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A Class of Interconnection Networks
for Multicasting

Yuanyuan Yang, Member, IEEE

Abstract—Multicast, or one-to-many, communication arises frequently
in parallel computing and telecommunication applications. Multicast
networks can simultaneously support multiple multicast connections
between the network inputs and network outputs. However, due to the
complex communication patterns and routing control in multicast
networks, there is still a considerably large gap in network cost
between the currently best known multicast networks and permutation
networks. In this paper, we will present a class of interconnection
networks which can support a substantial amount of well-defined
multicast patterns in a nonblocking fashion and yet have a comparable
cost to permutation networks. We will also provide an efficient routing
algorithm for satisfying multicast connection requests in such networks.
Moreover, the multicast capability of the networks will be represented
as a function of fundamental network structural parameters so that the
trade-off between the network multicast capability and the network cost
can be determined.

Index Terms—Interconnection networks, collective communication,
multicast, nonblocking, routing algorithms.

————————   F   ————————

1 INTRODUCTION

MULTICAST, or one-to-many, communication is a fundamental collec-
tive communication operation [1] and is highly demanded in parallel
computing and telecommunication applications. Examples of such
applications include Fast Fourier Transform (FFT), barrier synchroni-
zation [1], and write update/invalidate in directory-based cache
coherence protocols. Also, teleconferencing and video broadcasting
are typical applications in a telecommunication environment.

There has been growing interest in supporting multicast in par-
allel computers. Multicast can be supported in either hardware or
software. For example, the nCUBE-2 supports broadcast and a
form of restricted multicast in hardware, but, since its intercon-
nection network is a direct network in which each node has a dedi-
cated link to each of its neighbor nodes, the routing algorithm
adopted may cause a deadlock when two packets are sent at the
same time. This is because there may be cyclic dependency be-
tween channels in a direct network [2]. This situation becomes
worse in multicast communication. There has also been much
work on supporting multicast in wormhole routed direct networks
in software [2]. The basic approach is sending a message along a
subset of nodes on a “multicast tree.” This approach needs at least
log N steps to send a message to N destinations. On the other
hand, among the parallel computers using indirect networks or multi-
stage networks, both IBM GF11 and NEC Cenju-3 support a form of
restricted multicast in hardware. In IBM GF11, a multicast may need
two passes through the network and, in NEC Cenju-3, only single
multicast is supported. In addition, there has been some work on
supporting multicast in software in multistage networks [2].

Since multistage networks can have deadlock-free routing and
equal communication latency between any network inputs and
outputs (when packet recirculation is not allowed) [2], they receive
more and more attention for the interconnecting needs of par-
allel computers [3] and ATM switch architectures in broadband
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networks. Meanwhile, since multicast is a fundamental communi-
cation pattern in many parallel applications, fast implementation
for it will significantly reduce the execution time of such applica-
tions. Thus, supporting multicast in parallel computers has be-
come an increasingly important issue [4], [5]. In this paper, we will
be concerned with providing cost-effective hardware support for
multiple multicasts in multistage networks.

A multicast connection in a multistage network can connect a
network input port simultaneously to more than one network out-
put port. In the following, we refer to a maximal set of multicast
connections between the inputs and outputs of a multistage net-
work as a multicast assignment. Then, a multicast network is a net-
work which can realize all possible multicast assignments.

Multicast networks have been extensively studied and much
progress has been made in this area [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19]. However, the perceived high net-
work cost and complex routing control of multicast networks
might still discourage system designers from seriously considering
them for practical parallel computing systems and other commu-
nication systems. In fact, due to the complex communication pat-
terns in multicast networks, there is still a considerably large gap
in network cost between the currently best known multicast net-
works and permutation networks. Meanwhile, many real applica-
tions may not need full multicast capability. Although permutation
networks with multicast switches may realize some multicast pat-
terns, they in general cannot satisfy the needs of such applications.
This is because permutation networks are designed for realizing
only one-to-one connections and there may not be a clear defini-
tion of the type of multicast patterns a permutation network can
realize. This drawback of permutation networks may prevent
software and algorithm designers of parallel computing systems
from efficiently utilizing multicast capability since there is not a
simple rule for them to judge whether a given multicast connec-
tion can be routed in a single pass through the network.

