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AbstractÐIn this paper, we propose a design for a new self-routing multicast network which can realize arbitrary multicast

assignments between its inputs and outputs without any blocking. The network design uses a recursive decomposition approach and is

based on the binary radix sorting concept. All functional components of the network are reverse banyan networks. Specifically, the new

multicast network is recursively constructed by cascading a binary splitting network and two half-size multicast networks. The binary

splitting network, in turn, consists of two recursively constructed reverse banyan networks. The first reverse banyan network serves as

a scatter network and the second reverse banyan network serves as a quasisorting network. The advantage of this approach is to

provide a way to self-route multicast assignments through the network and a possibility to reuse part of network to reduce the network

cost. The new multicast network we design is compared favorably with the previously proposed multicast networks. It uses O�n log2 n�
logic gates, and has O�log2 n� depth and O�log2 n� routing time where the unit of time is a gate delay. By reusing part of the network,

the feedback implementation of the network can further reduce the network cost to O�n logn�.

Index TermsÐMulticast network, self-routing, binary radix sorting network, reverse banyan network, compact routing, recursive

construction.
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1 INTRODUCTION

MULTICAST or one-to-many communication is one of the

most important collective communication operations

[1] and is highly demanded in parallel and distributed

applications as well as in other communication environ-

ments. For example, multicast is required to make updates

in replicated and distributed databases and in commonly

used parallel algorithms such as matrix multiplication and

Fast Fourier Transform (FFT). Multiprocessor systems also

require multicast for barrier synchronization and massage

passing, and multicast is a critical operation for video/

teleconference calls, video-on-demands services and dis-

tance learning in a telecommunication environment.

Clearly, providing multicast support at hardware/inter-

connection network level is the most efficient way support-

ing such communication operations, [2], [3]. A switching

network that can realize every multicast assignment

between its inputs and outputs over edge-disjoint trees is

referred to as a multicast network. This type of network has

been investigated by several researchers in the literature [4],

[5], [6], [7], [8], [9], [10].
In this paper, we design a new type of multicast network

using an approach based on recursive decompositions of

multicast networks. This approach was first introduced by

Nassimi and Sahni [4] and was later adopted by Lee and

OrucË [9] in their design of a multicast network. The n� n
multicast network proposed in [4] uses O�kn1�1

k logn� 2� 2

switches and has O�k logn� depth and O�k logn� routing

time for any k, 1 � k � logn.1 Since the routing algorithm in

[4] relies on a cube or a perfect shuffle connected parallel

computer consisting of O�kn1�1
k� processors, as mentioned

in [9], the routing process actually takes O�k log2 n� gate

delays. Lee and OrucË [9] designed a multicast network with

a special built-in routing circuit. Their network uses

O�n log2 n� logic gates, and has O�log2 n� depth and

O�log3 n� routing time where the unit of time is a gate delay.
Another notable feature in our multicast network design

is to adopt a self-routing scheme. Self-routing is a promising
routing scheme which usually renders a network with

faster switch setting and lower hardware complexity.
However, most of self-routing network designs described
in the literature are for permutation networks, for example,

[11], [12], [13], [14]. In a recent work, Cheng and Chen [14]
designed a new self-routing permutation network con-
structed by reverse banyan networks.

In this paper, we propose a design for a new self-routing

multicast network, which is also based on the reverse
banyan networks. We will explore the properties of a
reverse banyan network so that it can be used to handle

arbitrary multicast connections in a self-routing manner.
Different from earlier proposed multicast networks, the
new multicast network is conceptually simple and has good
modularity. The network design is based on the binary

radix sorting concept and all functional components of the
network are recursively constructed reverse banyan net-
works. Therefore, it has a potential to greatly reduce the

network cost by reusing part of the network. The new
multicast network we design uses O�n log2 n� logic gates,
and has O�log2 n� depth and O�log2 n� routing time where

the unit of time is a gate delay. Moreover, by reusing part of
the network, the feedback version of our design can reduce
the network cost to O�n logn�.
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The rest of the paper is organized as follows: Section 2

introduces the binary radix sorting concept and gives

the recursive definition of the new multicast network

based on it. Section 3 describes a key component of the

new multicast network, the binary splitting network.

Section 4 discusses the basic building block of the binary

splitting network, the reverse banyan network. Section 5

further explores the properties of the reverse banyan

network as a scatter network and as a quasisorting net-

work. Section 6 presents the distributed self-routing

algorithms, and Section 7 discusses the implementation

and complexity issues. Section 8 concludes the paper.

Finally, Appendices A, B, and C give some detailed proofs

and descriptions of the routing algorithms.

2 MULTICAST NETWORKS BASED oN BINARY

RADIX SORTING

We consider an n� n interconnection network with n

inputs and n outputs where n � 2m. Clearly, each input or

output address can be expressed as an m-bit binary number

a0a1 . . . amÿ1. For a multicast connection from network input

i (0 � i � nÿ 1) to a subset of network outputs, let Ii denote

the subset of the outputs that input i is connected to. Ii is

referred to as the destination set of the multicast connection,

or simply the destination set of input i. Then, a multicast

assignment can be expressed as a set fI0; I1; . . . ; Inÿ1g
where, Ii \ Ij � � for i 6� j and

Snÿ1
i�0 Ii � f0; 1; . . . ; nÿ 1g.

For example, the following is a multicast assignment of

an 8� 8 network: ff0; 1g; �; f3; 4; 7g; f2g; �; �; �; f5; 6gg:

We may also represent this multicast assignment in a

binary format:

000
001

� �
�;

011
100
111

8<:
9=;; 010f g; �; �; �; 101

110

� �8<:
9=;:

Clearly, a permutation assignment is a special case of a

multicast assignment where each Ii has, at most, one

element.
In this paper, we design a multicast network based on

binary radix sorting concept and refer to it as a binary radix

sorting multicast network (BRSMN). An n� n BRSMN can be

recursively constructed by an n� n binary splitting network

(BSN) followed by two n
2 � n

2 BRSMNs which are directly

linked to the upper half and the lower half of the outputs of

the n� n BSN, respectively. The construction is shown in

Fig. 1. For an input i, depending on its destination set we

have four possible cases:

. Case 1: If all elements in its destination set Ii are in
the upper half of the network outputs (i.e., the most
significant bit of every binary address in Ii is 0),
there will be a single connection from input i via the
n� n BSN to an input of the upper n

2 � n
2 BRSMN

with the same destination set Ii.
. Case 2: If all elements in Ii are in the lower half of the

network outputs (i.e., the most significant bit of
every binary address in Ii is 1), there will be a single
connection from input i via the BSN to an input of
the lower n

2 � n
2 BRSMN with the same destination

set Ii.
. Case 3: If some elements in Ii go to the upper half

and other elements in Ii go to the lower half (i.e., the
most significant bits of the addresses in Ii contain
both 0 and 1), there will be two connections from
input i via the BSN. One goes to the upper n

2 � n
2

BRSMN, and another goes to the lower n
2 � n

2
BRSMN. The original destination set Ii will be split
into two subsets which form the destination sets of
the corresponding inputs of the upper and the lower
n
2 � n

2 BRSMNs, respectively.
. Case 4: The destination set is empty (i.e., the input

carries no message).

Then, for an n
2 � n

2 BRSMN, we also have four cases for

each input, but this time we need to check the second most
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Fig. 2. A routing example for a multicast assignment in an 8� 8 BRSMN.

Fig. 1. The construction of an n� n binary radix sorting multicast

network (BRSMN).



significant bit of the binary addresses in the corresponding
destination set, and so on. Finally, for a 2� 2 BRSMN (i.e., a
2� 2 switch), realizing a multicast or a unicast connection is
straightforward. Fig. 2 shows the routing for the multicast
assignment in the example mentioned earlier in an 8� 8
binary radix sorting multicast network. From Fig. 2, we can
also see that n� n BRSMN is constructed by an n� n BSN
(level 1), followed by 2 n

2 � n
2 BSN's (level 2), then followed

by 22 n
22 � n

22 BSN's (level 3), . . . , and finally followed by n
2

2� 2 switches (level logn). For more discussions on this
type of multicast network structure, readers may also refer
to [9].

