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Gossiping refers to the following task: In a group of indi-
viduals connected by a communication network, every
node has a piece of information and needs to trans-
mit it to all the nodes in the network. The networks
are modeled by graphs, where the vertices represent
the nodes, and the edges, the communication links.
In this paper, we concentrate on minimum gossip graphs
of even order, that is, graphs able to achieve gos-
siping in minimum time and with a minimum number
of links. More precisely, we derive upper bounds for
their number of edges from a compounding method,
the k-way split method, previously introduced for broad-
casting by Farley [Networks 9 (1979), 313–332]. We
show that this method can be applied to gossiping in
some cases and that this generalizes some compound-
ing methods for gossip graphs given in [5]. We also
show that, when applicable, this method gives the best-
known upper bounds on the size of minimum gossip
graphs in most cases, either improving or matching
them. Notably, we present for the first time two fam-
ilies of regular gossip graphs of order nnn and of de-
gree dlog2(nnn)e −−− 3 and dlog2(nnn)e −−− 4, respectively. We also
give some lower bounds on the number of edges of
gossip graphs which improve the ones given by Fertin
[5]. Moreover, we show that the above compounding
method also applies for minimum linear gossip graphs (or
MLGGs) of even order, which corresponds to a variant
of gossiping where the time of information transmission
between two nodes depends on the amount of informa-
tion exchanged. We also prove that this gives the best-
known upper bounds for GGGβββ,τττ (nnn)—the size of an MLGG
of order nnn—in most cases. In particular, we derive from
this method the exact value of GGGβββ,τττ(72), which was pre-
viously unknown. © 2000 John Wiley & Sons, Inc.
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1. INTRODUCTION

Gossiping is a task of information dissemination in a
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group of individuals connected by a communication net-
work. In gossiping, every node knows a piece of infor-
mation and needs to transmit it to everyone else. This is
achieved by placing communication calls over the com-
munication lines of the network. Throughout this paper,
we will consider a 1-port, full-duplex model, that is:

• A node can communicate with at most one of its
neighbors at any given time, and

• When communication takes place between two nodes,
the information flows in both directions.

Depending on the cases, we will consider this model
to be either unit cost or linear cost. In the former, a
communication between two nodes takes one time unit,
while in the latter, the communication time implies a
fixed start-up time β and a propagation time τ propor-
tional to the amount of information exchanged. Note that
in this case we suppose that every node holds a unique
piece of information that cannot be split and that all
pieces have the same length 1. Moreover, we suppose
that when two nodes communicate each node can send a
message consisting of one or more pieces of information
to the other node.

In both cases (i.e., unit cost and linear cost), networks
will be modeled by undirected graphs, without loops or
multiple edges. The vertices will represent the nodes of
the network, and the edges, the communication links.

Most of the recent interest in gossiping is due to its
importance in the area of network communications and
other areas of parallel and distributed computing. A way
to study tasks such as gossiping is to find interconnec-
tion networks with the minimum resources necessary to
gossip in minimum time. This approach is the one we
are dealing with in the following:

Knödel [7] proved that the time gn to gossip in the
complete graph Kn of order n under the unit cost model
is

• dlog2(n)e for even n, and
• dlog2(n)e + 1 for odd n.
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A gossip graph will then denote a graph able to gossip
in minimum time. However, it is not necessary to con-
sider the complete graph to get a gossip graph. Hence, we
denote by minimum gossip graph, or MGG, any gossip
graph with a minimum number of edges. For any MGG
of order n, or MGGn, this number is denoted by G(n).

Similarly, in the linear-cost model, we denote by
gβ,τ(n) the minimum time to gossip in the complete graph
Kn. When n is even, Fraigniaud and Peters [6] proved that
gβ,τ(n) = dlog2(n)eβ+(n−1)τ. A linear gossip graph will
denote a graph able to gossip in minimum time, while
a minimum linear gossip graph, or MLGG, is a linear
gossip graph with a minimum number of edges. For any
MLGG of order n, or MLGGn, this number is denoted
by Gβ,τ(n).

Very few values of G(n) and Gβ,τ(n) are known in the
general case. G(n) is determined for n = 2p, n = 2p − 2,
and n = 2p − 4 [8], while Gβ,τ(n) is determined for the
same values of n, and also n = 2p−6 [6]. The only known
specific values of G(n) are for 1 ≤ n ≤ 16 (except for
n = 13) and n = 24 [5], while the only known specific
values of Gβ,τ(n) are for even n with 2 ≤ n ≤ 32 (except
for n = 22), n = 42, n = 44, and n = 48 [6].

Determining precisely the values of G(n) and Gβ,τ(n)
is known to be a hard problem. In this paper, we focus on
a general way to get upper bounds for G(n) and Gβ,τ(n)
for even n (which can be extended to odd n in the unit
cost model, thanks to some techniques given in [5]). This
can be done either by exhibiting some families of graphs
which are known to be (linear) gossip graphs for any
even n, like Knödel graphs (cf. [5]), or by constructing
(linear) gossip graphs from existing (minimum) (linear)
gossip graphs. We will concentrate mostly on the second
method in this paper.

Section 2 will first focus on the unit-cost model.
In Section 2.1.1, we will present a general compound-
ing method, very close in its spirit to the k-way split
method. The k-way split method was first introduced
by Farley [4] to get upper bounds on the size of mini-
mum broadcast graphs. It was extended and improved in
[2], and, more recently, some other compounding meth-
ods have been developed [1, 3, 10, 11]. Surprisingly,
no comparable study has been undertaken concerning
gossiping. In this paper, we will show a compounding
method which applies for gossiping. We will also de-
rive from this method some variants which apply for
k = 3, k = 5, k = 9, k = 10, and k = 12. These results
prove for the first time the existence of two families of
gossip graphs of order n, each of these two families con-
taining an infinite number of graphs and each graph be-
ing regular (of degree dlog2(n)e − 3 and dlog2(n)e − 4,
respectively). A summary of these general results in the
unit-cost model, for even 18 ≤ n ≤ 128, is given in Sec-
tion 2.1.2. However, the results given in Section 2.1 only
give upper bounds for the size of an MGG. This is why,

in Section 2.2, we will focus on lower bounds for G(n),
both in the even and odd cases. These bounds improve,
when applicable, the lower bounds given in [5].

Next, we will focus on the linear-cost model, where
in Section 3.1 we first give a general upper bound for
Gβ,τ(n) which applies for all even n. We also show that
the compounding method from the unit-cost model also
applies. Notably, we show that it allows us to determine
Gβ,τ(72). Moreover, the family of gossip graphs, regular
of degree dlog2(n)e − 3, which is given in Section 2 in
the unit-cost model, also appears to be a family of linear
gossip graphs. Section 3.2 finally gives a summary of
these general results in the linear-cost model for even
18 ≤ n ≤ 128.

