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Abstract 

W e  study a class of all-optical networks using wave- 
length division multiplexing and wavelength routing in 
which a connection between a pair of nodes in the net- 
work is assigned a path and a wavelength o n  that path. 
Moreover, o n  the links of that path n o  other connection 
can share the assigned wavelength. Using a generalized 
reduced load approximation scheme we calculate the 
blocking probabilities for the optical network model for 
two routing schemes: Fixed Routing and Least Loaded 
Routing. 

1 Introduction 

We study a class of all-optical networks using wave- 
length division multiplexing and wavelength routing 
[4] in which a connection between a pair of nodes in 
the network is assigned a path and a wavelength on 
that path. Moreover, on the links of that  path no 
other connection can share the assigned wavelength. 
While we will refer to this type of network as the 
'wavelength routing' model we should point out that 
a routing scheme for the connections through the the 
network is not implied, and in fact has to be specified. 

The problem of routing and assignment of wave- 
length in such networks has previously been studied in 
[l, 21 where several heuristic algorithms have been pro- 
posed and their performance evaluated through sim- 
ulation. In [7] a lower bound on the blocking prob- 
abilities for any routing and wavelength assignment 
algorithms was given, by first formulating the prob- 
lem as an integer linear programming problem and 
then relaxing the integer constraint in order to obtain 
a linear programming problem from which the bound 
was derived. 

*This work was supported by grant MDA-972-92-(7-0075 
from ARPA. 

Our starting point is a generalized reduced load 
approximation scheme for circuit-switched networks 
given by Kelly [5] and further developed by Chung, 
Kashper and Ross [3]. We extend the method to 
the wavelength routing model for two routing scheme: 
Fixed Routing and Least Loaded Routing (LLR). For 
the fixed routing case we consider networks of arbi- 
trary topology with the restriction that connections 
may be established only on paths with a t  most three 
hops. For the LLR case we restrict our network to 
fully connected networks and paths of one or two hops. 
While the restrictions on the number of hops can be re- 
laxed at  the expense of additional computational and 
storage complexity, it is doubtful whether paths with 
many hops are a good idea for this type of networks 
since, as will be shown, blocking probabilities grow 
with the number of hops much faster than for circuit- 
switched networks. 

In Section 2 
which follows blocking probabilities for the wavelength 
routing model are compared with those for circuit- 
switched networks for the simple case of links in tan- 
dem. An approximate method for calculating block- 
ing probabilities for wavelength routing model with 
fixed routing is developed in Section 3, while Section 
4 deals with LLR. In section 5 numerical results for 
the approximate method are compared with simula- 
tion. Section 6 consists of concluding remarks. 

The paper is organized as follows. 

2 Wavelength routing vs. circuit 
switching 

In circuit-switched networks with fixed routing an 
arriving call is accepted if on all links on its route 
there is a t  least one idle trunk (circuit). Otherwise the 
call is blocked. In the wavelength routing model each 
link has a number of wavelengths, the counterpart to 
trunks in circuit-switched networks. However, while 
channels on a link are indistinguishable, the wave- 
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lengths on a link are distinct. In the wavelength rout- 
ing model with fixed routing a call is accepted if there 
exists at  least one wavelength which is idle on all links 
which make up the route of this call. 

Clearly, blocking probabilities are higher in the 
wavelength routing model. We illustrate this by con- 
sidering two networks identical in every respect except 
that  one is circuit-switched and the other based on 
the wavelength routing model. There are J links in 
tandem, all links have C channels (trunks or wave- 
lengths). Arrivals are Poisson while holding times 
are exponentially distributed with unit mean. There 
are J arrival streams such that arrival stream j ,  j = 
1,. . . , J ,  is associated with the nodes of link j. All 
these arrivals have rate A. We refer to these traffic 
streams as 'local' since their routes consist of a single 
link. An additional arrival stream ( J +  1) is associated 
with the two end nodes, i.e. its route includes all J 
links. The rate of this stream is Ao,  where A0 (< A. 

