE MODERATE
TRAFFICFOR SIX- NODE TEST NETWORK

kbibk=dNode Pair Simulation Approximation with Truncation

u
3;4 0.02 0.00 0.00
3,5 0.00 0.00 0.00
3,6 0.00 0.00 0.00
4,5 0.00 0.00 0.00
4,6 0.02 0.00 0.00
5,6 0.00 0.00 0.00

trunk reservation level on each link. Trunk reservation levels
r = 4 and r = 5 are used for moderate and heavy traffic,
respective] y. The data for this test network has been extracted
out of [33]. The simulations are run for 100 holding times
for heavy traffic, and for 1000 holding times for light and

moderate traffic. Five independent replications are run and
averaged in all cases. Convergence of repeated substitutions
occurs for all of the approximation algorithms and traffic
conditions for this six-node network. For all three traffic
conditions, a truncation factor 0.999 is used. All calculations
were performed on a Sun 41280.

In Table II, the weighted average percent blocking obtained
by simulation is compared with the approximation schemes.
The 95% confidence intervals for the simulations are about
0,01 Y.. In light traffic, the approximations all give 0.007.
blocking as does simulation (noticable blocking occurs at this
loading for other routing schemes; see [33]). In heavy traffic,
the approximations slightly underestimate actual blocking. For
moderate traffic, we see that there is a fairly big gap between
approximate blocking and exact blocking (although not the
290 gap that occurs with the approximation schemes given in
[15]: [14], [27]).

We also looked at the blocking percentages for each node
pair. In light traffic, simulation gives O.O(WOblocking for
all node pairs, except for node pair 2, 4 for which it gives
0.01 % blocking. Each of the approximations gives 0.00%
blocking for all node pairs. Tables 111and IV give the percent
blocking for each node pair for moderate and heavy traffic,
respectively. In heavy traffic, the approximation schemes are
in fairly close agreement with simulation. For moderate traffic,

the approximations are less accurate.

TABLE IV
PERCENTAGEOF CALLS BLOWED IN THE HEAVY

TRAFFIC FOR SIX- NODE TEST NETWORK

Approximation
Node Pair Simulation Approximation with Truncation

1,2 8.2 8.3 8.4
1,3 0.3 0.6 0.6
1,4 14.6 14.3 14.4
1,5 “ 0.8 1.1 1.1
1,6 5.7 7.2 7.3
2,3 0.0 0.0 0.0
2,4 32.2 32.1 32.3
2,5 2.6 1.2 1.2
2,6 19.1 18.5 18.5
3,4 7.6 7.2 7.8
3,5 0.0 0.0 0.0
3,6 0.8 0.7 0.7
4,5 0.7 0.9 1.0
4,6 6.4 5.4 6.0
5,6 0.0 0.0 0.0

TABLE V
CPU TIMES IN SECONDS(ITERATIONSIN

PARENTHESES)FOR SIX -NOOE TEST NETWORK

m

In Table V, we give the CPU time in seconds for each

of the approximation techniques. The number of iterations
of repeated substitution is also given in parentheses. The
iterations are stopped when the maximum change in point-
to-point blocking probability is less than 10–8. Note that only
three iterations are required for light traffic, whereas as many
as 19 and 27 iterations are required in moderate and heavy
traffic, respectively. Also note that truncated distributions can
reduce CPU time by a factor of 5 in heavy traffic.

B. A 36-Node Test Network

We also investigate the approximation schemes for an

asymmetric fully connected network with 36 nodes and an
average link capacity of about 80. We again consider three
traffic conditions, which we refer to as light, moderate, and
heavy. (We do not give all of the data since there is so
much of it.) In all three traffic conditions, trunk reservation
level r = 6 is used on each link. In the case of light traffic,
truncation factor 0.99999 is used. In the cases of moderate and
heavy traffic, the truncation factor is 0.9999. For each of the
three traffic conditions, the simulations are run for 60 million
events; statistics are gathered for the last 50 million events in
five batches with 10 million events in a batch. Convergence
of repeated substitutions occurs for all of the approximation
algorithms and traffic conditions for this 36-node network.