2. THE UNIT-COST MODEL

In this section, we present a compounding method to
get upper bounds on G(n), then some improvements on
the lower bounds for G(n). First, we give a general upper
bound, corresponding to a general compounding method.
Next, we give some particular methods which are vari-
ants of the general one. Finally, Section 2.2 will be de-
voted to lower bounds on G(n).

2.1. Upper Bounds for G(n)

2.1.1. Compounding of Gossip Graphs. The method
of compounding graphs has been extensively, and is still,
used for determining upper bounds on the size of min-
imum broadcast graphs [1–4, 10, 11]. However, com-
pounding has never been studied in terms of gossiping.
Fertin [5] gave some specific compounding methods to
get upper bounds for G(n). These have been used as a
starting point for our work, the idea then being to find
a generalization of the methods exposed in [5]. We soon
realized that the underlying idea was none other than the
one given by Farley [4] concerning minimum broadcast
graphs. However, some parts of the method do not ap-
ply for gossiping. Conversely, we can sometimes split
our graph into nonequal parts, something which gives,
when applicable, even better results than does the gen-
eral method.

Before introducing the method itself, we need to give
the following definition:

Definition 1 (Compoundable Graph). A compound-
able gossip graph G of order n is a gossip graph such
that there exists a gossip scheme SG for G having the fol-
lowing property: There exists a perfect matching PMSG

with respect to the gossip scheme, such that all the edges
of PMSG are used during the same fixed round r and
during no other round r′ ≠ r.

Theorem 1 (Compounding in the Unit-cost Model).
For all k and even n such that there exists a com-

poundable gossip graph of order 2k and of size G′(2k),
and such that dlog2(nk)e = dlog2(n)e + dlog2(k)e, we
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have

G(nk) ≤ k · G(n) +
n

2
· (G′(2k) − k).

Proof. Suppose that we have a compoundable gossip
graph G2k of order 2k and of size G′(2k). By definition,
we know that there exists in G2k a gossip scheme SG2k ,
for which we can find a perfect matching PMSG2k

such
that every edge ei = uivi of PMSG2k

(1 ≤ ei ≤ k) is used
exactly once and during the same round r.

Now, let us construct, from G2k, a graph Gnk of or-
der nk, and let us show that this is a gossip graph. The
construction is as follows: Replace in G2k every edge
ei = uivi of PMSG2k

by a copy Gi of a MGGn, 1 ≤ i ≤ k.
In each Gi, partition the set Vi of vertices into two subsets
V(ui) and V(vi), each of cardinality n/2 (this is feasible,
since n is even). In the following, we make a correspon-
dence between vertex ui (respectively, vi) of G2k and the
vertex set V(ui) [respectively, V(vi)]. Indeed, to end the
construction, it suffices, for each edge e′ = wx /∈ PMSG2k

,
to join the two vertex sets V(w) and V(x) by a perfect
matching. For a better understanding of the method, we
refer to Figure 1, which shows how to construct G18 from
an MGG6 (i.e., k = 3 and n = 6).

Hence, we end up with a graph Gnk of order nk and of
size kG(n) + (n/2) · (G′(2k − k) edges. Now, let us prove
that Gnk is a gossip graph. For this, we use the following
gossip scheme:

1. From round 1 to round r − 1, use the scheme SG2k ;
2. From round r to round gn + r − 1 (i.e., during the gn

following rounds), gossip within each copy Gi of an
MGGn, 1 ≤ i ≤ k. In other words, we gossip indepen-
dently in each Gi, with a scheme achieving gossiping
in Gi, but with a delay of r − 1 rounds;

3. From round gn + r to round gkn, we use again the
scheme SG2k , from round r +1, but with a delay of gn

rounds.

We refer to Figure 2 for an example of the method, where
k = 3, n = 6 and r = 2.

We recall that r is the unique round during which the
edges of PMSG2k

are used in the scheme SG2k . Hence, we
necessarily have 1 ≤ r ≤ g2k. Moreover, we supposed
that dlog2(nk)e = dlog2(n)e + dlog2(k)e; since n is even
by hypothesis, this means that gnk = gn + g2k − 1.

FIG. 1. (a) An MGG6 and a gossip scheme; (b) construction of G18
from (a).

FIG. 2. Gossip scheme in G18.

Let us now prove that, following this scheme, it is
possible to achieve gossiping in Gnk. First, we note that
this is a valid gossip scheme, thanks to the “compound-
ability” of the gossip graph of order 2k and thanks to
the constraint gnk = gn + g2k − 1. The former allows
us to see each of the MGGn’s as a black box (where
the unique round r used to communicate along the edge
uivi now takes gn rounds, after which all the vertices
of the MGGn are informed), while the latter shows that
gossiping takes place in minimum time. Moreover, this
scheme respects the 1-port model (i.e., no two incident
edges communicate during the same round), since n > 1.

Following the gossip scheme above, one can see that
each vertex of Gnk is able to broadcast its own informa-
tion to all the other vertices in the graph in minimum
time. Moreover, since the gossip scheme is valid, the
broadcast of each vertex can be done in parallel, which
shows that gossiping is achieved in minimum time.

For some particular cases, the structure of the MGG2k

on which we build our compounding is of extreme im-
portance. Indeed, in some cases it is not necessary to
take k copies of an MGGn: We can use MGGs of differ-
ent orders. Propositions 1–5 are based on this particular
method.

Proposition 1 (3-way split method). For all even
n1, n2, and n3 such that dlog2(n1 + n2 + n3)e = 2 +
dlog2(nj)e ∀j ∈ {1, 2, 3},

G(n1 + n2 + n3) ≤ G(n1) + G(n2)

+ G(n3) +
1
2

· (n1 + n2 + n3).

Proof. Note that if we consider n1 = n2 = n3 = n
we get the formula of Theorem 1 in the case k = 3. Note
also that this proposition is a generalization of a com-
pounding method given in [5], where we had n1 = n3.
Here, we show that we can take three MGGs of distinct
orders. In that case, k = 3, that is, the MGG2k is the
cycle C6 of order 6. Hence, the perfect matching we will
use is necessarily the one where the edges are used at
round 2. However, if instead of taking three copies of a
MGGn we take an MGGn1 , and MGGn2 , and an MGGn3 ,
we show that we still can get a gossip graph. Suppose,
w.l.o.g., that n1 ≥ n2 ≥ n3. Let α = (n1 + n2 − n3)/2; α
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is a strictly positive integer since every ni is even and
since n1 ≥ n2 ≥ n3 > 0. The idea here is to match
α vertices among the n1 of the MGGn1 with as many
in the MGGn2 , as shown in Figure 3. Note that this is
possible since 0 < α < n2 ≤ n1: Indeed, if α ≥ n2,
that would mean n1 ≥ n2 + n3 ≥ 2n3, which would
imply that dlog2(n1)e > dlog2(n3)e and would thus vio-
late the condition dlog2(n1 + n2 + n3)e = 2 + dlog2(nj)e
∀j ∈ {1, 2, 3}.