Let Bcs denote the blocking probability for the 
end-to-end traffic in the circuit-switched case. Since 
A0 << X we ignore the contribution of the end-to-end 
traffic on the network state. We then have: 

Bcs = 1 - (1 - B(C,  A ) l J  
where B(C, A)  is the Erlang loss formula. 

For the wavelength routing model let BWR denote 
the blocking probability for the end-to-end traffic. Let 
X R  be the random variable the number of idle wave- 
lengths on route R. If the route consists of the sin- 
gle link j we may write X j .  Let E = {1,2,. . ., J }  
denote the route for the end-to-end traffic. Then 
B W R  = Pr[XE = 01. By conditioning Pr[XE = 01 
on the set of disjoint events { X I  = m l , .  . . , X J  = 
m ~ l m l  2 0 , .  . . , nzJ 2 0) we obtain: 

m2o j=1 

where m = ( m 1 ,  ..., m J ) .  The second equality is 
based on {.Uj} being independent and here, again, we 
ignore the impact of the end-to-end traffic. We also 
used the notation 

where R = (1,. . . , N }  is any route consisting of N 
links, N 2 2, and x = ( ~ 1 , .  . . , z ~ ) ,  Since the dimen- 
sion of the vector argument may vary, pR denotes not 

a single function, but a family of functions. Neverthe- 
less, we use the same notation and will identify the 
specific function involved from the dimension of the 
vector argument. The other term under the summa- 
tion sign in (1) is obtained from the solution of the 
Erlang loss system: 

Pr[Xj = mj] = 
k =O 

(C - M j ) !  

The probabilities p,(x) are computed on the as- 
sumption that the allocation of wavelengths is done 
randomly. The alternative is to assume that wave- 
lengths are ordered, e.g. in order of increasing wave- 
length. Then, at  call arrival time the wavelengths are 
scanned in this order and the first idle wavelength is 
allocated. While the ordered scheme leads to smaller 
blocking probabilities the random case is easier to an- 
alyze and it is the one we consider in the rest of the 
paper. 

Let us first consider the case of a two-hop route 
R = {i,j} and focus on 

p,(z, y) = Pr[X,,3 = nlX, = s; X ,  = y]. 

We can think of the s wavelengths on link i as red balls 
which are distributed at  random in C bins, not more 
than one per bin. The y wavelengths on link j are 
blue balls which are then randomly distributed in the 
same C bins. We calculate the probability that there 
are n bins which contain two balls, one red and one 
blue. Observe that pa(s, y) = p,(y, s), by symmetry. 
We obtain: 

P?L(Z,Y) = P(z ,y ,n ) ,  if z 2 Y 2 ?L? 

= P ( Y , 5 , 7 1 ) ,  if Y 2 z 2 n, 

x + y - n < C ,  l I s , y < C ,  

s + y - n l C ,  l < z , y I C ,  (3) 
= 0, otherwise, 

where 

P(5,  Y, .) = 

3r-n c - x - i s  1 n - i t 1  
C - n - i + l  

For the general case of an N-hop route, N 2 3, let 
sj be the number of idle wavelengths on the j - th  hop, 
and assume without loss of generality that 

2 1  2 22 2 ... 2 XN. 

Starting with (2), we condition the expression on the 
right on the set of disjoint events { X ,  = klk = 
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n,. . . , X N - ~ } ,  where R = (1,. . . , N - 1). We thus 
obtain the recursive relation: 

O N - 1  

* - * X N )  = P n  (IC, X N ) P k  ($1 * * 3 ZN--1)  
k = n  

(4) 
where p, ( Ic , z~)  is given by (3). 

Table 1 shows blocking probabilities for tandem 
networks with 1, 2 and 3 links under varying local 
traffic. The circuit-switching case Bcs is compared 
with the wavelength routing model BWR. Not surpris- 
ing, blocking probabilities for the wavelengths routing 
model are shown to grow much faster with the number 
of hops. 

J 
1 

h Bcs(%) BWR(%)- 
1.0 0.31 0.31 

4.48 
1.86 8.21 
4.19 15.92 

Table 1: Network with J links in tandem: compar- 
ing blocking probabilities for circuit-switching Bcs vs. 
wavelength routing BI.VR. C = 5, X is the offered traf- 
fic. 

