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Abstract

This paper proposes a parallel architecture for quadtree-
based fractal image coding. This architecture is capable of
performing the fractal image coding based on quadtree par-
titioning without the external memory for the fixed domain
pool. Since a large domain block consists of small domain
blocks, the calculations of distortion for all kinds of domain
blocks are performed by the summation of the distortions
for the maximum-depth domain pool which is extracted from
the smallest range blocks of the neighbor processors. Fast
comparison module is proposed for this architecture. This
module can compute the distortions between range blocks
and their eight isometric transformations by one full rota-
tion around the center.

1. Introduction

Fractal image compression has recently received great
attention and yields high compression ratios and resolu-
tion independence in image decompression [1]-[10]. These
techniques involve an approach to compression quite differ-
ent from standard transform coder-based methods. In the
fractal image encoding phase, the original image must be
divided into range and domain blocks, and the best match-
ing domain block must be found for each range block. The
compression process is finished by storing only the descrip-
tions of these transformations. The drawback of fractal im-
age compression is a long encoding time, due to the large
amount of comparisons between domain and range blocks.
To meet high performance, ASICs are required for high-
speed fractal image coding.

A few dedicated architectures proposed have utilized
global data communication for providing domain blocks to
all the processors [11]-[14]. As the number of processors
increases, expanding non-local communication paths is dif-
ficult without slowing down the system clock. A parallel
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Figure 1. An example of the quadtree parti-
tioning.

architecture for fractal image coding using local communi-
cation paths was proposed by the authors [15]. The parti-
tioning scheme of the architecture is fixed-size partitioning
which is not capable of yielding better performances than
flexible-size partitionings.

In this paper, we propose a parallel architecture for
quadtree-based fractal image coding which is a flexible-
size partitioning. Since a large domain block consists of
small domain blocks, the calculations of distortion for all
kinds of domain blocks are performed by using only the
maximum-depth domain pool which is extracted from the
smallest range blocks of the neighbor processors. This ar-
chitecture performs the MAD (mean absolute difference)
calculation of the maximum-depth domain pool and com-
putes the MADs of other domain pools by adding the MADs
of the maximum-depth domain pool. We also propose the
fast comparison module for this architecture. This module
is capable of comparing range blocks with the eight iso-
metric transformations of domain blocks by one full rota-
tion around the center. This fast comparison module could
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Figure 2. The generation of the half-
overlapping domain pool.

be used in many image processing applications that contain
isometric transformations.

2. The Fractal Image Coding Algorithm

Provided that �orig is an N � N pixel gray scale im-
age, we partition the original image �orig into a set of non-
overlapping R�R pixel range blocks fri;jg, as follows:

�orig =

NR[
i;j=1

ri;j ; ri;j
T
rî;ĵ = ; for (i; j) 6= (̂i; ĵ);

(1)
where ri;j represents the range block at coordinates (i; j),
and NR � NR is the total number of range blocks. R =
fri;j j1 � i; j � NRg is called the range pool. A set
of overlapping D � D (D = 2R) pixel domain blocks,
fdm;nj1 � m;n � NDg, are drawn from the domain pool
D where ND �ND is the total number of domain blocks.

A variety of domains are used in the literature. Because
fixed-spacing domain pool has a regular data flow, it is very
efficient to design an architecture. The domain pool we
will use in our main design is the half-overlapping domain
pool D which is overlapped along the vertical and horizon-

PE
(0,0)

PE
(1,0)

PE
(N  -1,0)

PE
(0,1)

PE
(0,N  -1)

PE
(1,1)

PE
(N  -1,1)

PE
(N -1,N -1)

PE
(1,N  -1)

p

p ppp

p

Figure 3. The PE connection for the genera-
tion of domain pool.

tal directions with the overlapping interval D=2 pixels and
ND = NR � 1.