As discussed above, full multicast networks are still too expen-
sive for practical multicast applications and permutation networks
in general cannot support multicast efficiently. Hence, we are mo-
tivated to consider a compromising network design for practical
multicast applications. In this paper, we will propose a class of
interconnection networks which can realize a substantial amount
of well-defined multicasts and yet have a comparable cost to per-
mutation networks. We will refer to such networks as restricted
multicast networks. We will also provide an efficient routing algo-
rithm for satisfying multicast connection requests in such networks.

The rest of this paper is organized as follows: Section 2 gives
the necessary definitions and notations for restricted multicast
networks. Section 3 reviews the previous results related to this
type of networks for both permutation and multicast. Section 4
presents the main results of the paper, the nonblocking conditions
for the proposed restricted multicast networks. The routing algo-
rithm is described in Section 5. Finally, Section 6 concludes the
paper.

2 PRELIMINARIES

In this section, we present some basic definitions and notations
that will be useful in our analysis of restricted multicast networks.

The network to be considered is a class of networks based on
the Clos network [6]. This type of network belongs to so-called
constant stage networks or limited stage networks. Since the network
latency of a network is proportional to the number of stages in the
network, a constant stage network can guarantee a short constant
latency, regardless of the number of processor or memory modules
in a parallel computing system, whereas most of other networks
(i.e., so-called growing stage networks) [15], [16], [17], [18], [19] re-
quire at least log N stages for an N ¥ N network, which represents

the minimum network latency this type of network can offer. This
feature of constant stage networks is attractive for large scale
highly parallel computing systems where communication delay is
critical.

This type of network was first proposed by Clos [6]. The net-
work has adjustable network parameters and can provide different
type of connecting capabilities by choosing different values of the
parameters. The general Clos network can have any odd number
of stages and is built in a recursive fashion from smaller size net-
works. Therefore, it is sufficient to consider only the three-stage
network. A three-stage Clos network with N input ports and N
output ports has r switch modules of size n ¥ m in stage 1, m
switch modules of size r ¥ r in stage 2, and r switch modules of
size m ¥ n in stage 3. The network has exactly one link between
every two switch modules in its consecutive stages. Such a three-
stage network is denoted as a v(m, n, r) network. In a three-stage
network, stage 1 is also referred to as input stage, stage 2 is also
referred to as middle stage, and stage 3 is also referred to as output
stage. A general schematic of a v(m, n, r) network is shown in Fig. 1.
We assume that every switch in the network has multicast capa-
bility, that is, each idle input link of a switch can be simultaneously
connected to any subset of idle output links of the switch.

In general, the network cost of such a multistage network is
measured by the number of crosspoints in the network. An a ¥ b
switch module is assumed to have ab crosspoints. It is easy to see
that the network cost of a v(m, n, r) network is proportional to the
number of middle stage switches m for a fixed N and r.

Since output stage switches in a v(m, n, r) network have multi-
cast capability, a multicast connection can be described in terms of
connections between an input port and output stage switches. The
number of output stage switches in a multicast connection is re-
ferred to as the fanout of the multicast connection. Let O denote
the set of all output stage switches. Based on the structure of
the v(m, n, r) network, we have O = {1, 2, º, r}. For the ith input
port in input stage, i Œ {1, 2, º, nr}, let Ii Õ O denote the subset of
the output stage switches to which input port i is to be connected
in a multicast connection. Ii is referred to as an input connection
request from input port i. Furthermore, if input port i can be con-
nected to at most d (1 £ d £ r) output stage switches at a time (i.e.,
|Ii| £ d), we will refer to this input connection request as a d-
restricted input connection request.