Clearly, the problem of constructing a binary radix
sorting multicast network (BRSMN) is now transformed to
the problem of designing a binary splitting network (BSN)
described above.

3 THE BINARY SPLITTING NETWORK

As described in Section 2, the function of the binary
splitting network is to split (when necessary) the multicast
connection on each input based on whether each output in
the destination set of the multicast connection belongs to the
upper half or the lower half of the network outputs, and
pass the (possibly split) multicast connections properly to
the upper or lower n

2 � n
2 BRSMNs following it. To simplify

the routing in a BSN, we use a routing tag with four values
for each link: 0, 1, �, and �, which correspond to Cases 1, 2,
3, and 4 described in the previous section, respectively, and
are determined by the ith most significant bit of the
multicast destination set on the inputs of BSNs at level i.

The operations on four values in a 2� 2 switch are
simply an extension to those on only two values 0 and 1.
Fig. 3 shows all legal operations on four values in a 2� 2
switch, where, the operations in Fig. 3a and Fig. 3b are

unicast with no value changed, and the operations in Fig. 3c
and Fig. 3d are broadcast with values � and � on the inputs
changed to 0 and 1 on the outputs.

In an n� n BSN using the four value routing tags, let n0,
n1, n�, and n� denote the numbers of inputs with value 0, 1,
�, �, respectively. Clearly, they satisfy some constraints.
First, we have

n0 � n1 � n� � n� � n: �1�
Since at most a half of the outputs are in the upper half of
the network outputs, we must have

n0 � n� � n
2

and n1 � n� � n
2
: �2�

Also, it is interesting to note that

n� � n�; �3�
which can be derived from (1) and (2).

Now, the function of a BSN is to transform the input tags
0s, 1s, �s, and �s to the output side such that all �s are
eliminated, all 0s are in the upper half of outputs, all 1s are
in the lower half of outputs. The numbers of the different
tags on the outputs of the BSN should have the following
relations: Let bn0, bn1, bn�, and n̂� denote the numbers of
outputs with value 0, 1, �, and �, respectively. Since any �
paired with one � will be transformed to a pair of 0 and 1 by
switch broadcast operations, we must have

bn0 � n0 � n�; bn1 � n1 � n�; bn� � n� ÿ n�; and cn� � 0: �4�
Having described the function of a BSN, we now

consider the construction of the BSN. An n� n BSN can
be constructed by cascading two n� n networks as shown
in Fig. 4a. The first network is referred to as a scatter network
which scatters all �s to 0s and 1s. In other words, the
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Fig. 3. Legal operations on the four values in a 2� 2 switch, where x; y 2 f0; 1; �; �g. (a)Parallel. (b) Crossing. (c) Upper broadcast. (d) Lower

broadcast.

Fig. 4. Tags scattered in the first subnetwork and then quasisorted in the second subnetwork. (a) The construction of a binary splitting network

(BSN). (b) An example of routing in a BSN.



transformation from the inputs to the outputs of the scatter
network is

f0; 1; �; �g� ) f0; 1; �g�:
The second network is referred to as a quasisorting

network which transfers all 0s to the upper half of the
network outputs, and all 1s to the lower half of the network
outputs, while each of �s may go to either the upper half or
the lower half. It is easy to see that the network constructed
by cascading a scatter network and quasisorting network
can perform the functions of a BSN.

In Fig. 4b, we show how input tags in a BSN are scattered
in the first subnetwork and then quasisorted in the second
subnetwork.

In this paper, we use a reverse banyan network to
implement both the scatter network and the quasisorting
network in a BSN. As can be seen later, this implementation
of a BSN not only leads to a faster self-routing multicast
network but also provides a possibility to reuse part of the
network to further reduce the network cost. In the following
sections, we will mainly discuss how a reverse banyan
network can perform the functions of a scatter network and
a quasisorting network.

4 THE REVERSE BANYAN NETWORK

The reverse banyan network (RBN) used in our design is a
variant of reverse banyan network, which was also used in

Cheng and Chen's permutation network [14]. An n� n
RBN is recursively constructed by two n

2 � n
2 RBNs followed

by an n� n merging network. An n� n merging network
consists of one stage of n

2 2� 2 switches, such that both the
input and the output links of the stage are connected
according to the perfect shuffle interconnection function
[15]. The merging network merges the outputs of the upper
and the lower n

2 � n
2 RBNs to form the outputs of the n� n

RBN. The recursive construction of an n� n RBN, and an
n� n merging network are shown in Fig. 5.

To facilitate the discussions on the functions of an RBN
as a scatter network and as a quasisorting network, we need
to introduce the following notations.

Suppose an n-bit sequence of two symbols, say, � and ,
is to be applied in parallel to the n inputs of a reverse
banyan network. We define an n-bit circular compact sequence
of two symbols �s and s as follows:

Cn
s;l;�; � ��s��l���nÿsÿl� if s� l � n

�lÿn�s���nÿl��nÿs� if s� l > n;

�
�5�

where 0 � s < n and 0 � l � n. The real meaning of Cn
s;l;�; is

that, in an n-bit sequence all l -bits are compacted together
followed by also compacted nÿ l �-bits in a circular way
(modulo n), and s is the starting position for the -bit
sequence. This concept is very important in this paper. In
fact, the key results of this paper pertain to that under what
conditions two circular compact sequences can be merged
into a longer circular compact sequence. For example, the
special circular compact sequence Cn

n
2;
n
2;0;1
� 0�

n
2�1�

n
2� is what

we expect after sorting tags 0s and 1s in a bit sorting
network. In a later section, we will see that circular compact
sequences will be used in merging and eliminating tags �s
and �s in a scatter network.

Cheng and Chen [14] considered the circular compact
sequence of 0s and 1s in their permutation network design,
and found an interesting property which was used in their
bit-sorting network. Since this property is also very useful
for the designs of the scatter network and quasisorting
network, we state it below in Theorem 1 in a more general
form, and provide a different, much easier to understand
proof for it. As can be seen later, the bit sorting network
directly related to Theorem 1 will be used in the
quasi-sorting network and the new technique used in the
proof (i.e., Lemma 1) and some observations will be applied
to the design of the scatter network.

Theorem 1. For any �- values on the inputs of an RBN, a
circular compact sequence with any starting position can be
achieved at the outputs of the RBN under a proper setting for
switches in the network.

Suppose the inputs of the n� n RBN consist of l s and
nÿ l �s, among which the upper half n

2 inputs contain l0 s
and the lower half n

2 inputs contain l1 s, where l0 � l1 � l.
Assume Theorem 1 holds for an n

2 � n
2 RBN. We will prove

that it also holds for an n� n RBN by giving a positive
answer to the following question.

Question 1. Given integers n, s, l, l0, and l1 satisfying that n is
an even number, 0 � s < n, 0 � l � n, 0 � l0; l1 � n

2 , and
l � l0 � l1, do there exist integers s0 and s1, 0 � s0; s1 <

n
2 ,
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Fig. 5. The recursive definition of an n� n RBN. The dashed box is an

n� n merging network.

Fig. 6. The connections through a switch in a merging network, where

�a � exchange �a�.



such that C
n
2

s0;l0;�; and C
n
2

s1;l1;�; can be merged to Cn
s;l;�;

through an n� n merging network (as defined in this
section) under a proper switch setting (in a one-to-one
mapping manner)?

Before we answer this question, we first review some
observations on the shuffle/exchange interconnection func-
tions. Consider an n� n merging network. Recall that the
inputs (outputs) of the merging network are linked to
switches according to the perfect shuffle function. Let a be a
binary address of an input of a switch (with address ba2c) in
the network. Then exchange�a� denoted as �a is the other
input of the switch. The inputs of the merging network with
addresses shuffle�a� and shuffle��a� are linked to inputs a and
�a of the switch, respectively, and the outputs a and �a of the
switch are linked to the outputs of the merging network
with addresses shuffle�a� and shuffle��a�, respectively. (See
Fig. 6, and the definition of shuffle/exchange functions in
[15].) We can see that connections are only possible between
the inputs and the outputs of a merging network with
addresses shuffle�a� and shuffle��a�. Since only one-to-one
connections are considered here, the switch has only two
settings: parallel and crossing. The parallel setting
corresponds to the connections from input shuffle�a� to
output shuffle�a� and from input shuffle��a� to output
shuffle��a� (see Fig. 7a); while the crossing setting corre-
sponds to the connections from input shuffle�a� to output
shuffle��a� and from input shuffle��a� to output shuffle�a� (see
Fig. 7b). Note that jshuffle�a� ÿ shuffle��a�j � n

2 , that is,
two inputs n

2 apart in their addresses can be connected to
outputs with the same addresses in a parallel or crossing
way as shown in Fig. 7a and Fig. 7b, respectively.