The computational requirements of the method 
above for calculating blocking probabilities for the 
network of links in tandem with wavelength rout- 
ing are significantly greater then for circuit-switching. 
The circuit-switched network requires O(C)  opera- 
tions while the wavelength routing model requires 
O(G3) operations for two links and O(C4) for three 
links. It is plausible that the computational require- 
ments for more general networks would have a similar 
behavior. For realistic networks, where C could be 
large, these computational requirements present a dif- 
ficult challenge. 

3 Fixed Routing 

Consider a network of arbitrary topology with J 
links and C wavelengths on each link. A route R is a 
subset of links from ( 1 , .  . . , J } .  Galls arrive for route 
R as a Poisson stream with rate U R .  A call for route 

X is set up if there is a wavelength 20; such that w; is 
idle on all links of route R. If such a wavelength is not 
available then the call is blocked and lost. If the call 
is accepted it simultaneously holds wavelength w; on 
all links on route R. The holding times of all calls are 
assumed exponentially distributed with unit mean. 

Let X R  be the random variable the number of idle 
wavelengths on route R. If R = {i, j, I C }  then we may 
write Xj,j,k. Let X = (XI,. ..,XJ) and let 

qj (m)  = Pr[Xj = nz], m = 0 , .  . . , C 

be the idle capacity distribution on link j. We will 
assume as in [3] that random variables X j  are inde- 
pendent. Then 

J 

4(m) = Pj(mj), (5) 
j=1 

where m = (ml , .  . . , n z ~ ) .  
Following [3] we also assume, given m idle wave- 

lengths on link j ,  that the time until the next call 
is set up on link j is exponentially distributed with 
parameter cuj (n1) .  It follows that the number of idle 
wavelengths on link j can be viewed as a birth-and- 
death process and therefore we have 

where 

1- ' .  (7 )  
C(C - 1) * * . (C - 17% + 1) C 

q j ( O ) =  c a j ( l )a j (2) . . . a j (m)  [ m=l  

The call set up rate on link j when there are nz 
idle wavelengths on link j ,  aj(nz), is obtained by com- 
bining the contributions from the request streams to 
routes which have link j as a member. 

cuj(m) = 0, if m = 0, 

= URPr[XR > OlXj = n%], ( 8 )  
R : j € R  

nz= 1, ..., C. 

If the route consists of a single link then the proba- 
bility term under the summation sign is seen to be 
Pr[Xj > OllYj = m] = 1. If the route consists of two 
links let R = {i,j}. The term Pr[XR > 0l.Yj = m] 

under the summation sign can be further relined by 
conditioning it on the set of disjoint events { X i  = 
111 = 0, .  6 9 ,  C } .  

Pr[X;,j > OllYj = nz] (9) 
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/=1 

where p o ( m ,  1 )  is defined in (3). The second equality 
above is obtained by taking into account that the term 
for I = 0 is zero and the previously made assumption 
that random variables Xi are independent. Similarly, 
for a three hop route R = {i, j ,  k} we obtain: 

k 1  n=l  

where PO(/, m, n )  is obtained from (4) and (3). 
The blocking probability for calls to route R is 

LR = P r [ X R  = 01: 

LR = q j ( O ) ,  if R = { j } ,  
c c  

/=o m=O 
c c c  

I=O m=o n,=O 

if R = {i,j, k}. 

By separating the cases with 1 = 0, m = 0 or n = 0 
we obtain: 

LR = q j (O) ,  if R = { j } ,  
= q i ( 0 )  + q j ( 0 )  - q i (O)q j (O)  + 

C C  

k 1  m = l n = l  

if R = {i,j, k}. (11) 

The algorithm in Figure 1 below computes approx- 
imately the blocking probabilities for the traffic on all 
the routes. 

In Section 5 numerical results are given and com- 
pared with simulation. 