Now there remain n1 − α vertices from the MGGn1

to match with as many in the MGGn3 . Hence, we must
have n3 − n1 + α = n2 − α, which is true by definition of
α, and n1 − α < n3. But if we suppose that n1 − α ≥ n3,
we would have n1 ≥ n2 + n3 ≥ 2n3, and we have seen
that this cannot occur.

Since the copies of MGGni do behave as black boxes
as far as gossiping is concerned, and since we have
gn1+n2+n3 = gni +2 ∀i ∈ {1, 2, 3}, we still have the prop-
erty that the whole graph constructed this way is a gossip
graph on n1 + n2 + n3 vertices.

Proposition 2 (5-way split method).

• For all even n1 and n2 such that dlog2(4n1 + n2)e =
3 + dlog2(nj)e ∀j ∈ {1, 2},

G(4n1 + n2) ≤ 4G(n1) + G(n2) + 2n1 + 2n2.

• For all even n such that dlog2(5n)e = 3 + dlog2(n)e,

G(5n) ≤ 3G(n) + 4G

(
n

2

)
+ 5n.

Proof. The first formula of the proposition derives
from a similar argument as in Proposition 1. This is done
using the MGG10 shown in Figure 4(left). Here, we want
to replace each edge of the perfect matching correspond-
ing to round 2 by a copy Gi of an MGGni , where the ni

(1 ≤ i ≤ 5) may be pairwise distinct. This is shown in
Figure 4(right). In that case, if we suppose that α vertices
of G1 are matched with as many in G5, we necessarily
get the right figure of Figure 4, with β = n1−α. Standard
calculations show that we necessarily get the following
equalities:

• n1 = n2 = n4 = n5 and
• 2α = n3.

Note also that if n1 = n2 = n, we get the formula of
Theorem 1.

FIG. 3. Compounding using C6.

FIG. 4. (Left) An MGG10 and (right) a compounding method using
it.

The second formula of the proposition relies on a
slightly different idea: Suppose that some edges are used
during a unique round r, but these edges do not form
a perfect matching. In that case, we can still use the
same compounding method, but one has to see the “iso-
lated” vertices (i.e., vertices which do not communicate
at round r) as a contracted edge. Hence, we replace any
isolated vertex by a copy of an MGGn/2, while the edges
used in round r are replaced, as before, by a copy of an
MGGn. Then, each edge between an isolated vertex and
a nonisolated one will be replaced by a perfect matching
between two sets of n/2 vertices and an edge between
two nonisolated vertices will be replaced, as previously,
by a perfect matching between two sets of n/2 vertices
as well.

In the case where we start from an MGG10, we apply
this method with the round r = 3, and the method is then
shown in Figure 5. The same arguments as in the proof
of Theorem 1 show that the graph constructed that way
is a gossip graph. Note, though, that we need to have
gn/2 ≤ gn, in order to be able to gossip in any MGGn/2

at worse in the same time as in any copy of an MGGn.
However, we know by definition of gn that gn/2 ≤ gn

∀n, even when n/2 is odd.

Using the same construction as in the second part of
Proposition 2, and relying on the structure and gossip
scheme of the gossip graph of order 18 displayed in Fig-
ure 6, we can show the following proposition:

FIG. 5. Another compounding using an MGG10.
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Proposition 3 (9-way split method). For all even n
such that dlog2(9n)e = 4 + dlog2(n)e,

G(9n) ≤ 7G(n) + 4G

(
n

2

)
+ 9n.

Proof. The proof relies exactly on the same construc-
tion and arguments as in the second part of Proposition
2. The method is displayed in Figure 6(left and right).
Note that, as previously, we need gn/2 ≤ gn; but this is
always the case, even when n/2 is odd.

Proposition 4 (10-way split method). For all even
n1, n2, and n3, let α = 1

2 · (n1 + n2 − n3), and β =
1
2 · (n1 − n2 + n3). If

• dlog2(6n1 + 2n2 + 2n3)e = 4 + dlog2(nj)e ∀j ∈
{1, 2, 3};

• gα ≤ gnj ∀j ∈ {1, 2, 3};
• gβ ≤ gnj ∀j ∈ {1, 2, 3},

G(6n1 + 2n2 + 2n3) ≤ 4G(n1) + 2G(n2)

+ 2G(n3) + 2G(α) + 2G(β) + 6n1 + 2n2 + 2n3.

Proof. The method here is similar to the ones given
above. Its particularity is that it mixes the two variants
of the general method, namely, the matching that we use
here is not a perfect matching, and we decide to assign
to each isolated vertex (respectively, each edge of the
matching) a copy of a MGGni , where the ni may differ.

Let us take the gossip graph of order 20 and a gos-
sip scheme shown in Figure 7 (note that this graph has
been shown to be a gossip graph by [9]). Let us then use
the matching given by the edges used in round 3. Note
that this is not a perfect matching. Replace each of these
edges by an MGG and each of the isolated vertex by a
copy of an MGG, where the order of these MGGs may
differ. Now we refer to Figure 8 and state the following:
Suppose that we decide to match α vertices of G1 with
as many in G2. In that case, it is easy to see that each
matching in the “upper leftmost” cycle will be of size
α. Let β = n1 − α. Then, each matching of the “upper
rightmost” cycle will be of size β. The same occurs for
the “lower” cycle, where each matching will be of size
γ. Thanks to the constraints on the size of these match-
ings, we obtain equalities between α (respectively, β, γ)

FIG. 6. (Left) A gossip graph of order 18 and (right) the compounding
method.

FIG. 7. A gossip graph of order 20 and a gossip scheme.

and the nis, where ni = |Gi| for 1 ≤ i ≤ 3. Standard
calculations then give us the result.

Proposition 5 (12-way split method). For all even
n1, n2, and n3 such that dlog2(4n1 + 4n2 + 4n3)e =
4 + dlog2(nj)e ∀j ∈ {1, 2, 3},

G(4n1 + 4n2 + 4n3)

≤ 4 · (G(n1) + G(n2) + G(n3)) + 4 · (n1 + n2 + n3).

Proof. This relies on the same arguments as, for
instance, the proof of Proposition 1. Here, the perfect
matching that we use is the one given by edges used in
round 3 [cf. for this Fig. 9(left), which shows an MGG24

and a gossip scheme]. In that case, if we replace each
edge of the perfect matching by an MGGni , Gi, where
the ni may differ, and if we partition the set of vertices
of G1 and G2 as shown in Figure 9(right), we get the
following equalities, where ni = |Gi| for all 1 ≤ i ≤ 12:

• n1 = n6 = n8 = n12 = α + β;
• n2 = n5 = n9 = n11 = β + γ;
• n3 = n4 = n7 = n10 = α + γ;

This leads directly to the result.