Let ri denote the setting for switch i. Let ri � 0 if the

switch is set to parallel, and ri � 1 if the switch is set to

crossing. Thus, the switch setting of the n
2 switches in the

merging network is an n
2 -bit sequence of 0s and 1s. Similar

to the definition of circular compact sequence in (5), we use

W
n
2

s;l;0;1 to specify the compact switch setting of n2 switches in

an n� n merging network, where l consecutive switches

have setting 1 with starting position s, and the rest of
switches have setting 0 in a circular way. In the case of a
switch can also be set to upper broadcast and lower
broadcast as shown in Fig. 3c and Fig. 3d, for any switch i,

in addition to switch settings ri � 0 or 1, let the switch

setting ri � 2 if the switch is set to upper broadcast, and

ri � 3 if the switch is set to lower broadcast. We can extend

the binary circular compact switch setting to trinary. We

explain the extension by the following example. A trinary

circular compact sequence of switch setting W
n
2

s;l1;l2;�1;�2;�3

means l1 consecutive �2s followed by l2 consecutive �3s and

then followed by n
2 ÿ l1 ÿ l2 �1s in a circular way, with s

being the starting position of the �2s sequence.
The following lemma gives a positive answer to

Question 1.

Lemma 1. Given integers n, s, l, l0, and l1 satisfying that n is an

even number, 0 � s < n, 0 � l � n, 0 � l0; l1 � n
2 , and

l � l0 � l1. Let

s0 � s mod
n

2
; s1 � �s� l0� mod

n

2

and the switch setting of an n� n merging network be

W
n
2

0;s1;�b;b
, where

b � �s� l0� div
n

2

h i
mod 2;

and �b � �1ÿ b� mod 2. Then, C
n
2

s0;l0;�; and C
n
2

s1;l1;�; can be

merged to Cn
s;l;�; through the n� n merging network under

the above switch setting.
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Fig. 7. Four different switch settings for a 2� 2 switch in an n� n
merging network. (a) Parallel. (b) Crossing. (c) Upper broadcast. (d)

Lower broadcast.

Fig. 8. The binary tree structure of an RBN. (a) The forward and backward phases in the binary tree. (b) The forward and backward trees embedded

in a reverse banyan network.



Proof. See Appendix A. tu

Lemma 1 is actually the inductive step of the proof of
Theorem 1, and it is easy to check that for n � 2 Theorem 1
holds. Hence, Theorem 1 is proved.

Note that for a full permutation assignment, only two tag
values 0 and 1 are used. Let � be 0,  be 1, and the initial
starting position for an n� n RBN be s � n

2 . Clearly the total
number of 1s in this case is l � n

2 . By Theorem 1, the circular
compact sequence Cn

s;l;0;1 � 0�
n
2�1�

n
2�, which represents the

function of bit sorting (in an ascending order), can be
achieved by a proper switch setting.

5 CONSTRUCTING THE BINARY SPLITTING

NETWORK BY THE RBNS

Recall that a binary splitting network consists of a scatter
network and a quasisorting network. In this section, we
show how to use the same basic component network, a
reverse banyan network, to perform the function of a scatter
network and the function of a quasisorting network,
respectively.

5.1 The Reverse Banyan Network as a Scatter
Network

In the last section, we considered only two tag values

(0 and 1) for a full permutation assignment in an RBN.

Now, for a multicast assignment in an RBN, we must deal

with four tag values 0, 1, �, and �. Recall that the function of

a scatter network is to split the �s on its input into 0s and 1s

on its output.
The following theorem gives one of the main results of

this paper, which states that the function of a scatter
network can be achieved under a proper switching setting.
The proof of this theorem is given at the end of this
subsection.

Theorem 2. Given an n� n RBN, which is used as the scatter
network of an n� n BSN, with 0, 1, � and � values on the
inputs. Let n0, n1, n�, and n� be the numbers of inputs with
value 0, 1, �, and �, respectively. Then under a proper setting
for switches in the network, �s can be eliminated at the outputs
of the RBN, i.e. the outputs of the RBN have only values 0, 1,
and � with

bn0 � n0 � n�; bn1 � n1 � n�; bn� � n� ÿ n�; and cn� � 0;

where bn0, bn1, bn�, and cn� are the numbers of outputs with value
0, 1, �, and �, respectively, and satisfying that 0 � bn0; bn1 � n

2

and bn0 � bn1 � bn� � n.

It is worth pointing out that although n� � n� holds
globally for the original n� n RBN which is the scatter
network of an n� n BSN (see (3)), for the recursively
defined subnetwork n0 � n0 RBN of the n� n RBN, we may
have n0� � n0�, where n0� and n0� are the numbers of inputs (of
this n0 � n0 RBN) with values � and �, respectively. This is
because that �s and �s are distributed nonuniformly.

To simplify the problem, we can combine 0 and 1 into a
single value �. A link has a value � if it has a single value 0
or 1. If the two inputs of a 2� 2 switch have values � and �
respectively, � can be scattered so that the two outputs of

the switch have values �s. By exploring the properties of the
circular compact sequence, we can obtain the following
general results for an n� n RBN with any numbers of �s
and �s on its inputs. This result will be used in the proof of
Theorem 2.

Theorem 3. For any values on the inputs of an n� n RBN, let
n�, and n� be the numbers of inputs with value � and �,
respectively. Clearly, n� � n� � n, and the rest of the inputs of
the RBN have values �s. Let s be any integer such that
0 � s < n. Then,

1. if n� � n�, a circular compact sequence Cn
s;n�ÿn�;�;�

with any starting position s can be achieved at the
outputs of the RBN under a proper setting for switches
in the network;

2. if n� � n�, a circular compact sequence Cn
s;n�ÿn�;�;�

with any starting position s can be achieved at the
outputs of the RBN under a proper setting for switches
in the network.

In the above theorem, we say that � (or �) is the dominating
type among � and � if n� � n� (or n� � n�).

We now further explore the property of the circular

compact sequence in order to deal with multicast assign-

ments. In the case of merging two circular compact

sequences with the same set of binary values, (for example,

merging two sequences with �s and �s, C
n
2

s0;l0;�;� and

C
n
2

s1;l1;�;�), we can simply use the results in Theorem 1 or

Lemma 1. However, in other cases, we may also need to

merge two circular compact sequences with different sets of

binary values (for example, merging a sequence with �s and

�s, C
n
2

s0;l0;�;�, and a sequence with �s and �s, C
n
2

s1;l1;�;�). In this

case, we need to add two more switch settings: upper

broadcast and lower broadcast, and use the notation of the

trinary circular compact switch setting defined in Section 4.

To merge two compact sequences with different sets of

binary values, the following question must be answered.

Question 2. Given integers n, s, l, l0, and l1 satisfying that n is

an even number, 0 � s < n, 0 � l � n, 0 � l1 � l0 � n
2 , and

l � l0 ÿ l1, do there exist integers s0 and s1 (0 � s0; s1 <
n
2 )

such that C
n
2

s0;l0;�;� and C
n
2

s1;l1;�;� can be merged to Cn
s;l;�;�

through an n� n merging network under a proper switch

setting?

The following lemma gives a positive answer to
Question 2.