For every range block, the best matching domain block
is searched for among all domain blocks by performing a
set of transformations on the blocks. The mapping for the
(i; j)th range block, �i;j , consists of a scaling factor si;j ,
offset oi;j , isometric transformation tk; 1 � k � 8, and spa-
tial contraction S. An isometric transformation tk maps a
square block to one of eight isometries obtained from com-
positions of reflections and 90 degree rotations.

The result of applying this mapping is an approximation
to the (i; j)th range block, ~ri;j as follows:

~ri;j = si;jtI(i;j)(S(dA(i;j))) + oi;j ; (2)

where A(i; j) is a domain block selection function which
associates the (i; j)th range block with a domain block from
D, and I(i; j) is an isometry selection function which maps
the (i; j)th range block to one of a set of possible isometric
transformations.

The encoding process is determining the parameters in
equation (2) for all range blocks such that the distortion be-
tween each range block and its approximation, �(~ri;j ; ri;j),
is minimized. Common distortion criteria include the
mean square error (MSE) and the mean absolute difference
(MAD) which is used in this paper as follows:

�(~ri;j ; ri;j) =

RX
k=1

RX
l=1

j~ri;j(k; l)� ri;j(k; l)j (3)

where ri;j(k; l) is the pixel (k; l) of the range block ri;j .
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Figure 4. The structure of the fast comparison
module in the case of C = 4.

In order to simplify the architecture and to increase the
performance speed, the MAD distortion criterion is adopted
in this paper [11].

In the encoding phase, the most computationally inten-
sive operations are the computation of distortions between
range and transformed domain blocks. The total number of
computations of distortions is (NR)

2�(ND)
2�8. Assume

that the original image we want to encode is an 256 � 256
pixel image and that R = 4, and D = 8. The total num-
ber of range-domain comparisons is (64)2 � (63)2 � 8 =
1:30�108. It is noticed that the dedicated VLSI architecture
for fractal image coding is needed.

3. The Quadtree-based Fractal Image Coding

The fixed-size range partitioning is a very simple
scheme. However, there are many regions of the image that
are difficult to cover well this way for a given range size. To
improve the performance of the coding, we have to reduce
the total number of range blocks.

A quadtree partitioning [5] is a representation of an im-
age as a tree in which each node, corresponding to a square
portion of the image, contains four sub-nodes, correspond-
ing to the four quadrants of the square. The root of the tree
is the initial image. If the MAD value between a range block
and the best domain block is above a threshold value and the
depth of the quadtree is less than a maximum depth, then the
range block is divided into four sub-blocks, and this process
is repeated. If the MAD value is below a threshold value,
the information of the best domain block and its transforma-
tion is stored. The image will be encoded by storing each
range block as the parameters in equation (2) and a quadtree
level d.
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Figure 5. The structure of the fast comparison
module in the case of C = 8.

4. The Proposed Parallel Architecture

Assume that there are Np�Np PEs and the total number
of PEs is equal to the number of range blocks, Np = NR.
The total number of the half-overlapping domain blocks is
(Np � 1)2 because the overlapping interval is D=2 = R.

The quadtree-based fractal image coding algorithm has
several levels of range and domain pools Rd, Dd for
d min � d � d max, respectively (see Figure 1). To
reduce the computation for several domain pools, our al-
gorithm is based on the fact that a MAD for the maximum-
depth domain pool Dd max is a component of a MAD for
other parent domain pools. This architecture is capable
of calculating MADs of Dd max using the fast compari-
son module. The results obtained in PEs are propagated
up to the memory for Dd max�1, and then to the memory
for other domain pools of other depth.

The encoding procedure of the proposed architecture
consists of three phases listed below:

� Phase 1 : Generation of Dd max and the MAD cal-
culation for Dd max, and the MAD calculation for
Dd max�1 with Dd max

� Phase 2 : The MAD calculation for other domain pools

� Phase 3 : Quadtree-based encoding by the results of
the MAD calculation



4.1. Generation of Dd max and the MAD calculation
for Dd max (Phase 1)

We assume that each range block is loaded into each PE.
Figure 2 shows an example of extracting a domain pool in
the case of NR = 4. A domain block is drawn from four
neighbor range blocks. To save the memory, the domain
blocks are contracted in advance and are stored in PEs.