Thanks to Theorem 1 and Propositions 1–5, we prove
for the first time that there exists gossip graphs with
(n/2) · (dlog2(n)e − 3) edges, but also gossip graphs with
(n/2) · (dlog2(n)e − 4) edges, for infinitely many values
of n. Indeed, we have the following propositions:

FIG. 8. Compounding using the gossip graph of Figure 7.
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FIG. 9. (Left) An MGG24 and gossip scheme and (right) the compounding method.

Proposition 6. For all p ≥ 7 and n′ = 24 · (2p−5 − 1),

G(n′) ≤ n′(p − 3)
2

.

Proof. Suppose that n′ = 24 · (2p−5 − 1) with p ≥
7. Then, gn′ = p. In that case, let us apply Theorem
1 where k = 2p−5 − 1 and n = 24. We know this is
possible since there exist compoundable gossip graphs
of order 2k (cf., for instance, [8]). We then have G(n′) ≤
k ·G(24)+[G(2k)−k]/2 ·24. Since we know that G(2k) =
G(2p−4−2) = (p−5)·k and G(24) = 36, we have G(n′) ≤
36 · k + [(k(p − 6)/2] · 24, that is, G(n′) ≤ [24k(p − 3)/2],
where n′ = 24k. Hence, the result.

It is interesting to note also that there exists an in-
finity of (p − 4)-regular gossip graphs. For this, take
n′ = 576 = 24 · 24. In that case, let us apply Theo-
rem 1 where n = k = 24. For this, we need to make
sure that there exists a compoundable gossip graph of
order 48: We then use the 2-way split method to obtain
a gossip graph of order 48 such that the perfect match-
ing between the two copies of an MGG24 are used in a
single round (the first round, for instance). Hence, we get
a compoundable gossip graph with 2k = 48 vertices and
96 edges. Standard calculations then give G(n′) ≤ 3n′,
that is, a 6-regular graph where gn′ = 10. Starting from
this graph, and using the compounding method where
k = 2, we have the following proposition:

Proposition 7. For all p ≥ 10 and n′ = 576 · 2p−10,

G(n′) ≤ n′(p − 4)
2

.

2.1.2. Summary of the Upper-bounds Results (Unit
Cost) Table 1 presents the results given by the k-way
split method for even n with 18 ≤ n ≤ 128. Note that for

the values n = 2p, n = 2p−2, and n = 2p−4 we know by
[8] that the result is optimal. For n = 2p, G(n) = (pn)/2,
and for n = 2p − 2 and n = 2p − 4, G(n) = ((p − 1)n)/2.
Note also that G(24) = 36 is known to be optimal by [5].
The optimality for G(n) is indicated by an asterisk (∗).

The “Comments” column indicates how these bounds
have been obtained, and the “Formerly” column indicates
the previously known upper bounds on G(n), taken from
the results of [5].

The gossip graphs obtained in [9] give better upper
bounds than do our k-way split method for n = 18, 20,
and 22. In particular, these graphs serve as a base for
our method, which also helps to improve the following
values of n.

Note, finally, that from these upper bounds for even n
we can easily derive upper bounds for odd n, thanks to
techniques given in [5]. Among others, we note that for
all even n and odd k such that 2p − k < n ≤ 2p we have
G(n + k) ≤ G(n) + k.

To completely understand Table 1, it is necessary to
introduce the family of Knödel graphs W∆,n, which ap-
pear to be gossip graphs in many cases.

Definition 2 (Knödel graph). The Knödel graph [6] on
n ≥ 2 vertices (n even) and of maximum degree 1 ≤ ∆ ≤
blog2(n)c is denoted W∆,n. The vertices of W∆,n are the
pairs (i, j) with i = 1, 2 and 0 ≤ j ≤ (n/2) − 1. For
every j, 0 ≤ j ≤ (n/2) − 1, there is an edge between
vertex (1, j) and every vertex (2, j + 2k − 1 mod n/2), for
k = 0, . . . , ∆ − 1.

For 0 ≤ k ≤ ∆ − 1, an edge of W∆,n which connects
a vertex (1, j) to the vertex (2, j +2k −1mod n/2) is said
to be in dimension k.

From [5], we get the following proposition:

Proposition 8 ([5]). For all even n not a power of 2, we
have
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TABLE 1. Upper bounds for G(n)(18 ≤ n ≤ 128).

n G(n) ≤ Formerly Comments

18 25 27 [9]
20 28 30 [9]
22 36 41 [9]
24 36∗ 36∗ [5]
26 52 52 W4,26
28 56∗ 56∗ [5]
30 60∗ 60∗ [8]
32 80∗ 80∗ [8]
34 64 66 3-way [14–10–10]
36 68 68 [5]
38 74 74 [5]
40 76 76 [5]
42 84 84 W4,42
44 88 88 W4,44
46 108 108 [5]
48 96 96 [5]
50 125 125 W5,50
52 130 130 W5,52
54 135 135 W5,54
56 140 140 W5,56
58 145 145 W5,58
60 150∗ 150∗ [8]
62 155∗ 155∗ [8]
64 192∗ 192∗ [8]
66 130 165 3-way [24–24–18]
68 134 170 3-way [24–24–20]
70 143 175 3-way [24–24–22]
72 144 180 3-way [24–24–24]
74 161 185 3-way [26–24–22]
76 170 190 3-way [30–24–22]
78 171 195 3-way [30–24–24]
80 176 200 12-way [8–6–6]
82 197 205 3-way [30–30–22]
84 198 210 3-way [30–30–24]
86 215 215 W5,86
88 208 220 12-way [8–8–6]
90 225 225 W5,90
92 230 230 W5,92
94 267 282 3-way [32–32–30]
96 240 240 [5]
98 294 294 W6,98

100 300 300 W6,100
102 306 306 W6,102
104 312 312 W6,104
106 318 318 W6,106
108 324 324 W6,108
110 330 330 W6,110
112 336 336 W6,112
114 342 342 W6,114
116 348 348 W6,116
118 354 354 W6,118
120 360 360 W6,120
122 366 366 W6,122
124 372∗ 372∗ [8]
126 378∗ 378∗ [8]
128 448∗ 448∗ [8]

• Wp−2,n is a gossip graph for any 2p−1 + 2 ≤ n ≤
3 · 2p−2 − 4,

• Wp−1,n is a gossip graph for any 3 · 2p−2 − 2 ≤ n ≤
2p − 2.

2.2. Lower Bounds for the Unit-cost Model

Lower bounds for G(n) in the unit-cost model were
previously studied in [5, 8] where the techniques used

rely on the analysis of the structure of an MGGn and
mostly on the degrees of its vertices. In this section,
following the techniques of [5], some improvements on
these lower bounds are given. Before presenting these
new results, we need to introduce the following notation:
An edge uv ∈ E is called a (1, d)− edge iff deg u = 1
and deg v = d.