1. Initialization. For all routes R let 
L R  = 0. For j = 1 ,..., J: let aj(O) = 0, 

2. Determine q j ( . ) , j  = 1,. . ., J ,  using (6) 

3. Calculate a j ( . ) , j  = 1,. . . , J ,  using (g), 

4. Calculate LR,  for all routes R, using 
< E then terminate. 

a j (m)  = C R : j E R  an, m = 1,. . . , C. 

and (7). 

(10) and (10). 

(11). If maxR ILR - 
Otherwise let LR = L R ,  go to Step 2. 

Figure 1: Calculation of LR for fixed routing 

4 Least Loaded Routing 

We deal in this section urith fully connected net- 
works with Least Loaded R.outing. Let N be the 
number of nodes. The number of links J is thus 
J = N(N - 1) /2 .  Each pair of nodes has a direct 
route {j} and a set of N - 2 alternate two-link routes 
denoted by Aj. When a call arrives it is set up on the 
direct route {j} if mj > 0, where rnj is the number 
of idle wavelengths on link j .  Otherwise call setup is 
attempted on the least loaded alternate route which is 
the route with the largest number of idle wavelengths. 
The routes in dj are assumed odered in some way, 
and in case of ties the first of the candidate routes is 
chosen. If m,R, the number of idle wavelengths on the 
alternate route R, is such that ~ T Z R  5 T ,  where T is the 
trunk reservation parameter, then the call is blocked 
and lost. For simplicity we assume all links have the 
same trunk reservation parameter r .  

Denote by aj the arrival rate of calls for the node 
pair connected by link j. Sj denotes the set of links 
adjacent to  link j ;  there are 2(N - 2)  links in this 
set. If links j ,  k have a node in common we denote by 
~ ( j ,  I C )  the link which closes the triangle. For a link 
j denote by u / t ( j )  the two-link alternate route to  j 
according to the LLR scheme above. 

Given m idle wavelengths on link j ,  the setup rate 
cYj(m) is: 

where 

q j ,  k ,  m) = 
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Pdalt(k) = { . i , ~ ( . i t  k)};xj,r(j ,k) > rIXj = nzl, 
m > r. 

We condition h( j ,  k, 7n) on the set of disjoint events 
{Xj,r(j,k) = I ;  I = T + 1 , .  . . , m} and obtain 

h(j ,  k, m) 

= 2 Pr[Xj,,(j,k) = Ilxj = m] x 
I = t + l  

Pr[alt(k) = { j ,  ~ ( j ,  k)}lXj = m; Xj,r(j,k) = 11 
m 

= f(.i, k ,  m, I > g ( j ,  I C ,  I ) ,  (14) 
l=r+ l  

where 

f ( j ,  k, m, I) = Pdlyj,r(j,k) = IlXj = ml (15) 
and 

g ( j ,  k, I) = P r [ a l t ( k )  = { j ,  ~ ( j ,  k)}lXj,r(j,k) = I ] *  
(16) 

The expression for g ( j ,  I C ,  I )  can be further developed 
as a product of probabilities in accordance with the 
meaning of the LLR scheme: 

g(j,k,I) = n Pr[XR < 11 I'I Pr[XR I 11 
REA; ( j )  R € A : ( j )  

where A k ( j )  denotes the set of routes in At which 
precede, in the assumed ordering, the route in dk to 
which j belongs, while d z ( j )  denotes the set of routes 
in Ak which succeed that route. 

By conditioning f(j,  k, 7n, I )  on the set of disjoint 
events {Xj,r(j,k) = i; i = I,. . . ,7n} we obtain: 

(17) 

f ( i  k, m, 1 )  
m 

= Pr[X,(j,k) = i ~ ~ j  = m] x 
i=/  

Pr[Xj,,(j,k) = IlXj = nz; X , ( j , k )  = i] 
m 

= qr(j,k)(i)Pt(mr i), (18) 
i=i 

where p/(m, i) is given by (3). To compute terms of the 
form Pr[XR < I ]  in (17) we first compute P [X, = I ] ,  
1 = T ,  ..., m: 

c c  

The blocking probability for the traffic between the 
nodes of link j is given by: 

~j = Pr[Xj = 01 n Pr[XR I T I .  (22) 
R€A,  

The algorithm in Figure 2 computes approximately 
the blocking probabilities for the traffic between all 
node pairs. 