Lemma 2. Given integers n, s, l, l0, and l1 satisfying that n is an

even number, 0 � s < n, 0 � l � n, 0 � l1 � l0 � n
2 , and

l � l0 ÿ l1. Let

s0 � s mod
n

2
; s1 � �s� l� mod

n

2

and the switch setting be

1. W
n
2

s1;l1;0;2, if s� l < n
2 ;

2. W
n
2

s1;l1;
n
2ÿs1ÿl1;1;2;0, if s < n

2 and s� l � n
2 ;

3. W
n
2

s1;l1;1;2, if s � n
2 and s� l < n;
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4. W
n
2

s1;l1;
n
2ÿs1ÿl1;0;2;1, if s � n

2 and s� l � n.

Then, C
n
2

s0;l0;�;� and C
n
2

s1;l1;�;� can be merged to Cn
s;l;�;� through

an n� n merging network under the above switch setting.

Proof. See Appendix B. tu

Question 2 has three other symmetric variants, which
can be obtained by changing the condition in Lemma 2 to
l1 � l0 and l � l1 ÿ l0, and/or swapping � for �. The
corresponding solutions to these three variants are also
symmetric. Lemmas 3, 4, and 5 give such solutions.

By swapping l0 for l1 in Lemma 2, we can obtain the
following lemma.

Lemma 3. Given integers n, s, l, l0, and l1 satisfying that n is an
even number, 0 � s < n, 0 � l � n, 0 � l0 � l1 � n

2 , and
l � l1 ÿ l0. Let

s0 � �s� l� mod
n

2
; s1 � s mod

n

2

and the switch setting be

1. W
n
2

s0;l0;1;2, if s� l < n
2 ;

2. W
n
2

s0;l0;
n
2ÿs0ÿl0;0;2;1, if s < n

2 and s� l � n
2 ;

3. W
n
2

s0;l0;0;2, if s � n
2 and s� l < n;

4. W
n
2

s0;l0;
n
2ÿs0ÿl0;1;2;0, if s � n

2 and s� l � n,

then, C
n
2

s0;l0;�;� and C
n
2

s1;l1;�;� can be merged to Cn
s;l;�;� through an

n� n merging network under the above switch setting.

The two other variants are obtained by simply swapping
� for �, and changing upper broadcast to lower broadcast in
Lemma 2 and Lemma 3, respectively.

Lemma 4. Given integers n, s, l, l0, and l1 satisfying that n is an
even number, 0 � s < n, 0 � l � n, 0 � l1 � l0 � n

2 , and
l � l0 ÿ l1. Let

s0 � s mod
n

2
; s1 � �s� l� mod

n

2

and the switch setting be

1. W
n
2

s1;l1;0;3, if s� l < n
2 ;

2. W
n
2

s1;l1;
n
2ÿs1ÿl1;1;3;0, if s < n

2 and s� l � n
2 ;

3. W
n
2

s1;l1;1;3, if s � n
2 and s� l < n;

4. W
n
2

s1;l1;
n
2ÿs1ÿl1;0;3;1, if s � n

2 and s� l � n,

then, C
n
2

s0;l0;�;� and C
n
2

s1;l1;�;� can be merged to Cn
s;l;�;� through an

n� n merging network under the above switch setting.

Lemma 5. Given integers n, s, l, l0, and l1 satisfying that n is an

even number, 0 � s < n, 0 � l � n, 0 � l0 � l1 � n
2 , and

l � l1 ÿ l0. Let

s0 � �s� l� mod
n

2
; s1 � s mod

n

2

and the switch setting be

1. W
n
2

s0;l0;1;3, if s� l < n
2 ;

2. W
n
2

s0;l0;
n
2ÿs0ÿl0;0;3;1, if s < n

2 and s� l � n
2 ;

3. W
n
2

s0;l0;0;3, if s � n
2 and s� l < n;

4. W
n
2

s0;l0;
n
2ÿs0ÿl0;1;3;0, if s � n

2 and s� l � n,

then, C
n
2

s0;l0;�;� and C
n
2

s1;l1;�;� can be merged to Cn
s;l;�;� through

an n� n merging network under the above switch setting.

Now we are in the position to prove Theorem 3 by using

Lemmas 1, 2 ,3, 4, and 5.

Proof of Theorem 3. By induction on the network size n.

For n � 2 (base case), the network is a 2� 2 switch. There

are six possible cases:

. Case 2.1. n� � n� � 0. Let the switch set to
parallel. Then both outputs of the switch have
�s, that is, sequence C2

s;0;�;� (or equivalently
C2
s;0;�;�) can be achieved at the outputs of the

switch for 0 � s � 1.
. Case 2.2. n� � n� � 1. Let the switch set to either

upper-broadcast or lower-broadcast (depending
on which input of the switch has �). Then both
outputs of the switch have �s as in Case 2.1.

. Case 2.3. n� � 1 and n� � 0. Let the switch set to
parallel, if s � 0 and the upper input has �, or
s � 1 and the lower input has �. Otherwise, let
the switch set to crossing. Then sequence C2

s;1;�;�

can be achieved at the outputs of the switch for
0 � s � 1.

. Case 2.4. n� � 0 and n� � 1. Similar to Case 2.3.

. Case 2.5. n� � 2 and n� � 0. Let the switch set to
parallel. Then sequence C2

s;2;�;� can be achieved at
the outputs of the switch for 0 � s � 1.

. Case 2.6. n� � 0 and n� � 2. Similar to Case 2.5.

Hence, Theorem 3 holds for n � 2. Now, assume
Theorem 3 holds for an n

2 � n
2 RBN (inductive hypothesis)

and consider an n� n RBN. In the recursive definition of
an n� n RBN, let n0� and n0� denote the numbers of �s
and �s, respectively in the upper n

2 � n
2 RBN, and n00� and

n00� denote the numbers of �s and �s in the lower n
2 � n

2
RBN, respectively. Clearly, we have

n0� � n00� � n� and n0� � n00� � n�:
We first assume n� � n� and consider the following

cases:

. Case n
2 1. n0� � n0� and n00� � n00� . By the inductive

hypothesis, Theorem 3 holds for both upper and
lower n

2 � n
2 RBNs. That is, for any given integers

s0 a n d s1 ( 0 � s0; s1 <
n
2 ) , C

n
2

s0;n0�ÿn0�;�;� a n d
C

n
2

s1;n00�ÿn00��;� can be achieved at the outputs of the
upper and lower n

2 � n
2 RBNs, respectively. Now,

let l0 � n0� ÿ n0�, l1 � n00� ÿ n00�, and l � n� ÿ n�,
which implies l � l0 � l1. Then by Lemma 1,
given any integer s (0 � s < n), there exist
integers s0 and s1 (0 � s0; s1 <

n
2 ) such that

C
n
2

s0;l0;�;� and C
n
2

s1;l1;�;� can be merged to Cn
s;l;�;�

through the n� n merging network under a
proper switch setting. Hence, Theorem 3 holds
in this case.

. Case n
2 2. n0� � n0� and n00� � n00� . By the

inductive hypothesis, for any given integers s0

a n d s1 ( 0 � s0; s1 <
n
2 ) , C

n
2

s0;n0�ÿn0�;�;� a n d
C

n
2

s1;n00�ÿn00� ;�;� can be achieved at the outputs of
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the upper and lower n
2 � n

2 RBNs, respectively.
Let l0 � n0� ÿ n0�, l1 � n00� ÿ n00� , and l � n� ÿ n�.
Then we have l � l0 ÿ l1 and l0 � l1. By Lemma
4, given any integer s (0 � s < n), there exist
integers s0 and s1 (0 � s0; s1 <

n
2 ) such that

C
n
2

s0;l0;�;� and C
n
2

s1;l1;�;� can be merged to Cn
s;l;�;�

through the n� n merging network under a
proper switch setting. Thus, the result is also
true in this case.

. Case n
2 3. n0� � n0� and n00� � n00� . Similar to Case n

2 2,
by the inductive hypothesis and Lemma 3, we can
see Theorem 3 holds in this case. tu

Thus, we have proved Theorem 3 for n� � n�. Symme-
trically, we can show that the theorem holds for n� � n�.

In the proof of Theorem 3, we can see that the number of
the tag values of dominating type in the outputs of an RBN
is the sum of those in its two sub-RBNs, if the two
sub-RBNs have the same dominating type. In this case,
Lemma 1 is applied, and we refer to it as �/�-addition. On
the other hand, the number of the tag values of dominating
type is the difference between those of its two sub-RBNs,
if the two-sub RBNs have different dominating types. In
this case, Lemmas 2, 3, 4, and 5 are applied, and we refer
to it as �/�-elimination.