Note also that in the following we will abbreviate p :=
dlog2 ne, that is, n (the number of vertices considered) is
as follows: 2p−1 + 1 ≤ n ≤ 2p. Then, gn = p if n is even
and gn = p + 1 if n is odd.

Provided that we know certain rounds during which
a fixed root v communicates with its neighbors, the first
standard argument in the following lower-bound proofs
is to estimate the maximum number of vertices which
eventually can receive v’s item: Any neighbor u of v
learns this news during the first round, i, the edge vu
is used in. From u, this item can then be broadcast to
at most 2gn−1 vertices (including u itself) during the re-
maining gn − i rounds. But every usage of vu in a later
round j > i prevents u from passing v’s item to a yet un-
informed neighbor which results in losing 2gn−j vertices
from the above amount.

In the following, we will denote by

mbtgn (i, j1, j2, . . . , jl)

the maximum number of vertices to which a vertex v
in an MGGn (thus, with gossip time gn) can broadcast
its information via one of its neighbors u, provided that
it uses the edge vu during rounds i, j1, j2 · · · jl, where
i < jq for any 1 ≤ q ≤ l. Note that v is counted among
the informed vertices in mbtgn (i, j1, j2, . . . , jl).

Thus,

mbtgn (i, j1, j2, . . . , jl) := 1 + 2gn−i −
l∑

k=1

2gn−jk .

Summation over all edges incident to v yields the fol-
lowing general estimate:

Proposition 9. Let R+ include the set of all rounds
when an edge incident to a fixed root v is used first, and
let R− be contained in the set of all remaining (nonfirst)
usages of those edges. Then, including v itself, the num-
ber of vertices finally knowing v’s item of information
after gn rounds cannot exceed

mbtgn (t : t ∈ R+, t̄ : t ∈ R−) := 1 +
∑
t∈R+

2gn−t −
∑
t∈R−

2gn−t.

Our notation refers to the notion of minimum broad-
cast trees [5] because the above maximum can be at-
tained by broadcasting along the edges of a suitable tree
rooted at v. The subscript gn refers to the total num-
ber of rounds available and might be omitted if there
is no danger of ambiguity. Very often, we will consider
consecutive rounds beginning in round r until round s,
where sums of the form

∑s
t=r 2gn−t = 2gn+1−r − 2gn−s

appear frequently.
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The second standard argument uses the fact that the
inverse of a given scheme, obtained by replacing each
label t = 1, . . . , gn by gn + 1 − t, still provides com-
plete gossiping. Or, equivalently, one considers the pro-
cess of accumulating all items in the vertex v instead
of broadcasting v’s item as above. Thus, having proved
a statement about round t (usually 1, 2, 3), this method
yields an analog statement about round gn +1−t (usually
gn, gn − 1, gn − 2, respectively).

As an illustration, we recall the well-known

Proposition 10.

(a) For all even n, every vertex has to communicate dur-
ing rounds 1 and gn.

(b) For all odd n > 2p−1 +1, every vertex of degree 1 has
to communicate during rounds 1 and gn.

Proof. Assume there is a vertex v [of degree 1 in (b)]
using at most rounds 2, . . . , gn for calling its neighbors.
Then, by Proposition 9, the number of vertices finally
knowing the corresponding item cannot exceed

(a) mbtp(2, . . . , gn) = 1 + 2p+1−2 − 2p−p = 2p−1 < n;
(b) mbtp(2) = 1 + 2p+1−2 = 2p−1 + 1 < n.

Because this would contradict the completeness of
the entire information exchange, v has to use round 1
also. Considering the accumulation process or the in-
verse scheme, we know that it also has to be active dur-
ing round gn.

Theorem 2. G(n) ≥ (nd)/2 for all even n with 2p − 3 ·
2p−d ≤ n ≤ 2p, d ≥ 3, p ≥ 6, p ≥ d + 2.

Proof. Recall that in this case gn = p. By Proposition
9, we know that from a vertex of degree at most d−2 one
can reach at most

∑d−2
t=1 2p−t = 2p −4 ·2p−d < n vertices,

and thus for all vertices v, deg v ≥ d − 1. Now, let us
consider all edges used in round 1, which—thanks to
the 1-port model and Proposition 10(a)—form a perfect
matching. Either both incident vertices of such an edge
have degree at least d, or, if otherwise, one has degree
d−1 only, the idea is to show that the other one must have
degree at least d + 1. Thus, the average degree is at least
d, that is, the graph contains at least 1

2

∑
v∈V deg v ≥ nd

2
edges—as asserted.

For the rest of the proof, let v be any vertex of degree
d − 1, and similar to Proposition 9, let R+ be the set of
all rounds when an edge incident to v is used first and let
R− be the set of all remaining (nonfirst) usages of those
edges. Assume there is a round i ∈ {1, . . . , d − 1} not
belonging to R+. Then, v’s item of information can be
communicated to at most

mbtp(1, 2, . . . , i − 1, i + 1, . . . , d) = 1 + 2p − 2p−i − 2p−d

vertices. This must be at least n, which is still possible,
but only in the case i = d − 1, n = 2p − 3 · 2p−d, R+ =
{1, . . . , d−2, d}. Then, considering the accumulation pro-

cess, we analogously get that v must use the rounds
p, p − 1, . . . , p − d + 3 and at least one of p − d + 2
or p − d + 1. If d ≥ 4, this includes the rounds p and
p−1 which cannot belong to R+ since p−1 ≥ d+1, that
is, R− ⊇ {p, p−1}. If d = 3, then either R− ⊇ {p, p−1}
or R− ⊇ {p, p − 2} because p − 2 ≥ 4. In both cases, v’s
item cannot reach more than

mbtp(1, . . . , d − 2, d, p̄, p − 1)

= 1 + 2p − 3 · 2p−d − (20 + 21) < n

vertices. This is a contradiction, and we thus know
that v must use its adjacent edges during all the rounds
1, . . . , d − 1 and, for accumulating all items, also during
the rounds p, . . . , p − d + 2. Hence, R+ = {1, . . . , d − 1}
and R− ⊇ {p, p − 1, p − 2} because p − 2 ≥ d.

Assume now, finally, that during round 1 v would
communicate with a vertex u of degree at most d. Its
item could then be disseminated to at most mbtp(2, . . . , d)
vertices via u and to at most mbtp(2, . . . , d − 1, p̄, p − 1)
vertices via the other neighbors because at least two of
{p, p − 1, p − 2} cannot belong to the edge vu. But this
adds up to only

1 + 2p−1 − 2p−d + 1 + 2p−1 − 2p−d+1 − (20 + 21)

= 2p − 3 · 2p−d − 1 < n,

that is, our final assumption was wrong, and deg u ≥ d+1
is proved.