For a multicast assignment where each input switch can have at
most a (0 £ a = a(n, r) £ n) input connection requests with unre-
stricted fanouts and all other input connection requests are d-
restricted (1 £ d £ r), we will refer to it as an (a, d)-multicast assign-
ment. Fig. 2 shows a (2, 1)-multicast assignment in a v(5, 3, 4) net-
work. We will refer to a v(m, n, r) network that can realize all (a, d)-
multicast assignments as a va,d(m, n, r) multicast network. Note that

Fig. 1. A general schematic of a v(m, n, r ) network.
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in a va,d(m, n, r) network, those a multicast connections on each
input stage switch are not tied to any specific subset of input ports
and any input port can request an unrestricted multicast connec-
tion as long as the total number of unrestricted multicast connec-
tions on that input stage switch does not exceed a at that time. We
will simply refer to a va,1(m, n, r) network as a va(m, n, r) network,
where at most a input ports in each input stage switch can have
unrestricted multicast connections at a time and all other input
port can have only one-to-one connections. Clearly, a vn(m, n, r)
network is a full multicast v(m, n, r) network, and a v0(m, n, r) net-
work is a classical permutation v(m, n, r) network.

In addition, the multicast networks we consider in this paper
are nonblocking networks in the sense that we can always satisfy an
eligible multicast connection request without any rearrangement of
existing connections in the network regardless of current network
state. This eliminates the possible disruption of on-going commu-
nications caused by the rearrangements and the resulting time
delay in path routings.

3 PREVIOUS RELATED WORK

The v(m, n, r) networks have been extensively studied in the lit-
erature [6], [7], [9], [10], [12], [13]. From the network structure de-
scribed in Section 2, we know that two of the network parameters,
n and r, are restricted by the network input/output size (in fact,
N = nr), and the network cost is proportional to the number of
middle stage switches m for a fixed N and r. Therefore, the main
focus of the study has been on finding the minimum value of the
network parameter m for a certain type of connecting capability to
achieve the minimum network cost.

A recent design [12], [13] shows that a v(m, n, r) network is
nonblocking for arbitrary multicast assignments if the number of
middle stage switches, m, satisfies m n r

r≥ -3 1( ) log
log log . This result

represents the currently best known design for constant stage
nonblocking multicast networks. Furthermore, it is shown [14] that,
under several typical routing control strategies, the necessary con-
dition for a v(m, n, r) multicast network to be nonblocking is

m n r
r≥ Q log

log log4 9 , which matches the sufficient nonblocking condi-

tion for this type of network. However, it was shown [6], [7] that a
v(m, n, r) network is nonblocking for permutation assignments if
m ≥ 2n - 1.

Clearly, there is a considerably large gap in network cost be-
tween v(m, n, r) multicast networks and v(m, n, r) permutation
networks. In the following, we will determine the nonblocking
conditions for va,d(m, n, r) multicast networks. As we will see,
va d(m, n, r) networks compromise between full multicast networks

and permutation networks: They have comparable cost to permu-
tation networks and yet powerful enough multicast capability for
multicast applications.

4 NONBLOCKING CONDITIONS

In this section, we present the main results of this paper. We first
give the nonblocking condition for general va,d(m, n, r) multicast
networks. We then extend the result to yield the restricted multi-
cast networks with the same order of network cost as v(m, n, r)
permutation networks.

Assume a va,d(m, n, r) network is currently providing some
multicast connections from its input ports to its output ports. For
any input port i Œ {1, 2 º, nr}, we will refer to the set of middle
stage switches with currently unused links to the input switch
associated with input port i as the available middle switches. Moreo-
ver, for any middle stage switch j Œ {1, 2, º, m}, we will refer to
the subset of output stage switches to which middle switch j is
providing connection paths from the input ports as the destination
set of middle switch j and denote it as Mj. Clearly, we have Mj Õ O
for any j Œ {1, 2, º, m}. Notice that an output port can be con-
nected to at most one input port at a time in a multicast connec-
tion. The following lemma reveals a global constraint to Mjs.

LEMMA 1. At any state of a va,d(m, n, r) multicast network, there are at
most n 1s, n 2s, º, n rs distributed in the destination sets M1,
M2, º, Mm.