Figure 3 shows the connection of PEs for generation of
domain pool Dd max. The directions of the data flow in
each PE are determined by data dependence.

In the literature, the architectures have special memory
modules to store the domain pool and memory bandwidth
becomes a bottleneck since all PE’s access the same mem-
ory to receive domain blocks. In this paper, we propose a
systolic architecture which resolves this problem by using
only local data communication. Each range block is com-
pared with a single domain block in parallel and all domain
blocks are shifted to the next PEs by ring connection. The
data independency permits the computation of eight com-
parisons between one range block and the transformed do-
main blocks in parallel by means of a dedicated hardware
architecture [11]. However, the cost of area is significantly
increased due to the increase of domain blocks and the cir-
cuit for parallel processing. In this section, we propose
an efficient architecture for eight isometric transformations
without the external memory for domain blocks. To imple-
ment fast isometric transformations, this architecture per-
forms fast rotation of a domain block using shifting to the
next cell without buffers needed to load and drawn out an-
other block. The proposed architecture consists of C � C
pixel processors (PP’s) which calculate the MAD between
two pixels.

Figs. 4 and 5 illustrate the structures of the fast com-
parison modules which are capable of executing eight iso-
metric transformations on domain blocks and selecting the
best transformation among them in the case of C = 4; 8,
respectively. This module performs eight isometric trans-
formations by one full rotation around the center. The unit
delay factors are utilized to create a proper movement of
data. Each PP in the fast comparison module has one range
block pixel and one domain block pixel. The data of domain
block is shifted to the next PP along the solid-line arrow in
each data access clock cycle. Each PP calculates the MAD
between the two pixels, and sends the intermediate result to
the next PP along the dotted-line arrow.

In Figure 6a, the calculation of MAD between a range
block and a domain block is performed. Each column of
PPs computes the sum of pixel differences and adds the
sum to the input from the left column of PPs. The results
are shifted to the right column of PPs simultaneously. The
right-most column PPs send the sums of pixel differences
from top to bottom. 2C steps are needed for this calculation.

The total sum of pixel differences is fed to the four buffers
which are used to store the distortion results for four ro-
tated domain blocks. The results of the MAD calculation of
the reflected domain blocks are obtained during the rotation
process. The calculation for the reflected domains can be
performed on diagonal PPs denoted by the thick-lines dur-
ing the distortion calculation (see Figure 6b). After the one
step rotation, the intermediate sums of the distortion for the
reflected domain blocks are added to the distortion for itself
and are shifted to the next PPs (see Figure 6c). When the
degree of the rotation is 90, the calculation of the absolute
difference between a range block and the rotated domain
block is performed (see Figure 6d). 2C steps are usually
needed to exchange one domain block loaded in PP’s to the
next domain block in pipeline processing. However, C=2
steps are needed for a counterclockwise rotation of 90 de-
grees in this module. The total steps needed to perform four
90 degree rotations of a domain block is 4(C=2).

When four rotation processes are finished, the sums of
pixel differences of the four reflected domain blocks are
stored in eight PPs denoted by thick lines in Figure 4, and
are fed into four buffers, respectively as shown in Figure
7. To obtain the results of the four reflected domain blocks,
2C steps are needed. The eight results within the buffers
are compared to each other using comparators (CPs) to find
the smallest value. The number of steps required to perform
the comparison processes is log2 8.

For executing the eight isometric transformations and se-
lecting the best transformation among them, (360 degree ro-
tation) + (four rotated domains) + (four reflected domains)
+ (comparison) = 2C + 8C + 2C + 3 steps are needed.
This module is capable of performing the fast rotations us-
ing only one domain block without the external memory for
all domain blocks.