In the remainder of this section, we will always deal
with MGGn for odd 2p−1 + 1 ≤ n ≤ 2p − 1; in other
words, gn = p+1 and the mbt-function is always mbtp+1.

Proposition 11. For all odd n such that 2p −2p−d +1 ≤
n ≤ 2p − 1 with p ≥ d + 2 ≥ 5, there is no (1, q)-type
edge with q ≤ d + 1 in an MGGn.

Proof. Suppose that v and u are neighbors in an
MGGn, where deg v = 1 and deg u ≤ d + 1. By Proposi-
tion 10, we know that v calls u in rounds 1 and gn = p+1.
Hence, u is fully informed already before round p + 1,
but this cannot happen before round dlog2 ne = p, that
is, along an incident edge e, u calls one of its neighbors
other than v in round p. None of them can be called ear-
lier than in round 2. By Proposition 9, we can bound the
number of vertices other than v, which eventually get u’s
item of information, namely, if p is the first usage of e,
then it is at most

mbtp+1(2, . . . , d, p) = 1 + 2p − 2p+1−d + 2p+1−p < n − 1;

otherwise, it is at most

mbtp+1(2, . . . , d+1, p̄) = 1+2p −2p−d −2p+1−p < n−1.

Note that p /∈ {2, . . . , d+1} because of the assumption
p ≥ d + 2. In any case, u’s information will not be
disseminated through the entire network.
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Proposition 12 ([5]). For all odd n such that 2p−2p−d+
1 ≤ n ≤ 2p − 1 with p ≥ d + 2 ≥ 5, any vertex v of
degree 2 has to communicate in rounds 1 and p + 1 in
an MGGn.

Proof. Suppose that v starts to broadcast in round 2
only. Then, via the two incident edges, its item can reach
at most mbtp+1(2) and mbtp+1(3) vertices, respectively,
whereby v itself is counted twice. But

mbtp+1(2) + mbtp+1(3) − 1 = 2 + 2p−1 + 2p−2 − 1

= 2p − 2p−2 + 1 < n

because p − d ≤ p − 3. Since this is not sufficient, one
assertion is proved. To see the corresponding result for
round p + 1, consider the inverse scheme.

Proposition 13. Let n be odd with 2p −2p−d +1 ≤ n ≤
2p − 1, p ≥ d + 2 ≥ 5. In any MGGn, if in round 1 there
is a call between two vertices v and u both of degree 2,
then in round 2, they have to call their other neighbors,
v′ and u′, respectively, which both have to be of degree
at least d + 1.

Proof.

(a) v and v′ as well as u and u′ have to communicate in
round 2 and in at least one of the rounds p + 1 or p.

Assume that u can start broadcasting its item in round
1 to v and not earlier than in round 3 to u′, thus reaching
no more than mbtp+1(2)+mbtp+1(3) = 2p −2p−2 +2 < n
vertices, which is a contradiction. If u and u′ would not
communicate in one of the rounds p + 1 or p, then the
above situation appears in the inverse scheme.

Suppose for the rest of the proof that deg v′ ≤ d.

(b) v′ has to call one of its neighbors other than v during
round p or p + 1.

As every vertex, v′ becomes fully informed in round p
or p + 1. Assume now that none of both rounds uses an
edge between v′ and one of its neighbors other than v. By
considering the inverse scheme, we then know that v′ can
get the items of information from at most 1 + mbtp+1(3)
vertices via v and u and at most mbtp+1(3, . . . , d + 1)
vertices via its other neighbors. But

mbtp+1(3, . . . , d + 1) + 1 + mbtp+1(3)

= 1 + 2p−1 − 2p−d + 1 + 1 + 2p−2

= 2p − 2p−d − 2p−2 + 3 < n

because p − 2 > 2, and this is again a contradiction.
Now, v’s item can be forwarded from u and v′ not ear-

lier than beginning in rounds 2 and 3, respectively. But
depending on whether there is a call between v and u in
round p+1 or not, Proposition 12, (a) and (b) imply that
either u calls u′ in round p and v′ calls one of its neigh-
bors other than v in round p + 1 or vice versa. Conse-
quently, v’s item can reach no more than mbtp+1(2, p + 1)
or mbtp+1(2, p̄) vertices starting in u and no more than

mbtp+1(3, . . . , d+1, p̄) or mbtp+1(3, . . . , d+1, p + 1) ver-
tices starting in v′, respectively. But both

mbtp+1(2, p + 1) + mbtp+1(3, . . . , d + 1, p̄) and

mbtp+1(2, p̄) + mbtp+1(3, . . . , d + 1, p + 1)

equal

(1 + 2p−1) + (1 + 2p−1 − 2p−d) − (20 + 21)

= 2p − 2p−d − 1 < n − 1,

that is, not all vertices besides v itself can be informed.
Consequently, deg v′ > d, and the proof for deg u′ > d
is analog.

Theorem 3. G(n) ≥ d(5n)/4e for all odd n such that
2p − 2p−d + 1 ≤ n ≤ 2p − 1 with p ≥ d + 2 ≥ 5.

Proof. Let V1 and V2 be the set of all vertices of
degree 1 and 2, respectively. Moreover, let V≤d+1 :=
{x ∈ V : 3 ≤ deg x ≤ d + 1}, and let V≥d+2,• be the set
of vertices of degree at least d+1 which are not adjacent
to a vertex of degree 1. Finally, let ni be the cardinality
of the set Vi for any i ∈ {1; 2; ≤ d + 1; ≥ d + 2, •}.

In the 1-port model, Proposition 10(b) implies that
no two vertices of V1 can have a common neighbor. By
Proposition 11, all neighbors of vertices of V1 must have
degree at least d+2. Hence, there are n1 vertices besides
V1 ∪V2 ∪V≤d+1 ∪V≥d+2,•, that is, n = n1 +n2 +n≤d+1 +
n≥d+2,• + n1, which we use in the form

n2 = n − 2n1 − n≤d+1 − n≥d+2,•. (1)

Accordingly, summation of all degrees yields

2G(n) ≥ n1 + 2n2 + 3n≤d+1
(2)

+(d + 2)n≥d+2,• + (d + 2)n1.

Now, we consider any vertex v of degree 2. By Propo-
sition 12, in round 1, it has to call one of its neighbors u,
which itself can neither be of degree only 1 [Proposition
11] nor be adjacent to a vertex of degree 1 [Proposition
10(b)]. Thus, if deg u ≥ 3, then u ∈ V≤d+1 ∪ V≥d+2,•. If,
otherwise, deg u = 2, we are in the situation of Propo-
sition 13 which says that in round 2 v calls its other
neighbor v′ and deg v′ ≥ d + 1. Assume there is a vertex
w of degree 1 adjacent to v′. By Proposition 10(b), w
and v′ communicate in rounds 1 and p+1, that is, v′ can
broadcast its own item to w, at most mbtp+1(4) vertices
via v and u and at most mbtp+1(3, . . . , p) other vertices.
But this adds up to at most

1 + (1 + 2p−1 − 21) + (1 + 2p−3) = 2p − 3 · 2p−3 + 1 < n.