Table VI shows the CPU time utilized by the various
algorithms for two full iterations (plus the initial iteration).
Note that the Second Algorithm reduces CPU time by about

a factor of 13, as predicted by the complexity analysis. Note
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TABLE VI

CPU TIMESIN.%coi-m IOR Two -FLu. ITERATIONS or-

REPEATED SL’BSTITLITIONS FOR 36-NoDETESTNETWORK

2nd Algo

1st Algo 2nd Algo with Trunc

Light 2343 182 100

Moderate 2346 183 89
Heavy 2333 182 81L

also that truncation further reduces CPU time by about a factor

of 2. We can conclude from Table V[ that if an approximation
scheme is to be imbedded in a design package that computes
blocking probabilities repeatedly, then the First Algorithm is
inappropriate.

Table VII presents the CPU times and the weighted average
blocking percentages for the Second Algorithm and for the
Second Algorithm with truncation. The number of iterations
of repeated substitution is also given in parentheses, The

iterations are s(opped when the maximum change in point-

to-poin( blocking probabilityy is less than 10-J. Note that only
~~ iterations are required for heavy traffic, whereas as many

as 55 iterations are required in light traffic. (We observed
that the truncation Factor. either 0.99999 or 0.9999, has little
effect on the weighted average blocking percentages.) Note
that truncation has reduced the CPU time by a factor of 3 to
4,

Now consider the accuracy of the approximation for the 36-

node network. In our various experiments (not all discussed

here ), we noticed that accuracy improves as the number
of nodes increases. However. even for a network with a
large number of nodes. there seems to be a narrow “critical
region” for the offered loads in which the approximation
can be inaccurate. In the 36-node experiments, the “light,”
“moderate,” and “heavy” traffic conditions are chosen in order
to highlight the behavior of the approximation in this critical
region.

Table VII also gives an overview of the accuracy of the

approximation for the 36-node network. In light traffic, the
approximation underestimates blocking, although blocking oc-
curs very rarely. In moderate and heavy traffic, the approx-
imation slightly underestimates actual blocking. (Note that
the offered loads have been chosen so that the blocking
probabilities. even for heavy traffic, are small. )

A better understanding of the accuracy of the algorithm
can be obtained by looking at the individual node pairs.
Tables VIII–X give the percent blocking for 35 node pairs for
light, moderate, and heavy traffic, respectively. Note that, in
light traffic, the approximation gives poor results for several
node pairs. (For example, for the node pair I-34 simulation
gives about 17. blocking whereas the approximation gives
0.027c blocking. ) In moderate traffic, the approximation gives
results that are either in or close to the corresponding 9570
confidence intervals. In heavy traffic, the approximation is in
very close agreement with simulation. Although the results

are not reported here, we observed that if the offered loads
are increased beyond “heavy traffic” for the 36-node network,
then the approximation becomes more and more accurate.

V. STATE- DEPENDENT ROUTING WITH MULTIRATE TRAFFIC

We now develop a novel approximation procedure for

state-dependent routing with multirate traffic. This procedure

can be used to approximate connection-level blocking for

asynchronous transfer mode (ATM) networks or call block-
ing for multirate circuit-switched networks with flexible slot

assignment.
Suppose that a call can hold several circuits simultaneously

in a link, which would be the case for video or some other

wideband service. More specifically, now suppose that class

is assigned to a call when admitted into the network, where a

class ~ call has route Rk c { 1. . .)}, bandwidth requirement
hk, and offered load ok. When a class k call enters the

network, it holds hk circuits in each link ,j E RK for its

duration. Let rJ be the set of classes that use link j. Let
.1-,, 7J1J, qjo. ~ = 1.. , .1, m. and q be defined as before. Let

Ak(rn) be the rate at which class k calls are set up when the
network is in state m. Note that Ak(rn) is specified by the

(state-dependent) routing policy. Clearly. AA(m) must satisfy

~k(m) = () if Trt, < hk for somej E Rk

In order to illustrate the idea, consider again the third
example of Section 11. Now suppose there are two “services”
that request connections between the three node pairs: a

narrowband service that requires one circuit point-to-point, and

a wideband service that requests h > 2 circuits point-to-point.