4.2. The MAD calculation forDd max�1 withDd max

(Phase 1)

Note that a MAD for the maximum-depth domain pool
Dd max is a component of a MAD for other parent domain
pools. The MAD calculation for a large domain block is
represented by the summation of the MAD calculations for
its small domain blocks due to the property of the MAD
calculation. For example, equation (3) is represented such
that

�(~ri;j ; ri;j) =

R=2X
k=1

R=2X
l=1

j~ri;j(k; l)� ri;j(k; l)j

+

R=2X
k=1

RX
l=R=2+1

j~ri;j(k; l)� ri;j(k; l)j
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+

RX
k=R=2+1

R=2X
l=1

j~ri;j(k; l)� ri;j(k; l)j

+

RX
k=R=2+1

RX
l=R=2+1

j~ri;j(k; l)� ri;j(k; l)j: (4)

Since a domain block of Dd max�1 is composed of the
four contracted domain blocks of Dd max, the results of the
MADs of Dd max�1 are obtained by adding some results
of the MADs of Dd max. It needs all the MADs of Dd max

for the MAD calculation ofDd max�1. Therefore, when the
MAD of Dd max is calculated on Phase 1, it is transmitted
to the memory for the MAD ofDd max�1. We have to know
the MAD of what domain block of Dd max�1 is calculated

at a particular time of Phase 1.
Note that the d�1 depth range and domain block consist

of four d depth range and domain blocks, respectively. The
range and domain blocks are represented as the following
equations, where the domain pool is the half-overlapping
domain pool and the contracted domain blocks (see Figure
8).

rd�1I;J =
�
rdi;j ; r

d
i+1;j ; r

d
i;j+1; r

d
i+1;j+1

�
;

for 0 � I; J �
Np

2
� 1 and 0 � i; j � Np � 2;

dd�1I;J =
�
ddi;j ; d

d
i+2;j ; d

d
i;j+2; d

d
i+2;j+2

�
;

for 0 � I; J �
Np

2
� 2 and 0 � i; j � Np � 4; (5)
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where I = b i2c and J = b j2c are indices of the d� 1 depth
blocks and i, j are indices of the d depth blocks.

The isometric transformations of dd�1I;J are represented
such that

T1(d
d�1
I;J ) =�
T1(d

d
i;j); T1(d

d
i+2;j); T1(d

d
i;j+2); T1(d

d
i+2;j+2)

�
;

T2(d
d�1
I;J ) =�
T2(d

d
i+2;j); T2(d

d
i+2;j+2); T2(d

d
i;j); T2(d

d
i;j+2)

�
;

T3(d
d�1
I;J ) =�
T3(d

d
i+2;j+2); T3(d

d
i;j+2); T3(d

d
i+2;j); T3(d

d
i;j)
�
;

T4(d
d�1
I;J ) =�
T4(d

d
i;j+2); T4(d

d
i;j); T4(d

d
i+2;j+2); T4(d

d
i+2;j)

�
;

T5(d
d�1
I;J ) =�
T5(d

d
i+2;j); T5(d

d
i;j); T5(d

d
i+2;j+2); T5(d

d
i;j+2)

�
;

T6(d
d�1
I;J ) =�
T6(d

d
i+2;j+2); T6(d

d
i+2;j); T6(d

d
i;j+2); T6(d

d
i;j)
�
;

T7(d
d�1
I;J ) =�
T7(d

d
i;j+2); T7(d

d
i+2;j+2); T7(d

d
i;j); T7(d

d
i+2;j)

�
;

T8(d
d�1
I;J ) =�
T8(d

d
i;j); T8(d

d
i;j+2); T8(d

d
i+2;j); T8(d

d
i+2;j+2)

�
;

for 0 � I; J �
Np

2
� 2 and 0 � i; j � Np � 4; (6)

where Tk; 1 � k � 8 is the isometric transformation func-
tion. Note that four subblocks are rotated while each sub-
block itself is rotated.