This contradiction shows that v′ ∈ V≥d+2,•.
Altogether, we showed that assigning to any v ∈ V2

the uniquely determined first vertex of degree at least 3 it
communicates with always leads to vertices of V≤d+1 ∪
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V≥d+2,•, whereby those of V≤d+1 or V≥d+2,• can appear
at most once or twice, respectively. Hence, n2 ≤ n≤d+1 +
2n≥d+2,• or

n≤d+1 ≥ n2 − 2n≥d+2,•. (3)

Putting (3) and (1) into (2) yields

2G(n) ≥ 5
2 n + (d − 2)n1 + (d − 3

2 )n≥d+2,•,

and, thus, the assertion because d ≥ 3.

3. LINEAR COST MODEL

3.1. Compounding Method for the Linear
Cost Model

First of all, we give here general upper bounds for
Gβ,τ(n) when n is even, thanks to the use of Knödel
graphs. Indeed, the upper bounds from [5] given in
Proposition 8 in the unit-cost model turn out to be ap-
plicable to the linear-cost model as well. Moreover, this
observation will be useful in the proof of Theorem 4.

Observation 1. For all even n, we have

Gβ,τ(n) ≤
{

n·(p−2)
2 if 2p−1 + 2 ≤ n ≤ 3 · 2p−2 − 4

n·(p−1)
2 if 3 · 2p−1 − 2 ≤ n ≤ 2p − 2.

Proof. The first part of this observation is derived
from [6], where it was shown that the Knödel graph
Wp−1,n is a linear gossip graph for any even 2p−1 + 2 ≤
n ≤ 2p − 2.

The second part of the observation was proved in
the unit-cost model in [5], where it was shown that the
Knödel graph Wp−2,n is a gossip graph for any even
2p−1 + 2 ≤ n ≤ 3 · 2p−2 − 4. However, it is easy to
see that the proof still holds in the linear-cost model.
Indeed, the gossip scheme is the following: gossip along
edges in dimension i − 1 for every round 1 ≤ i ≤ p − 2,
then gossip again along dimension 0 during round p −1,
then along dimension p−3 during round p. Such a gossip
scheme is illustrated in Figure 10 for the case p = 5 and
n = 20. In this figure, the number(s) in parentheses on
the right of the “dim j” line denote the round(s) during
which the edges in dimension j communicate.

It is easy to see that, during each round, the vertices
respect the properties of an optimal gossip algorithm in
the linear-cost model, as stated in [6]. Indeed, the first
(p − 2) rounds take time t1 = (p − 2)β + (2p−2 − 1)τ,
while round p − 1 takes t2 = β + (2p−2 − 2)τ and round

FIG. 10. W3,20 and (between parentheses) a gossip scheme.

p takes t3 = β + n − (2p−1 − 2)τ. Hence, the total gossip
time is t = pβ + (n − 1)τ, and Wp−2,n is a linear gossip
graph for every 2p−1 + 2 ≤ n ≤ 3 · 2p−2 − 4.

In [6], Fraigniaud and Peters gave a compounding
method to get linear gossip graphs from existing (mini-
mum) linear gossip graphs. However, their method dif-
fers from ours, since in their case, they take an MLGGk

and replace each vertex by a copy of an MLGGn and
each edge linking two vertices by a perfect matching
between two copies of a MLGGn. Here, we present a
method similar in all points to the method proposed in
Theorem 1 in the unit-cost model, which turns out to
give better results than does the compounding method
from [6].

Theorem 4 (Compounding in the Linear-cost Model).
For all k = 2p−1 − 1 and even n such that dlog2(kn)e =
dlog2(k)e + dlog2(n)e, we have

Gβ,τ(kn) ≤ kGβ,τ(n) +
n

2
· (Gβ,τ(2k) − k).

Proof. To prove the theorem, we need, as in the unit-
cost model, to start from an MLGG2k (i.e., an MLGG of
order 2k = 2p − 2) which is compoundable. However,
by Observation 1, we know that Wp−1,2k is an MLGG2k.
For this, we use the following gossip scheme: Let the
vertices communicate along dimension i − 1 during ev-
ery round 1 ≤ i ≤ p − 1 and vertices communicate
again along dimension 0 during round p. Hence, Wp−1,2k

is clearly compoundable, and for our purpose, we will
use the perfect matching PM2 induced by the commu-
nications which take place during round 2, that is, the
perfect matching corresponding to dimension 1 in the
graph. We illustrate this in Figure 11, where k = 7. The
number(s) in parentheses on the right of the “dim j” line
denote the round(s) during which the edges in dimension
j communicate.

In that case, let us construct a graph of order nk the
same way as in the unit-cost model: We replace each
edge (and its adjacent vertices) of the perfect matching
PM2 by a copy of an MLGGn. In each of these copies Gi,
we split the vertices into two subsets of equal cardinality,
Vi,1 and Vi,2. Then, each of these Vi,j will play the role
of what was previously a single vertex in the MLGG2k.
More precisely, if two vertices u and v were neighbors
in Wp−1,2k, then we add a perfect matching between the
corresponding Vi,j and Vi′,j′ .

FIG. 11. W3,14 and (between parentheses) a gossip scheme.
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Now the gossip scheme will be as follows:

1. Gossip along what was previously dimension 0 during
the first round;

2. Then, gossip independently in each copy Gi of an
MLGGn during rounds 2 to dlog2(n)e + 1;

3. Finally, gossip from rounds dlog2(n)e + 2 to
dlog2(k)e + dlog2(n)e the same way as in Wp−1,2k, but
with a delay of dlog2(n)e − 1 rounds.

We then see, by the same argument as in the unit-
cost model, that every vertex will be informed of all
the pieces of information of the other vertices within
dlog2(kn)e rounds. In other words, this proves that
gβ,τ(kn) ≤ dlog2(kn)e + f(k, n) · τ, where f(k, n) is a
function of k and n. However, we still have to show that
f(k, n) ≤ kn − 1:

1. Since each vertex starts with a unique piece of in-
formation of length 1, the first round takes time
t1 = β + τ.

2. Then, each vertex knows two pieces of information
and will gossip independently in its own copy of an
MLGGn. Hence, this “internal” gossiping takes time
tn = dlog2(n)eβ + 2(n − 1)τ.

3. After this, each vertex knows 2n pieces of informa-
tion, and the gossip goes on during dlog2(k)e−1 more
rounds, as it did in Wp−1,2k. The only difference, as
stated above, is that each vertex knows 2n pieces of
information instead of 1. Moreover, except for the
very last round, there is no overlap, that is, every pair
of vertices which communicate do not have any piece
of information in common. Hence,

• During the dlog2(k)e − 2 first rounds (among
the dlog2(k)e − 1 remaining), the time to ex-
change information will be β+2nτ, β+4nτ, β+
8nτ, . . . , β + 2dlog2(k)−2enτ.