Suppose that the narrowband calls are routed as before. When

a wideband call requests a connection between [he pair of

nodes directly connected by link 1, the call is set up on link I if
n~l z h and rn 1 z lnin(rrtz. 7rt:J), The wideband call is set up
on route {2.3} if min{Tr12. rrt:j} ~ h and min{rnz. rrj:j} > rrII.

The routing policy for the wideband calls with direct link 2

and direct link 3 are defined analogously. Thus, the routing
policy is a multirate version of LLR without trunk reservation.

Note that we have four classes associated with each node pair:

A narrowband direct-route class. a narrowband indirect-route

class, a wideband direct-route class, and a wideband-indirect

route class. Thus, there is a total of twelve classes for this

example. It is straightforward to write down the rates for

~k(~) for each of the twelve classes.
As for the single-rate case, we assume that .~l. . .~,~ are

mutually independent. Also assume, with rn idle circuits on
link j, that the time until the next call of class k E r, is set

up on link j is exponentially distributed with parameter

It remains to determine qj () from n,k( ). k ● r,. This
involves the analysis of a single-link system with Cj servers

and lrj I classes, where class k calls have a bandwidth l~k

and an arrival rate ~ljk (. ) that depends on the number of
idle servers, Such a system does not, in general, have a
product form solution, so that the algorithms in [39] are

inapplicable. Let ~k(i) = (k,k(~l – i). We suggest that q,(m)

be approximated by qj (m ) = p(C’, – Tn). n~. = (). . . . . (:,.
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TABLEW
CPU TIMES IN SECONDS(NUMBEROF ITERATIONSIN PARENTHESES)AND WEIGHTEDAVERAGEPERCENT BLOCKINGFOR36-NoDE TEST NETWORK

2nd Algo
2nd Algo wit h Trunc Simulation

Light 5002 (55) 1607 (55)
CPU time Mod 3509 (39) 835 (39)

(iterations) Heavy 1974 (22) 415 (22)
Light 1.6 X 10-4 1.6 X 10-4 (0.22 X 10-2, 0.23X 10-2)

Percent Mod 1.20 x 10-2 1.20 x 10-’ (1.61 X 10-2,1.64 X 10-2)
Blocking Heavy 5.64 X 10-2 5.65 X 10-2 (5.83 X 10-2,5.90 X 10-2)

TABLE VIII
PERCENTBLOCKINGFOR SOME NODE PAIRS IN LIGHT TRAFFICFOR 36-NoDE TEST NETWORK

Node Pair
1,2
1,4
1,6
1,8

1,10
1,12

1,14

1,16

1,18

1,20

1,22

1,24
1,26

1,28

1,30

1,32

1,34

1,36

Simulation
(0.00,0.00)
(0.01,0.02)
(0.00,0.01)
(0.11,0.19)
(0.00,0.00)
(0.00,0.00)
(0.00,0.00)
(0.00,0.00)
(0.00,0.00)
(0.00,0.00)
(0.00,0.00)
(0.00,0.01)
(0.09,0.37)
(0.00,0.00)
(0.60,0.82)
(0.00,0.01)
(0.86,1.11)
(0.01,0.05)

Approximation
with Trunc

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.02
0.00

Node Pair
1,3
1,5
1,7
1,9

1,11
1,13
1,15
1,17
1,19
1,21
1,23
1,25
1,27
1,29
1,31
1,33
1,35

TABLE 1X

Simulation
(0.00,0.00)
(0.00,0.01)
(0.00,0.00)
(0.00,0.00)
(0.00,0.08)
(0.00,0.02)
(0.14,0.23)
(0.00,0.00)
(0.07,0.20)
(0.00,0.01)
(0.12,0.21)
(0.00,0.01)
(0.00,0.00)
(0.00,0.00)
(0.00,0.00)
(0.00,0.00)
(0.00,0.00)

Approximation
with Trunc

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

PERCENTBLOCKINGFOR SOME NOOE PAIRS IN MODERATE TRAFFICFOR 36-NoDE TEST NETWORK

Node Pair
1,2
1,4
1,6
1,8 ~
1,10
1,12
1,14
1,16
1,18
1,20
1,22
1,24
1,26
1,28
1,30
1,32
1,34
1,36