Finally, we are in the position to prove Theorem 2 by
using Theorem 3.

Proof of Theorem 2. Since n� � n� holds for the original
n� n RBN which is the scatter network of an n� n BSN
(see (3)), by Theorem 3 we can always eliminate �s at the
outputs of the RBN under a proper switch setting (i.e.,
Cn
s;n�ÿn�;�;� can be achieved at the outputs of the RBN,

where s can be any number between 0 and nÿ 1). On the
other hand, from the proof of Theorem 3, we know that a
tag value 0 or 1, once presented on a link at some stage of
the RBN, will be passed in a unicast way to some output
without any value change. We also know that value
changes among 0s, 1s, �s, and �s occur only in some 2� 2
switches. In this case, two inputs of the switch have �
and �, respectively, the switch setting is upper or lower
broadcast (this is always true in our design), and two
outputs of the switch have 0 and 1 respectively.
Consequently, a pair of � and � are transformed to a
pair of 0 and 1. In total, n� such pairs are transformed.
Hence, bn0, bn1, bn�, and cn�, which are the numbers of
outputs with value 0, 1, �, and �, respectively, satisfy the
following:

bn0 � n0 � n�; bn1 � n1 � n�; bn� � n� ÿ n�; and cn� � 0:

Also by using (1) and (2), we show that 0 � bn0; bn1 � n
2

and bn0 � bn1 � bn� � n. tu
5.2 The Reverse Banyan Network as a Quasisorting

Network

The results of Theorem 1 can be used to perform bit sorting
in an RBN, that is, under a proper switch setting, all 0s and
1s on the inputs of the RBN can be routed to its outputs in
an ascending order. However, this works only for full
permutation assignments, in which each input of the RBN
has a tag value either 0 or 1, and cannot be directly applied
to partial permutation or multicast assignments.

In the following, we discuss how an RBN can be used as
a quasisorting network for partial permutation or multicast
assignments. As can be seen in the last subsection, the
outputs of the n� n RBN as a scatter network have tag
values 0, 1, and � only, which are passed to the inputs of the
n� n RBN as a quasisorting network, and the numbers of
such 0s or 1s are no more than n

2 . The function of an n� n
RBN as a quasisorting network is to route all 0s and 1s on
the inputs of the RBN to the upper and lower halves of its
outputs, respectively, and to route �s to the remaining
positions at the outputs. We can let some of �s be dummy 0s
(denoted as �0s) and the rest of �s be dummy 1s (denoted as
�1s), such that both the number of all 0s (including all the
real 0s and the dummy 0s) and the number of all 1s
(including all the real 1s and the dummy 1s) are equal to n

2 .
Then by applying the bit sorting results in Theorem 1 we
can achieve the quasisorting. The distributed algorithm
dividing �s to �0s and �1s will be given in Section 6.

6 THE DISTRIBUTED SELF-ROUTING ALGORITHMS

FOR RBNS

Lemmas 1, 2, 3, 4, and 5 actually provide a way to perform
switch setting for all the switches in an RBN as a bit sorting
network and as a scatter network, while switch setting for
an RBN as a quasisorting network can be transformed to
that for an RBN as a bit sorting network after all the �s on
the inputs are properly divided into �0s and �1s.

In this section, we give a higher level description of the
distributed self-routing algorithms used in switch setting
for each type of RBNs: As a bit sorting network and as a
scatter network, and describe a distributed algorithm for
dividing �s to �0s and �1s in a quasisorting network.
Needless to say, these switch setting algorithms can be
implemented using proper logic circuits. In Section 7, we
will discuss how they can be implemented in a pipelined
fashion so that the circuits used for the switch setting can be
distributed to each switch module and a lower hardware
cost can be achieved.

By observing Lemmas 1, 2, 3, 4, and 5, we can see that
switch setting at the last stage of RBN can be obtained if n,
s, l0, and l1 are given. Before the switch setting being
determined, l must be obtained from l0 and l1 (forward
phase), and s0 and s1 must be obtained from s, l (or l0 in
Lemma 1) and n (backward phase). We can use the
recursive property of an RBN to design a distributed
routing algorithm for switch setting in the RBN.

Based on the recursive construction of an RBN, we can
formulate the structure of an RBN into a complete binary
tree shown in Fig. 8a. The root node of the tree represents
the original RBN as a bit sorting network, a scatter network,
or a quasisorting network; the two child nodes of the root
represent the two recursively defined sub-RBN networks of
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the original RBN and so on; and, finally, the leaves of the

tree represent the inputs of the original RBN.
The distributed algorithms are performed by each node

of the binary tree. The algorithms start from leaves and

perform forward computations all the way to the root, and

then start from root and perform backward computations

all the way to the leaves. For a clearer presentation, we omit

the initialization step in each of the algorithms.

6.1 Distributed Switch Setting Algorithms

The switch setting at a node of the binary tree means the

compact switch setting for all the switches in the last stage

of the RBN represented by this node. Typically, there are

three phases performed at each node of the tree. In the

forward phase, whenever the two forward inputs l0 and l1
are available, l is computed and sent forward to the node in

the next stage. In the backward phase, whenever the two

forward inputs l0 and l1 and the backward input s are

available, s0 and s1 are generated and sent backward to the

nodes in the previous stage. In the switch setting phase,

under the same precondition as the backward phase, each

switch is set simultaneously by using the forward and

backward input values and its own address in the stage.

The self-routing algorithm for the RBN as a bit sorting

network is shown in Table 3 in Appendix C. It directly

follows Lemma 1. The self-routing algorithm for the RBN as

a scatter network is described in Table 4 in Appendix C.

This algorithm actually combines the results of all cases in

Lemmas 1, 2, 3, 4, and 5. The variable type in the

algorithm represents the dominating type among �s and

�s in the corresponding sub RBN network of size n0 � n0.
If the two dominating types in the forward inputs agree

(i.e., �/�-addition), Lemma 1 applies as in the algorithm

for the RBN as a bit sorting network; otherwise (i.e.,

�/�-elimination) Lemmas 2, 3, 4, and 5 apply. The

functions BinaryCompactSetting() and TrinaryCompactSet-

ting() used in the algorithms correspond to the compact

switch setting in those lemmas, and are described in

Table 5 in Appendix C. All switches in one stage are set

simultaneously according to the forward and backward

values of the n0 � n0 subnetwork and its own switch-

address in modulo n0
2 .

6.2 Distributed �-Dividing Algorithm in a
Quasisorting Network

As stated in the last section, in an n� n RBN quasisorting

network, the tag value on each input belongs only to
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f0; 1; �g, and the number of the inputs with tag 0 or the
number of the inputs with tag 1 are no more than n

2 . The
function of �-dividing algorithm is to reassign �0 (dummy 0)
or �1 (dummy 1) to each input with tag value � such that
both the number of all 0s (including real 0s and dummy 0s)
and the number of all 1s (including real 1s and dummy 1s)
on the inputs of the network are equal to n

2 .
The distributed �-dividing algorithm is given in Table 6

in Appendix C. There are a forward phase and a backward
phase performed at each node of the binary tree in Fig. 8a.
The forward phase is to compute n�, the number of �s in the
inputs of the sub-RBN represented by this node, when n0�
and n00� , the numbers of �s in the inputs of its two sub-RBNs
are available. Clearly, we have

n� � n0� � n00� : �6�
When the forward phase reaches the root node, the
backward phase starts, which will determine that among
n� of �s, how many should be dummy 0s (�0s) and how
many should be dummy 1s (�1s). Denote the numbers as n�0
and n�1 , respectively. We must have

n� � n�0 � n�1 ; �7�
and

n�0 � n0�0 � n00�0 ; �8�

n�1 � n0�1 � n00�1 ; �9�
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where n0�0 and n0�1 , and n00�0 and n00�1 are the numbers of
dummy 0s and dummy 1s for two child nodes, respectively.
Equations (6), (8), and (9) are invariants for all but leaf
nodes and (7) is an invariant for all nodes. To balance the
number of 0s and the number of 1s (both ªrealº and
ªdummyº ones), initially in the backward phase, n�0 and n�1
of the root node can be set to

n�1 �
n

2
ÿ n1 and n�0 � n� ÿ n�1

where n1 represents the number of the real 1s of the RBN,
which can also be computed through the forward phase.
Then, n0�0 and n0�1 , and n00�0 and n00�1 of the child node can be
computed and passed backward as in the backward
algorithm. That is, when forward inputs n0� and n00� and
backward inputs n�0 and n�1 are available, the backward
outputs is computed as follows:

n0�0 � minfn�0 ; n0�g; n0�1 � n0� ÿ n0�0 ;
n00�0 � n�0 ÿ n0�0 ; and n00�1 � n00� ÿ n0�1 :

It can be verified that the invariants shown in (6), (7), (8),
and (9) hold at every node. Finally, in the last step of the
algorithm, if the n�0 of a leaf node is 1, this input is assigned

an �0, and if the n�1 of the leaf node is 1, this input is

assigned an �1.