• During the very last round, every pair of ver-
tices has n pieces of information in common
(since they have already exchanged information
at round 1 and since the gossip in each Gi begins
just after round 1). Hence, the time needed for
the last round is tl = β + (2dlog2(k)−1e − 1)nτ.

Summing all the times needed for each round, we get
a total time of t = t1 + tn + (

∑dlog2(k)e−2
i=1 β + 2inτ) +

tl. Standard calculations then give us t = (dlog2(n)e +
dlog2(k)e)β+(n · (2dlog2(k)e −1)−1)τ. However, we know
by hypothesis that dlog2(n)e + dlog2(k)e = dlog2(kn)e
and that k = 2p−1 −1; hence, we have t = dlog2(kn)eβ+
(kn − 1)τ, and f(k, n) ≤ kn − 1.

Consequently, the graph that we build by this method
is able to gossip in the linear-cost model in minimum
time. Hence, this is a linear gossip graph. Since this con-
struction gives us graphs of the same size as in the unit-
cost model, we directly get Gβ,τ(kn) ≤ kGβ,τ(n) + n

2 ·
(Gβ,τ(2k) − k).

Thanks to the previous method, we obtain, for the first
time, as for the unit-cost model, infinitely many linear
gossip graphs for which their number of edges does not
exceed (n/2) · (dlog2(n)e − 3) edges. The proof relies
exactly on the same arguments as for Proposition 6, since
the Knödel graph Wp−5,2k is a gossip graph as well as a
linear gossip graph, and gossiping can be achieved in

TABLE 2. Upper bounds for Gβ,τ(n) (n even, 18 ≤ n ≤ 128).

n Gβ,τ(n) ≤ Formerly Comments

18 27∗ 27∗ [6]
20 30∗ 30∗ [6]
22 44 44 W4,22
24 36∗ 36∗ [6]
26 52∗ 52∗ W4,26
28 56∗ 56∗ [6]
30 60∗ 60∗ [6]
32 80∗ 80∗ [6]
34 68 85 W4,34
36 72 90 W4,36
38 76 95 W4,38
40 80 100 W4,40
42 84∗ 84∗ [6]
44 88∗ 88∗ [6]
46 115 115 W5,46
48 96 96 2-way [24–24]
50 125 125 W5,50
52 130 130 W5,52
54 135 135 W5,54
56 140 140 W5,56
58 145∗ 145∗ [6]
60 150∗ 150∗ [6]
62 155∗ 155∗ [6]
64 192∗ 192∗ [6]
66 165 198 W5,66
68 170 204 W5,68
70 175 210 W5,70
72 144∗ 144∗ 3-way
74 185 222 W5,74
76 190 228 W5,76
78 195 234 W5,78
80 200 240 W5,80
82 205 246 W5,82
84 210 252 W5,84
86 215 258 W5,86
88 220 264 W5,88
90 225 270 W5,90
92 230 276 W5,92
94 282 282 W6,94
96 240 240 2-way [48–48]
98 294 294 W6,98

100 300 300 W6,100
102 306 306 W6,102
104 312 312 W6,104
106 318 318 W6,106
108 324 324 W6,108
110 330 330 W6,110
112 336 336 W6,112
114 342 342 W6,114
116 348 348 W6,116
118 354 354 W6,118
120 360 360 W6,120
122 366∗ 366∗ [6]
124 372∗ 372∗ [6]
126 378∗ 378∗ [6]
128 448∗ 448∗ [6]
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both cases using the same gossip scheme [6, 8]. This is
the purpose of the following observation:

Observation 2. Gβ,τ(n′) ≤ (n′(p − 3))/2 for all p ≥ 7
and n′ = 24 · (2p−5 − 1).

Also, thanks to Theorem 4, it is possible to determine
the exact value of Gβ,τ(72).

Theorem 5. Gβ,τ(72) = 144.

Proof. The upper bound is given by Observation 2,
where p = 7, that is, k = 3. Moreover, we know by
Theorem 2.17 of [6] that a vertex of degree 3 can know
only up to 66 pieces of information after seven rounds.
Since g72 = 7, it follows that there is no vertex of degree
less than or equal to 3 in an MLGG72. Hence, Gβ,τ(72) ≥
144. Since the upper and lower bound coincide, we get
the result.

3.2. Summary of the Results (Linear Cost)

Table 2 presents the results given by the k-way split
method and Observation 1 for even n with 18 ≤ n ≤
128. Note that for the values n = 2p, n = 2p − 2, n =
2p − 4 and n = 2p − 6 the result is optimal [6]. For
n = 2p, Gβ,τ(n) = (pn)/2, and for n = 2p −2, n = 2p −4,
and n = 2p − 6, Gβ,τ(n) = ((p − 1)n)/2. The optimality
for Gβ,τ(n) is indicated by an asterisk (∗).

The “Comments” column indicates how these bounds
have been obtained, and the “Formerly” column is taken
from [6].

4. CONCLUSIONS

In this paper, we presented a general compounding
method which gives upper bounds for G(kn) and Gβ,τ(kn)
for even n. Moreover, in the unit-cost model, it is possi-
ble, in some cases, to use variants of the general method,
which are applicable for more (even) values. Thanks to
these methods, some upper bounds can also be derived
for G(n) when n is odd, still in the unit-cost model. All
these results, together with the ones of Proposition 8
and Observation 1, give the best-known upper bounds
for G(n) [respectively, Gβ,τ(n)], either matching or im-
proving the upper bounds given in [5] and [6]. It is also
interesting to note that these improvements can, in turn,
be taken as entries for further values of upper bounds for
G(n) and that the recursion can obviously be applied sev-
eral times. In a word, any improvement in the knowledge
of G(n) [respectively, Gβ,τ(n)], whether by our method or
by any other, will help to improve the upper bounds on
further values of G(n) [respectively, Gβ,τ(n)].

We also proved that, for infinitely many n, there exists
(linear) gossip graphs with (n/2) · (dlog2(n)e−3) [respec-

tively, (n/2) · (dlog2(n)e − 4) in the unit-cost model only]
edges, something which was unknown before. The best
result, formerly, was (n/2) · (dlog2(n)e−2), thanks to the
Knödel graph Wdlog2(n)e−2,n (cf. Proposition 8 and Obser-
vation 1).

Although these methods have the same flavor as that
of Farley’s k-way split method concerning broadcasting,
it is surprising that they had never been proved to be
efficient for gossiping.

In addition to these general upper-bound results, we
also gave some small improvements on certain lower
bounds for G(n), which were derived from a method used
in [5].
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