Simulation
(0.07,0.17)
(0.48,0.70)
(0.06,0.18)
(3.35,3.93)
(0.00,0.02)
(0.00,0.00)
(0.00,0.00)
(0.00,0.00)
(0.00,0.00)
(0.00,0.02)
(0.00,0.00)
(0.33,0.54)
(2.83,3.40)
(0.06,0.12)
(6.51,7.24)
(0.32,0.52)
(5.20,5.87)
(0.55,0.73)

Approximation
with Trunc

0.10
0.41
0.09
2.64
0.00
0.00
0.00
0.00
0.00
0.02
0.00
0.15
3.80
0.11
5.90
0.37
5.01
0.66

Node Pair
1,3
1,5
1,7
1,9

1,11
1,13
1,15
1,17
1,19
1,21
1,23
1,25
1,27
1,29
1,31
1,33
1,35

Simulation
(0.00,0.01)
(0,00,0.02)
(0.00,0.01)
(0.12,0.22)
(0.46,0.78)
(0.42,0.76)
(3.74,4.19)
(0.09,0.19)
(1.82,2.31)
(0.18,0.33)
(3.71,4.15)
(0.00,0.04)
(0.00,0.00)
(0.00,0.01)
(0.00,0.02)
(0.00,0.00)
(0.00,0.01)

Approximation
with Trunc

0.00
0.01
0.00
0.07
0.79
0.72
3.23
0.11
1.63
0.22
2.18
0.00
0.00
0.00
0.00
0.00
0.01



CHUNG df uI.: COMPUTING APPROXIMATE BLOCKING PROBABILITIES 113

TABLE X

PERCENTBLOCKIXGFOR SOME NODE PAIRS IN TRAFFIC FOR 36-NoDE TEST NETWORK

Approximation Approximation
Node Pair Simulation with Trunc Node Pair Simulation with Trunc

1,2 (1.18,1.79) 2.05 1,3 (0.01,0.05) 0.07
1,4 (3.12,4.17) 3.86 1,5 (0.08,0.29) 0.28
1,6 (0.77,1.13) 1.29 1,7 (0.00,0.01) 0.02
1,8 (13.46,14.03) 13.88 1,9 (1.54,1.89) 1.72
1,10 (0.16,0.24) 0.09 1,11 (4.46,5.54) 7.71
1,12 (0.00,0.00) 0.00 1,13 (2.14,3.12) 3.03
1,14 (0.04,0.08) 0,07 1,15 (13.41,14.31) 14.12
1,16 (0.00,0.02) 0.02 1,17 (1.45,2.43) 2.54
1,18 (0.00,0.01) 0.01 1,19 (6.77,7.67) 7.57
1,20 (0.14,0.36) 0.42 1,21 (1.40,2.40) 2.16
1,22 (0.00,0.01) 0.01 1,23 (13.83,15.09) 14.44
1,24 (2.77,3.59) 3.04 1,25 (0.42,0.61) 0.22
1,26 (9.37,11.92) 14.04 1,27 (0.00,0.00) 0.00
1,28 (0.59,0.79) 0,85 1,29 (0.01,0.09) 0.05
1,30 (16.67,17.25) 17.39 1,31 (0.03,0.11) 0.08
1,32 (3.55,4.31) 4.85 1,33 (0.00,0.01) 0.00
1,34 (12.19,13.40) 12.65 1,35 (0.04,0.14) 0.14
1,36 (2.55,3.62) 3.72

where p(. ) satisfies the following system of equations: link approximation by showing that it is also exact for a class
of state-dependent arrival rates.

ip(i) = ~ ‘~~(i – bk)p(i-bk),
Theorem 1: Consider a single-link system with C~j circuits

Aer, ‘“k
and 117jI classes of calls. Let class k calls have mean holding

time 1//Lk, bandwidth requirement b~, and arrival rate ?~ (i)
/=1 . . . ..(.J.