1.  Initialization. Let Lj = 0, j = 
1 ,..., J .  For j = 1 ,..., J :  let crj(0) = 0, 
aj(m) = a j ,  na = 1, .. . ,C. 

2. Determine q j ( . ) , j  = 1,. . , , J ,  using (6) 
and (7). 

3. Calculate aj( . ) , j  = 1 ,..., J ,  using 
(12) through (21). 

4. Calculate LR, for all routes R, using 
(22). If maxj ILj - Ljl < E then terminate. 
Otherwise let ej = Lj,  go to Step 2. 

Figure 2: Calculation of LR for LLR 

For circuit-switched networks Chung, Kashper and 
Ross [3] describe two algorithms for calculating aj(.). 
The first requires O(CN4) operations and O(CN2)  
storage, the second, which trades some gain in coni- 
putational efficiency for storage, requires O ( C N 3 )  op- 
erations and O(CN3)  storage. The implementation 
in Figure 3 below is similar to their second algorithm. 
The required number of operations for this calculation 
of a?(.) is O(C3N3)+O(CN4) ,  significantly more than 
for the circuit-switched case. Let us assume for sim- 
plicity that C and N are of the same order (a possible 
value may be 30). Then the computational complexity 
is of the order O(C6), two orders of magnitude greater 
than the circuit-switched case. 

In Section 5 numerical results are given and com- 
pared with simulation. 

5 Numerical results 

The analytical results of previous sections are used 
here to calculate approximate blocking probabilities 
for two networks: a network with fixed routing and 
a network with LLR. The results are then compared 
with blocking probabilities obtained by simulation. 

Simulation results are given as 95% confidence in- 
tervals estimated by the method of batch means. The 
number of batches is 20 or more. 
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Do for j = 1,. . ., J .  
Do for 1 = T ,  . . . , C. 

Calculate P r [ X R  = I] for all R E dj 
using (19). 

Do for j = 1,. . . , J .  
Do for 1 = r ,  . . . , C. 

Calculate P r [ X R  < I ]  for all R E dj 
using (20). 

Do for j = 1,. . ., J .  
Do for 1 = r ,  . . . , C. 

Calculate g(j, k, 1 )  for all k E Sj us- 
ing (17). 

Do for j = 1,. . . , J .  
Dor for all k E Sj. 

Calculate h ( j ,  k ,m)  for m = T + 
Calculate cyj(m) for m = T + 1, .  . . C 

1,. . . , C using (14) and (18). 

using (12). 

Figure 3: Calculation of c y j ( . )  for LLR 

Tables 2, 3 and 4 below show numerical results 
for a network with fixed routing. There are seven 
links ( J  = 7) and fifteen source/destination pairs (or 
equivalently, routes). The number of wavelengths is 
C = 12. The routes are shown in column R where a 
route is a set of links. The offered traffic on a route 
appears in the column marked U R .  Blocking probabil- 
ities in light, moderate and heavy traffic are shown. 
The approximation results are generally close to  the 
simulation results. 

Table 5, below shows numerical results for a fully 
connected network with LLR. There are four nodes 
( N  = 4) and six links ( J  = 6). The number of wave- 
lengths is C = 6 and the trunk reservation parameter 
is r = 2. Blocking probabilities in light, moderate and 
heavy traffic are shown. 

While the results are less accurate here than for 
the fixed routing case they are similar to  the results 
in [3] for the circuit-switched networks. The accuracy 
is good for heavy and moderate traffic but less so for 
light traffic. We note that whenever the approxima- 
tion deviates from the simulation results, the approx- 
imation usually overestimates the blocking probabil- 
ities, while in [3] the approximation often underesti- 
mates them. 

a R  

3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
0.3 
0.3 
0.3 
0.3 
0.3 

0.03 
0.03 
0.03 

- LZ"(%) 
(0.02,0.03) 
( 0.0 2 ,O. 03) 
( 0.03,0.03) 
( 0 .O 2 0.03) 
(0.00,0.00) 
(0.01,0.02) 
(0.0 1 ,o. 0 2) 
(0.15,O. 19) 
(0.23,0.27) 
(0.19,O. 23) 
( 0.23,O. 2 8) 
(0.23,O. 2 8) 
(1.14J.42) 
( 1.19,1.48) 
( 1.03,1.29) 

LR(OJO) 
0.03 
0.03 
0.03 
0.03 
0.01 
0.01 
0.01 
0.19 
0.28 
0.20 
0.27 
0.27 
1.46 
1.40 
1.43 

Table 2: Network with fixed routing and light traffic . 
R: routes, an: offered traffic, J = 7, C = 12. L i m :  
obtained by simulation. 