7 IMPLEMENTATION ISSUES AND COMPLEXITY

ANALYSES

In this section, we first discuss some implementation issues

pertaining to the newly designed self-routing multicast

network, and then analyze the complexity of the network.

7.1 Routing Tag Format and Handling

To send a multicast message (i.e., multidestination message)

through a multicast network, the header of the message

must carry the information of the addresses of the

destination nodes. This information, as an overhead due

to the nature of this type of communication, is considered as

part of the message data. The preparation of the header is

done before the message enters the network. For more

detailed discussions on this issue and various multiaddress

encoding schemes, readers can refer to [3]. In this subsec-

tion, we introduce a multiaddress encoding scheme for the

routing tag of the proposed self-routing multicast network,

and briefly describe the routing tag handling technique.
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In order to describe the multicast routing tag format, we
first need the following preparations.

A multicast, represented by a set of addresses of its
destinations in binary, in an n� n BRSMN can be expressed
as a complete binary tree of height logn (number of levels)
with each node assigned a tag value chosen from f0; 1; �; �g.
In this binary tree, level i (1 � i � logn) gives the informa-
tion of the ith most significant bits of the destinations of the
multicast. The binary tree can also be defined recursively as
follows: The root node (i.e., the unique node in level 1) of
the tree represents the entire multicast, and its left (or right)
child node in level 2, represents a multicast which is formed
by all the destination addresses of the original multicast
with the most significant bit being 0 (or 1). In general, for a
node in level i �1 � i � lognÿ 1�, its left (or right) child
node in level i� 1 represents a multicast which is formed
by all the destination addresses of the multicast at this node
in level i with the ith most significant bit being 0 (or 1). The
tag assigned to each node in the binary tree depends on the
multicast it represents. For a node in level i �1 � i � logn�,
it is assigned the tag � if and only if the destination
addresses of the multicast it represents have both 0 and 1 in
the ithe most significant bit; it is assigned the tag 0 (or 1) if,
and only if, the destination addresses of the multicast it
represents have only 0 (or 1) in the ith most significant bit; it
is assigned the tag � if and only if it represents an empty
multicast. Clearly, for a node in level i �1 � i � lognÿ 1�, if
it has a tag �, both its children must have a tag other than �;
if it has a tag 0 (or 1), its left (or right) child must have a tag
other than �, and its right (or left) child must have a tag �;
and if it has a tag �, both its children have a tag �. It can be
shown that, for a given multicast, the binary tree with tags
defined above is unique. Fig. 9a and Fig. 9b give two
examples of the binary trees with a tag at each node and
their corresponding multicasts.

Now we are in the position to describe the multicast
routing tag format and its handling technique. First of all,
any network input without a message is always assumed to
have a tag �. Each message at a network input is assigned a
routing tag sequence a0; a1; a2; . . . ; a2nÿ3; a2nÿ2, which
corresponds to the complete binary tree of the multicast
on the input. We use a0 as the routing tag to route the
message on this input in the n� n BSN, i.e., set up switches
in the scatter and quasisorting networks as described in
Section 5; then pass the rest of tags along the setup path(s)

through the n� n BSN so that the tags can be used as

routing tag sequence(s) of the upper or lower or both n
2 � n

2

BSNs. As shown in Fig. 10, if a0 equals �, it passes

a1; a3; . . . ; a2nÿ3 to the upper n
2 � n

2 BSN and a2; a4; . . . ; a2nÿ2

to the lower n
2 � n

2 BSN simultaneously; if a0 equals 0 (or 1),

it passes only a1; a3; . . . ; a2nÿ3 (or a2; a4; . . . ; a2nÿ2) to the

upper (or lower) n
2 � n

2 BSN. Passing ais alternatively to the

upper and the lower subnetworks is for efficiency con-

sideration. In fact, this way only a constant number of

buffers are needed to store the tag sequence at each input of

a BSN as it passes through the network. To ensure the

message is sent to the destinations of the multicast, the

sequences a1; a3; . . . ; a2nÿ3 and a2; a4; . . . ; a2nÿ2 must match

the left and the right subtrees of the original complete

binary tree. This should also hold for all smaller BSNs.

Thus, the routing tag sequence a0; a1; a2; . . . ; a2nÿ3; a2nÿ2

consists of all tags of the complete binary tree arranged in a

proper order. In the following, we give a formal definition

of the routing tag sequence.
Let SEQ denote the final routing tag sequence for a

multicast. Let the tags of all 2iÿ1 nodes (from left to right) in

level i �1 � i � logn� be ti1; ti2; . . . ; ti;2iÿ2 ; ti;2iÿ2�1; . . . ; ti;2iÿ1

which is denoted as sequence SEQi (Fig. 11 gives an

example for n � 16). Let conc be a function which con-

catenates a number of sequences to form a single sequence,

merge be a function which merges two sequences of equal

length and is defined as:

merge�b1; b2; . . . ; bk; c1; c2; . . . ; ck� � b1; c1; b2; c2; . . . ; bk; ck

�10�
and order be a recursive function of a sequence of length

k � 2i which is defined as:

order�b1; . . . ; bk� � merge�order�b1; . . . ; bk
2
�;

order�bk
2�1; . . . ; bk��; and order�b1� � b1:

�11�

Finally, the routing tag sequence is defined as:

SEQ � conc�order�SEQ1�; order�SEQ2�; . . . ;

order�SEQlogn��:
�12�

In the example shown in Fig. 11 for n � 16, we have the

ordered sequences of four levels,
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order�SEQ1� � t11;

order�SEQ2� � t21; t22;

order�SEQ3� � t31; t33; t32; t34; and

order�SEQ4� � t41; t45; t43; t47; t42; t46; t44; t48:

Thus, the final routing tag format is their concatenation:

t11; t21; t22; t31; t33; t32; t34; t41; t45; t43; t47; t42; t46; t44; t48: �13�
We omit the proof of (12). Instead, we verify its
correctness by checking the tag sequence (13) in the
example and, for simplicity, we check only one branch of
the binary tree. By using our tag handling method, the
tag sequence t21; t31; t32; t41; t43; t42; t44, which corresponds
to the left subtree, is sent to the upper 8� 8 BSN; and
then the tag sequence t31; t41; t42, which corresponds to the
first subtree in level 3, is sent to the upper 4� 4 BSN,
and so on. For the multicast examples in Fig. 9a and
Fig. 9b, their routing tag sequences are 00����� and
�1��011, respectively, and Fig. 9c shows the handling for
these two sequences.

7.2 Circuit Design Issues

Based on the distributed self-routing algorithms presented

in the last section, we can design a self-routing circuit for

our RBN-based multicast network in a similar approach to

Cheng and Chen's [14] self-routing circuit design for their

RBN-based permutation network. In this subsection, we

only briefly discuss some circuit design issues.