( 16) when i circuits are busy. Suppose that there is a function p(-)
and constants {Ik. k E F,. such that

~p(i) = 1.
,=()

(17)

Roberts [37] also proposed this approximation for a .$ingle-
link .rysfem, assuming that the state-dependent arrival rates
take on at most two values for each class. Assuming that
all the classes have the same mean holding time, he found
the approximation to be very accurate. More recently, Gersht
and Lee [9] studied the same approximation for the single-
Iink system. Their numerical testing confirms the accuracy of
the approximation when calls have the same mean holding
times; however. they observed that the approximation can be
inaccurate when the holding times are different. For the case
of different holding times. Gersht and Lee modify the single-
Iink approximation ( 16) hy replacing all of the ~ik’s for the
link by T. where T denotes the average departure rate and
is determined by a repeated substitutions procedure involving
only the isolated link, Their extensive empirical testing shows
that the approximation procedure is good for a wide range
of model parameters, This modification of ( 16) should also
be used to approximate (I,(~) for networks when classes have

different mean holding times.
Note that, for the case of Poisson arrivals for each class,

( 16) becomes the well-known recursive equation for exactly
calculating occupancy probabilities for a single link with
multiraw traffic [2 1], 138]. We now further motivate the single-

(18)

for all k ● I’,, i = O... J’J. Lerp(i), i = (),. C’] be

the probability that i circuits are busy in this system. Then,
p(i), i = (), , C’j is given by the unique solution to (16)

and (17).
Prooj7 Let Tlk denote the number of class k calls in the

one-link system and let n := (tLL..k E r~ ). The state space is
given by 0 = {n : b.n < ~j}. where bn = ~kE~lbkrtk. An
argument employing the detailed balance equaitons [22] shows
that the equilibrium probability of being in state n E O is

Observe that

p(i) =
x ‘(n)=; X,)W(’) ~ -“

{n:iin=f} l~r,
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Thus,

l—

which completes the proof.

Thus, when condition (18) holds, then ( 16)–( 17) is exact.
When (18) does not hold, then (16)+ 17) is an approximation.

We point out that, in the case of fixed routing, the reduced
load approximation employing (15) and (16) becomes the
knapsack approximation studied in [7], [4].

VI. CONCLUDINGREMARKS

Is the reduced load approximation an appropriate tool for
designing large loss networks with state-dependent routing?
Our computational experiments seem to indicate that the pro-
cedure gives good ballpark estimates of blocking probabilities;
in particular, the estimates appear to be more accurate than
those given in [ 15], [14], [27]. However, we also feel that
the procedure should be used with caution since there is a
critical region for the loadings in which the accuracy of the
approximation may not be acceptable. Thus, discrete-event
simulation may be needed to take a ballpark design to final
design.

Another important issue concerns the computational require-
ments of the approximation. Recall that the implementation
that holds the most promise has 0(CT3) computational effort
and memory requirements. This means that if the number
of nodes is doubled, the computational effort and memory
requirements are going to grow by a factor of about 8. If the
approximation is used with a 108-node network, then the run
times are going to take about 27 times longer than those for
the 36-node test network. This may be considered excessive
as part of an iterative network design procedure. One should
also keep in mind that large loss networks can be simulated
quite efficiently, with both sequential [36], [35] and parallel
[8] implementations.

There are several areas of research that merit further inves-
tigation. First, it is of interest to develop parallel implemen-
tations of the algorithm for an SIMD computer such as the
Connection Machine. Indeed, the approximation scheme can
be naturally mapped onto a multiprocessor system where one
processor is associated with each link j. In addition to the
truncation procedure discussed in Section III, it would be of
interest to incorporate the “warm start” idea of [31] in the
code. It would then be of interest to compare the parallel
implementation (including these computational features) with

discret-event simulation.
It is also of interest, in the context of the reduced load

to investigate the sensitivity of network per-

formance with respect to changes in the offered load and link
capacity [24]. In particular, accuracy and computational effort
of approximation schemes for sensitivity should be considered.

VII. ACKNOWLEDGMENT

The authors would like to thank J. Ash, J. Chandramohan,
D. Mitra, J. Roberts, W. Whitt, and the referees for their
comments.