6 Concluding Remarks 

For a class of all-optical networks using WDM 
and wavelength routing we presented an approximate 
method for calculating the blocked traffic. We stud- 
ies two types of networks. First we studied networks 
with arbitrary topology, fixed routing and paths with 
three hops or less. We also considered fully connected 
networks, Least Loaded Routing and paths with one 
or two hops. 

While the computational requirements of the gen- 
eralized reduced load approximation scheme in [5, 31 
are significant the problem is worse for the wavelength 
routing model. The technique of 'truncated distribu- 
tions' in [3] could be applied here as well, and will al- 
leviate the problem somewhat for moderate and heavy 
traffic. 

The two types of network studied can be viewed 
as two extremes of a range of possible network types. 
While the fixed routing case has a single route for a 
given source/destination pair the fully connected net- 
work with LLR has many alternate routes. The accu- 
racy of the method in our case study is good for the 
fixed routing case but it less so for the LLR case, es- 
pecially for light traffic. We suspect that the method 
will perform well for in-between cases such as Fixed 
Alternate Routing (FAR) [6] in which a route may 
have one or two predetermined alternate routes. A 
scheme such as FAR will also have the advantage of 
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aR 
3.6 
3.6 
3.6 
3.6 
3.6 
3.6 
3.6 
0.36 
0.36 
0.3F 
0.36 
0.36 

0.036 
0.036 
0.036 

L"d(%) 
(0.1 1,0.12) 
(0.1 1,o. 12) 

(0.10,0.11) 
(0.1 1 ,O. 13) 

(0.02,0.03) 
(0.06,0.07) 
(0.05,0.06) 
(0.70,0.78) 
(0.98,1.08) 
(0.75,0.84) 
(0.9 5 , 1.04) 

(3.88,4.50) 
(3.41,3.91) 
(3.59,4.21) 

(0.90,1.00) 

G($q 
0.11 
0.12 
0.12 
0.11 
0.03 
0.06 
0.06 
0.78 
1.10 
0.80 
1.07 
1.07 
4.71 
4.56 
4.64 

Table 3: Network with fixed routing and moderate 
traffic. J = 7, C = 12. 

reduced computational complexity, which would allow 
the method to be applied to more realistic networks. 
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aJ 
1.00 
1.50 
2.00 
1.00 
1.50 
2.00 
1.50 
2.25 
3.00 
1.50 
2.25 
3.00 
2.00 
3.00 
4.00 
2.00 
3.00 
4.00 

- 

- 

- 

L;"(%) 
(0.00,0.01) 

(0.00,0.0 1) 

(0.02,0.04) 
(0.10,O. 15) 

(0.0 2 ,O. 05) 
(0.1 1,0.15) 
(0.14,O. 20) 
(0.56,0.71) 
(2.12,2.33) 

(0.74,0.90) 

(0.96,l. 15) 
(3.0 0,3.34) 
(7.93,8.42) 
(0.79,1.02) 
(3.82,4.24) 
(7.63,8.18) 

(0.1 1 ,o. 20) 

(2 .o 0,2.27) 

Lj(%)  
0.02 
0.09 
0.25 
0.01 
0.06 
0.25 
0.21 
0.87 
2.25 
0.16 
0.79 
2.25 
0.92 
3.27 
7.59 
0.80 
3.40 
7.59 

Table 5: Network with LLR in light, moderate and 
heavy traffic. Traffic stream j given as a node pair, a j  

is the offered traffic. J = 6, C = 6, T = 2. 
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