First of all, as can be seen, the different tag values 0, 1, �,
and � (including �0 and �1) are used in the RBN as a scatter
network and as a quasisorting networks. We need to use
three bits, b0b1b2 to represent a tag value. Table 1 lists an
encoding scheme for these tag values. Also, when we
compute the numbers of �s, �s, and 1s on the inputs, we
need a combination of all the bits for every input tag. In this
encoding, we can use b0 ^ �b1 of an input tag for counting the
number of � for this input, and use b0 ^ b1 for counting the
number of � of an input in the forward phases of
self-routing for the RBN as a scatter network and �-dividing
algorithm for the RBN as a quasisorting network.
Furthermore, since only 0s, 1s, and �s (including �0s and
�1s) can be the input tags for the RBN as a quasi-sorting
network, we need to use only bit b2 of an input tag for
counting all 1s (including real and dummy 1s) in the
forward phase of self-routing for this RBN.

Second, the binary tree structure used in all distributed
algorithms can be embedded into an RBN. For a balanced
hardware distribution, we separate the tree to a forward
tree and a backward tree as shown in Fig. 8b, where the first
and the last switches of the last stage of a sub-RBN network
can serve as the nodes in the forward tree and the backward
tree, respectively, and the switches in between can use the
results from these two nodes for their switch settings.

Third, we can see that the most frequently used
operation in the distributed algorithms is addition (or
addition-like operations). For an n� n RBN, the maximum
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Fig. 9. (a) and (b) Examples of the binary trees with tags and their corresponding multicasts. (c) Routing tag sequences for (a) and (b) and their

routing.

Fig. 10. Three possible cases of routing in an n� n BSN.



values of n�, n�, or n1 are n, which can be represented by
using at most logn bits. We implement the adder in a
pipelined fashion as shown in Fig. 12. Then, the logn bit
adder can be reduced to a one bit adder. Also, since the
distributed algorithms work in a pipelined fashion, the
delay caused by running the forward and the backward
processes is also reduced.

7.3 Feedback Implementation of the Network

Note that in our design all major functional components are
recursively defined reverse banyan networks. We can easily
reuse part of the network to reduce network cost. In
particular, we can construct a feedback version of our
multicast network, BRSMN as depicted in Fig. 13. Let an
n� n BSN use only one n� n RBN, with each output fed
back to the input with the same address. The first pass on
the RBN functions as a scatter network and the second pass
functions as a quasisorting network. Note that in the
original design of the BRSMN, (see Fig. 2 for an example),
the n� n BSN is followed by two n

2 � n
2 BSNs, and so on.

Now, a BSN is simply an RBN of the same size and an n� n
RBN consists of two n

2 � n
2 RBNs followed by an n� n

merging network (see Fig. 5). In the feedback version of the
network, after the first split according to the most
significant bit of a destination address, we can reuse the
two n

2 � n
2 RBNs in the n� n RBN as the two BSNs to

perform the second split according to the second most
significant bit of the destination address, and so on.
Consequently, the feedback version of an n� n BRSMN is
simply an n� n RBN.

7.4 Complexity Analyses

In this subsection, we analyze the hardware cost, network
depth and routing time of the new multicast network.
Compared to Chen and Cheng's permutation network
[14], since we add only a constant cost (i.e., a constant
number of one bit adders or adder-like circuits) to each
switch for the self-routing circuit and there are n

2 logn
switches in an n� n RBN, the hardware cost of the RBN
is O�n logn�, and so is that of an n� n BSN. Let C�n�
denote the cost of an n� n BRSMN. By the recursive
construction in Fig. 1, we have C�n� � O�n logn� � 2C n

2

ÿ �
;

which implies C�n� � O�n log2 n�.
Since the network depth of an n� n RBN is O�logn�,

so is an n� n BSN. Let D�n� denote the network depth
for an n� n BRSMN. From D�n� � O�logn� �D n

2

ÿ �
; we

immediately have D�n� � O�log2 n�.

Note that the distributed routing algorithms work in a
pipelined fashion. It takes O�logn� unit time delay for the
first bit (from input) to reach a switch in the last stage of an
n� n RBN. Then it takes only O�1� unit time for each of the
subsequent lognÿ 1 bits to reach a switch in the last stage.
Hence, the propagation delay in the forward phase is
O�logn� unit time, and so is in the backward phase. Let T �n�
denote the total propagation delay of the routing algorithm
for an n� n BRSMN. Since there are a constant number of
forward and backward phases in switch setting in a BSN,
the routing time for an n� n BSN is O�logn�. From
T �n� � O�logn� � T �n2�, we obtain T �n� � O�log2 n�.

For the feedback implementation discussed in Section
7.3, since an n� n BRSMN is now simply an n� n RBN and
the routing circuit distributed in each switch still has O�1�
cost, we conclude that the feedback version of our design
has O�n logn� network cost.

In Table 2, we list the cost, depth and routing time of the
newly designed multicast network along with those of the
existing multicast networks constructed by the recursive
decomposition approach. Finally, we can see that the
RBN-based multicast network presented in this paper
achieves the same order of complexities of network cost,
network depth, routing time as those of the RBN-based
permutation network proposed by Cheng and Chen [14].

8 CONCLUSIONS

In this paper, we have proposed a design for a new
self-routing multicast network using an approach based
on recursive decompositions of multicast networks.
Different from earlier proposed multicast networks, the
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Fig. 11. A binary tree represents the routing tag sequence of a multicast

for n � 16.

Fig. 12. One bit adder used in a pipelined fashion.

Fig. 13. The feedback implementation of the network.



new multicast network is conceptually simple and has
good modularity. The network design is based on the
binary radix sorting concept and all functional compo-
nents of the network are recursively constructed reverse
banyan networks. Thus, it has a potential to greatly
reduce the network cost by reusing part of the network.
In addition, the routing circuit is completely distributed
into each switch of the network so that the network is
operated in a self-routing manner. The new multicast
network we design compares favorably with the pre-
viously proposed multicast networks. It uses O�n log2 n�
logic gates, and has O�log2 n� depth and O�log2 n� routing
time where the unit of time is a gate delay. By reusing
part of the network, the feedback version of our design
can further reduce the network cost to O�n logn�.

APPENDIX A

Proof of Lemma 1. In this appendix, we prove that two
n
2 -bit circular compact sequences C

n
2

s0;l0;�; and C
n
2

s1;l1;�; can
be merged to Cn

s;l;�; through an n� n merging network
by the given switch setting.

In Fig. 14a (or Fig. 14b), on the left side both C
n
2

s0;l0;�;

and C
n
2

s1;l1;�; are expressed as vertical segments of length
n
2 , and on the right side Cn

s;l;�; is expressed as a vertical
segment of length n. Note that the first s1 consecutive
switches all are set to setting b, and the rest of n

2 ÿ s1

consecutive switches are set to the opposite setting �b.
Thus, the segment for C

n
2

s0;l0;�; can be divided into two
subsegments x0 (of length s1) and y0 (of length n

2 ÿ s1).
Similarly, the segment for C

n
2

s1;l1;�; can be divided into
two subsegments x1 (of length s1) and y1 (of length

n
2 ÿ s1). Note that the segment x1 � y1 (where symbol �
denotes a concatenation operation) represents C

n
2

s1;l1;�;

and x1 is of length s1 which equals the starting position
of the s sequence in C

n
2

s1;l1;�; . We must have that
sequence x1 ends with � and sequence y1 starts with .
Also, since s1 � �s� l0� mod n

2 � �s0 � l0� mod n
2 and x0

is of length s1, in segment x0 � y0 we must have that
sequence x0 ends with  and sequence y0 starts with �.
We consider two cases of b values.