[1]

[2]

[31

[4]

[5]

[61

[7]

[8]

[9)

[101

11]

12}

13]

REFERENCES

J. M. Akinpelu, “The overload performance of engineered networks with
nonhierarchical and hierarchical routing,” AT&T Bell Imbs Tech, J., vol.
63, pp. 1261-1281, 1984.
G. R. Ash, J.-S. Chen, A. E. Frey, and B D. Huang, “Real-time network
routing in a dynamic class-of-service network,” in Proc. 13th ITC,
Copenhagen, Denmark, 1991.
V.P. Chaudhary, K.R. Krishnan, and C.D. Pack, “Implementing dynamic
routing in the local telephone companies of the USA,” in Proc, /3th
ITC, Copenhagen, Denmark, 1991.
S,P. Chung and K,W. Ross, “Reduced load approximations for multirate
loss networks,” to appear in IEEE Trans. Commwr.
R.B. Cooper and S. Katz, “Analysis of alternate routing networks with

account taken of nanrandomness of overftow traffic,” Tech. Rep., Bell
Telephone Lab, Memo., 1964.
E.V. Denardo and H. Park, “Efficient routing of telecommunications
traffic,” Yale Univ. Tech. Rep., 1991.
Z. Dziong and J. W. Roberts, “Congestion probabilities in a circuit-
switched integrated services network,” Pe@rm. Ewd., vol. 7, pp.
267-284, 1987.
S.G. Eick, A.G. Greenberg, B.D. Lubachevsky, and A. Weiss, “Syn-
chronous relaxation for parallel simulations with applications to circuit-
switched net works,” to appear in ACM Trans. Modeling and Simulat,
A. Gersh~ and K.J. Lee, “A bandwidth management strategy in ATM
networks,” GTE Lab. Tech. Rep., 1990.
R. J. Gibbens, P. J. Hunt, and F. P. Kelly, “Bistability in communication
networks,” in Disorder in Physical .$ysfems, G. R. Grimmett and D. J. A.
Welsh, Eds, Oxford, England: Oxford Univ. Press, 1990, pp. 113-127.
R,J, Gibbens and F.P. Kelly, “Dynamic routing in fully connected
networks.” IMA J. Mathenraric Cmt?r. and Inform., vol. 7, pp. 77–111,
1990.
R.J. Gibbens, F.P. Kelly, and P.B. Key, “Dynamic alternative rout-
ing—Modeling and behavior,” in Proc. 12rh ITC, Tori no, Italy, 1988.
R. J. Gibbens and P. A. Whiting, ‘“An investigation of the accuracy of
the implied cost methods of cs network optimization,” in Proc. 5rh UK
Te/e/rafic Symp., Ashton Univ., 1989.

[ 14] A. Girard, Routing and Dimensioning in Circuit-Swi?ched Networks
Reading, MA: Addison Wesley, 1990.

[ 15] A. Girard and M.A. Bell, “Blocking evaluation for networks with
residual capacity adaptive routing,” /EEE Trans. Commurr,, VOI, 37, pp.
1372- I380, 1990.

[ 16] P. J. Hunt, “Implied costs in loss networks.” Advances in Appl. Prob.,
VOI, 21, pp. 661-680, 1989.

r 171 P.J, Hunt., “Limit theorems for stochastic loss networks,” Ph.D. thesis.
Univ. Cambridge, 1990.

[ 181 P.J. Hunt and F.P. Kelly, “On critically loaded loss networks,” Adwrrrce$
in Appl. Prob., VOI. 21: pp. 661-680; 1989.

[19] B.R. Hurley, C.J. Seidl, and W.F. Sewell, “A survey of dynamic routing
methods for circuit-switched traffic,” IEEE Commun. Msg., vol. 25, pp.
13-21, 1987.

[20] S.S. Katz, “Statistical performance analysis of switched communication
networks,” in Proc. 5~h lTC, New York, NY, 1967.

[21 ] J.S. Kaufman, “Blocking in a shared resource environment,” IEEE
Trans. Commwr., vol. COM-29, no. 10, pp. 1474-1481, 1981.

[22] F.P. Kelly, Reversibility and Stochastic Nerworks. New York: Wiley,
1979.

[23] F.P. Kelly, “Blocking probabilities in large circuit-switched networks;
Adv. in Appl. Prob.. vol. 18, pp. 473-505, 1986,

[24] F.P. Kelly, “Routing and capacity allocation in networks with trunk
reservation,” Marh. of Operat. Res., vol. 15, pp. 771–792, 1990.

[25] F.P. Kelly, “Loss networks,” The Annals of Appl. Prob., vol. 1, pp.
319-378, 1991.