The distortion calculation between range block and
transformed domain blocks is computed by the summa-
tion of the distortion calculation between the d depth
range block and the d depth transformed domain blocks.
For example, the distortion calculation between rd�1I;J and

T2(d
d�1
I;J ) is computed as follows:

�(rd�1I;J ; T2(d
d�1
I;J ))

= �(rdi;j ; T2(d
d
i+2;j)) + �(rdi+1;j ; T2(d

d
i+2;j+2))

+�(rdi;j+1; T2(d
d
i;j)) + �(rdi+1;j+1; T2(d

d
i;j+2));

(7)

where the MAD is used as the distortion criterion.
Equation (8) shows the time at which the domain block

ddi;j is calculated at PE (p; q).

�
t = Ppe � Pdo If Ppe � Pdo
t = Ppe � Pdo +Np �Np If Ppe < Pdo

; (8)

where Ppe = p+ q �Np and Pdo = i+ j �Np.
Note that each PE is capable of computing the MADs

for Dd max�1 with Dd max by equations (1)-(8). Each PE
is capable of obtaining the information for the current do-
main block ddi;j in each PE by equation (8). If i and j are
even numbers, this domain block is a component of the d�1
depth domain blocks, dd�1I;J , dd�1I�1;J , dd�1I;J�1, and dd�1I�1;J�1

where I = b i2c and J = b j2c. Since the isometric transfor-
mations of them are presented by equation (6), each PE is
capable of adding the distortion result of ddi;j to the result
for the d� 1 depth isometric transformed domain blocks.

The total steps needed for Phase 1 are (the number
of PEs)�(the fast distortion calculation for one domain
block)=(Np)

2 � (12C + 3).

4.3. The MAD calculation for other domain pools
(Phase 2)

Each PE has the memory to store the information of the
best matched domain block of Dd max and the MADs of all
the domain blocksDd max�1, . . . ,Dd min. Since one block
of the upper-level domain pool contains four blocks of the
lower-level domain pool, the MADs of upper-level domain
pool are obtained by the EA (Error Adder) modules that
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add four MADs of lower-level domain pool (see equation 7
and Figure 9). To obtain the MADs of all the domain pools
except Dd max, d max� d min steps are needed.

4.4. Quadtree-based encoding by the results of the
MAD calculation (Phase 3)

The results of the MAD calculation of all the domain
pools are stored in PEs and EAs. The results of the MADs
in each EA module are compared and the minimum MAD
is selected. If the minimum MAD value is above a prese-
lected threshold, then the block, corresponding to the value,
is divided into four blocks, corresponding to the connected
four EA modules, and the process is repeated. If the mini-
mum MAD value is below the threshold, the information of
the optimal domain block is stored. When the depth of the
quadtree is d max, the optimal domain block of Dd max is
the precalculated domain in PE. d max � d min steps are
needed to perform Phase 3 since the calculation of Phase 3
can be performed in parallel for each range block.

5. Conclusions

In this paper, we proposed a parallel architecture for
quadtree-based fractal image coding. The quadtree-based
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Figure 9. The MAD calculation of other do-
main pools by the EA modules.

encoding scheme is based on the flexible-size range blocks.
First, this architecture makes the maximum-depth domain
pool and calculates the MADs by using the fast comparison
module that is capable of executing eight isometric trans-
formations by one 360 degree rotation around the center.
The MADs of other domain pools are computed by adding
the MADs of the maximum-depth domain pool. Since the
most intensive operation is the MAD calculation of the
maximum-depth domain pool, its computational complex-
ity is the same to that of the fixed-size range encoding
scheme, that is different from the sequential computing.
However, the quadtree-based encoding scheme is capable of
yielding better performances than fixed-size range encoding
schemes.
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