Case 1. b � 0 (Fig. 14a). All inputs in both subseg-
ments x0 and x1 on the left are routed to the outputs on
the right in a parallel way, and all inputs in both
subsegments y0 and y1 on the left are routed to the
outputs on the right in a crossing way. Therefore, the
segment on the right is x0 � y1 � x1 � y0. We now prove
that the sequence represented by the segment on the
right is indeed the circular compact sequence Cn

s;l;�; . In
the segment x0 � y1 � x1 � y0, x0 ending with  and y1

starting with  make the s in C
n
2

s0;l0;�; and C
n
2

s1;l1;�;

consecutive at the joint of x0 and y1. Also, x1 ending with
� and y0 starting with � make the �s in C

n
2

s1;l1;�; and
C

n
2

s0;l0;�; consecutive at the joint of x1 and y0. Moreover,
the consecutiveness of � or  is preserved at the joint of
y1 and x1, since x1 � y1 is a circular compact sequence. A
similar argument applies to the joint of y0 and x0. Thus,
the segment x0 � y1 � x1 � y0 is a circular compact
sequence since l0 s from C

n
2

s0;l0;�; and l1 s from
C

n
2

s1;l1;�; are concatenated in the segment. Finally, we
can check that the starting position for s sequence in
x0 � y1 � x1 � y0 is s. Thus, the merged sequence is Cn

s;l;�; .
Note that b � 0 implies �s� l0� div n

2

� �
mod 2 � 0. It

follows that in this case we must have either s� l0 < n
2
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Fig. 14. Illustration of the proof of Lemma 14.



or s� l0 � n (of course, s� l0 < 3n
2 ). Also, from

s1 � �s� l0� mod n
2 , we have s � �s1 ÿ l0� mod n. In the

sequence x0 � y1 � x1 � y0, the ending point (i.e., bottom)
of x0 is at position s1. From this point going upward (in a
circular way), there are consecutive l0 s, and the last  is
at the starting position for s sequence in x0 � y1 � x1 � y0,
which is �s1 ÿ l0�mod n in this case.

Case 2. b � 1 (Fig. 14b). Similar to Case 1, all inputs
in both subsegments x0 and x1 on the left are routed to
the outputs on the right in a crossing way, and all
inputs in both subsegments y0 and y1 on the left are
routed to the outputs on the right in a parallel way.
The segment on the right now becomes x1 � y0 � x0 � y1.

Similarly, it can be verified that the merged sequence

is a circular compact sequence with l � l0 � l1 con-

secutive s and nÿ l consecutive �s in a circular way.

The remaining is to prove that it is with starting point

s. Note that b � 1 implies �s� l0� div n
2

� �
mod 2 � 1. It

follows, therefore, that n
2 � s� l0 < n. We can obtain

s � s1 ÿ l0 � n
2 . Now, in sequence x1 � y0 � x0 � y1, the

ending point (i.e., bottom) of x0 is at position s1 � n
2 .

From this point going upward, there are consecutive

l0 s, and then the last  is at the starting position for

s sequence in x1 � y0 � x0 � y1, which is s1 � n
2 ÿ l0 in

this case. tu
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APPENDIX B

Proof of Lemma 2. In this appendix, we show the
correctness of Lemma 2. First, it should be pointed out
that since 0 � l � l0, the four cases in Lemma 2 (i.e., 1)
s� l < n

2 , 2) s < n
2 and s� l � n

2 , 3) s � n
2 and s� l < n,

and 4) s � n
2 and s� l � n) cover all possible intervals.

Applying a similar approach to the proof of Lemma 1,
we represent the input and output sequences as vertical
segments as shown in Fig. 15a, Fig. 15b, Fig. 15c, and
Fig. 15d, with one subfigure for each of the four cases.

Note that all �s on the inputs are in the upper half and
all �s on the inputs are in the lower half. Now, let's first
look at the two subsegments y0 and y1 on the left in
Fig. 15a. In the lower half of the inputs (i.e., C

n
2

s1;l1;�;�), the
subsegment y1 which starts from position s1 and is of
length l1 (in a circular way, modulo n

2 ) consists of
consecutive �s. Also, since

s1 � �s� l� mod
n

2
� �s0 � l� mod

n

2
� �s0 � l0 ÿ l1� mod

n

2
;

in the upper half of the inputs (i.e., C
n
2

s0;l0;�;�), the
subsegment y0 which starts from position s1 and is of
length l1 consists of consecutive �s. Thus, these two
subsegments from the upper and lower halves of the
inputs are at the same position within their segment
and have a distance of n

2 . A similar observation can be
drawn for Fig. 15b, Fig. 15c, and Fig. 15d. In addition,
in the switch settings (1), (2), (3), and (4) in Lemma 2,
only those l1 consecutive switches (in a circular way)
starting from the sth1 switch have an upper broadcast
setting. That is, all corresponding �s and �s in these
two subsegments y0 and y1 are neutralized (or
eliminated) and become �s in the corresponding
positions on the outputs of the RBN.

The rest of the consecutive �s on the inputs form a
subsegment named x0 as shown in Fig. 15a, Fig. 15b,
Fig. 15c, and Fig. 15d. x0 starts from position s0, ends at
position s1 ÿ 1 (in a circular way, modulo n

2 ) in the upper
half, and is of length l � l0 ÿ l1. Next, we will show how
the �s in x0 are mapped to the predetermined positions
in the outputs of the RBN case by case.

Case 1. s� l < n
2 (Fig. 15a). In this case, since

s� l < n
2 , all l �s on the outputs will be in the upper

half. Note that in switch setting W
n
2

s1;l1;0;2, all the switches
except those with an upper broadcast setting have a
parallel setting. Since the subsegment x0 (consisting of all
�s) in the upper half of the inputs is mapped to the
outputs in a parallel way, the l consecutive outputs
starting from s � s0 have �s, and the rest of the outputs
have �s. Hence, the entire sequence of the outputs is
Cn
s;l;�;�.

Case 2. s < n
2 and s� l � n

2 (Fig. 15b). In this case, the
segment of the consecutive outputs with �s will go

across the middle point of the entire segment of all n

outputs. However, all �s on the left are in the upper half

of the inputs. This indicates that we need to map some �s

on the inputs to the outputs in a parallel way and map

some �s in a crossing way. The switch setting

W
n
2

s1;l1;
n
2ÿs1ÿl1;1;2;0 can accomplish this. We can see that the

subsegment x0 (consisting of all �s) in the upper half of

the inputs can be divided into two parts. Since s0 � s and

s1 � s� lÿ n
2 , the sub-segment of the inputs with �s

starting at s0 � s and ending at n
2 ÿ 1 is mapped to the

outputs in a parallel way, and the subsegment of the

inputs with �s starting at 0 and ending at s1 ÿ 1 is

mapped to the outputs in a crossing way, that is, mapped

to a subsegment of the outputs starting at n
2 and ending

at n2 � s1 ÿ 1. In other words, we obtain that l � s1 � n
2 ÿ s

consecutive outputs have �s starting at s � s0, and the

rest of the outputs have �s, which is Cn
s;l;�;�.

Case 3. s � n
2 and s� l < n (Fig.15c). In this case, all l

�s on the outputs will be in the lower half part. Similar to

Case 1, since s � s0 � n
2 and s1 � s0 � l, the subsegment

x0 starting at s0 and of length l in the upper half of the

inputs is mapped to the outputs in a crossing way. Thus,

the l consecutive outputs staring from s � s0 � n
2 have �s,

and the rest of the outputs have �s, which is Cn
s;l;�;�.

Case 4. s � n
2 and s� l � n (Fig. 15d). Similar to Case

2, some �s on the inputs should be mapped to the

outputs in a parallel way, and some �s on the inputs

should be mapped to the outputs in a crossing way.

Note that s0 � sÿ n
2 and s1 � s� lÿ n. Under the

switch setting W
n
2

s1;l1;
n
2ÿs1ÿl1;0;2;1, the subsegment x0

(consisting of all �s) in the upper half of the inputs

can be divided into two parts. The subsegment on the

inputs with �s starting at s0 � sÿ n
2 and ending at n

2 ÿ
1 is mapped to the outputs in a crossing way; and the

subsegment on the inputs with �s starting at 0 and

ending at s1 ÿ 1 is mapped to the outputs in a parallel

way. In other words, l � �n2 ÿ s0� � s1 � nÿ s� s1 con-

secutive outputs have �s starting at s � s0 � n
2 (in a

circular way, modulo n), and the rest of outputs have

�s, which is Cn
s;l;�;�. tu

APPENDIX C

DESCRIPTIONS OF THE DISTRIBUTED SELF-ROUTING

ALGORITHMS

This appendix consists of Table 3, Table 4, Table 5, and

Table 6, which provide formal descriptions of the distrib-

uted self-routing algorithms as discussed in Section 6.
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