[26] P.B. Key, “Optimal control and trunk reservation in loss networks,”
Prob. in Eng. and vol. pp. 1990.



CHUNG et d.: COMPUTING APPROXIMATE BLOCKING PROBABILITIES 115

[27]

[28]

1291

[30]

[32]

[33]

1341

[35]

[36]

K.R. Krishnan, “Performance evaluation of networks under state-
dependent routing,” in Prvc.Bellcore$mp. Per@m. A40deL,May 1990
and ORSA/TJMS Conf., Philadelphia, PA, Oct. 1990.
K.R. Krishnan and T.J. OIL “State-dependent routing for telephone
traffic: Theory and results,” in Prnc. 25?h IEEE Crmtr, and Decision
(lint, Athens, Greece, 1986, pp. 2124-2128.
D. Mitra, “Asymptotic analysis and computational methods for a class
of simple, circuii-switched networks with bkxking,” Adv. Appl. Prob.,
VO1. 19, pp. 219–239, 1987.
D. Mitra and R.J. Gibbens. “Sta(e-dependent routing on symmetric loss
networks wi(h trunk resewation. Pan 11: Asymptotic, optimal design,”
Annuls of Operut. Ref., VOI. 35, pp. 3-30, 1992.
D. Mitra, R.J. Gibbens, and B.D. Huang, %ta[e-dependent routing on
symmetric loss networks with trunk reservation, Part 1,” to appear in
IEEE Trans. Ccmrnrun.
D. Mitm, R. J. Gibbens, and B. D. Huang, ‘“Analysis and optimal design
of aggregated-least -busy -altemttti ve routing on symmetric loss net works
with tmnk reservation,” in Proc. l.~th ITC, Copenhagen, Denmark, 1991.
D. Mitra and J.B. Seery, “Randomized and deterministic routing strate-
gies for circuit-switched networks: Design and ~rformance.’” IEEE
Trans. Crmrrrrun., vol. 39. pp. 102-1 I6, 1991.
T.J. Ott and K.R. Krishnan. “Sepcrable routing: A scheme for state
dependent routing of circuit switched traffic.” Anrmls of Operat. Res.,
vol. 35, pp 43-6X, 1992.
M. MIndiville, M. Rajasekaren, wrd K.W. Ross, “Efficient sequential
simulation of large-scale loss networks,” Tech. Rep., Depr. Compu(.
and Inform. Sci., Univ. Penn., 1991.
S. Rajasekaran and K.W, Ross, “F~st algorithms for generating discrete
random variates with changing distributions,” Tech. Rep., Dept. Comput,
and Inform. Sci., Univ. Penn.. 1992.
J. Roberrs, “’Teletraffic models for the Telecom 1 integrated services
network,” in Proc. )Orh ITC. Montreal, Canada, 1983, paper 1.1-2.
J.W. Roberts, “A service system with heterogeneous user requirements.”

Performance of Data Communiculiorrs Systems und Their Applications,
G. Pujolle, Ed, Amsterdam, The Netherlands: North Holland, 1981,
pp. 423431.

[39] D. Tsang and K.W. Ross, “Algorithms for determining exact blocking
probabilities in tree networks,” IEEE Trans. Comrnun., vol. 38, pp.
1266-1271, 1990.

140) W. Whiit, “Blocking when service is required from several facilities
simultaneously,” AT&T Tech. J., vol. 64, pp. 1807-1856, 1985.

[41 ] E. W, M. Wong and T. S. Yum, “Maximum free circuit routing In
circuit-switched networks,” in Proc. IEEE INFOCOM, San Franc i\c( ),

CA, 1990.
[421 S. Zachary, “On bloekmg in loss networks,” Adv. Appl. Prob., vul. 23.

pp. 355-372, 1991.
143] I.B, Ziedins and F.P. Kelly, “’Limit theorems for loss networks w]th

diverse routing,” Adv. Appl. Prob., vol. 21, pp. 80&830, 1989.

Shun-Ping Chung, photogmph and biogmphy not available at the time of

publication.

Arik Khasper, photograph and fSiOg~dphy not available at the time of
publication.

Keith W. Ross, photograph and biography not available at the time nf
publication.