PROOF. Since any output stage switch k, k Œ {1, 2, º, r}, has n out-
put ports, it can have at most n disjoint connection paths
from the middle stage. This means that there are at most n ks
in all destination sets M1, M2, º, Mm.                                      o

Now, given a new input connection request Ii, i Œ {1, 2, º, nr},
we need to find middle stage switches from the available middle
switches to satisfy this connection request. The following lemma
gives a necessary and sufficient condition for satisfying a connec-
tion request Ii.

LEMMA 2. We can satisfy a connection request Ii using some x (x ≥ 1) middle

switches, say, j1, j2, º, jx, from among the available middle switches of

a va,d(m, n, r) network if and only if I Mi jk

x

k
I I =
�� �� =

1
f .

PROOF. If there exist x available middle switches, say, j1, j2, º, jx,

for which I Mi jk

x

k
I I =
�� �� =

1
f , then, for every output

switch t, t Œ Ii, we can always find a middle switch, say jk, 1
£ k £ x, such that t Mjk

œ , through which a connection path

to output switch t is available. Thus, we can satisfy the new
connection request through these x middle switches. Simi-

larly, if we can satisfy connection request Ii using x middle

switches, say, j1, j2, º, jx, then I Mi jk

x

k
I I =
�� �� =

1
f  before we

satisfy this connection request. Otherwise, if there exists some

output switch t, t I Mi jk

x

k
Œ �� ��=

I I 1
, then a connection path

could not be provided to output switch t through any middle
switch in the set of x available middle switches.                      o

We now introduce a function which will be used in the proof of
our first theorem. Let d(n) be an integer function for any integer
n ≥ 0 satisfying

d n
n
n
n

n

n1 6 =
-

=

%
&K
'K

2

2

1

0 0

if  is even
if  is odd
if 

Fig. 2. A (2, 1)-multicast assignment in a v(5, 3, 4) network.
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Denote d0(n) = n, and dk(n) = d(dk-1(n)) for k ≥ 1. Observe that for a

sufficiently large k, dk(n) = 0. We are interested in the smallest k

such that dk(n) = 0, and have the following lemma.

LEMMA 3. min{k|dk(n) = 0} = Îlog (n + 1)˚.

PROOF. See Appendix.                                                                           o

We are now at the position to present our fundamental theorem.

THEOREM 1. If there are at least 2n - 1 available middle switches for a
connection request with fanout f (2 £ f £ r) in a va,d(m, n, r) net-
work, we can always choose no more than Îlog (f + 1)˚ middle
switches to satisfy this connection request from these available
middle switches.

PROOF. Without loss of generality, suppose the input connection
request Ii = {1, 2, º, f}, 2 £ |Ii| = f £ r, and the destination
sets of the available middle switches are M1, M2, º, M2n-1.
By Lemma 1, there are at most (n - 1) 1s, (n - 1) 2s, º, (n - 1)
fs distributed among M1, M2, º M2n-1. Assign j1 such that

I M I Mi j j n i jI I
1 1 2 1

=
£ £ -
min .

Then we have

I M
n
n fi jI

1

1
2 1£

-
- .

Note that I Mi jI
1

 is an integer and n
n
-
- <1

2 1
1
2 . It follows

that

I M
f

fi j

f

fI
1

2

2

1
£

-%
&K
'K

if  is even

if  is odd

which implies that

I M fi jI
1

£ d 2 7 .
Again, without loss of generality, suppose

I M fi jI K
1

1 2= ¢, , ,< A ,

where f ¢ £ d(f). Then, assign j2 such that

I M M I M Mi j j j n
j j

i j jI I I I
1 2

1

11 2 1
=

£ £ -
π

min .

Similarly, we have

I M M
n
n fi j jI I

1 2

1
2 1£

-
- d 2 7 ,

and this implies

I M M fi j jI I
1 2

2£ d 2 7 .
In general, in step k, we assign jk such that

I M M M

I M M M M

i j j j

k n
j j p k

i j j j j

k

p

k

I I I L I

I I I L I I

1 2

1 2 11 2 1

=

£ £ -
π <

-
min

,

and

I M M M fi j j j
k

k
I I I L I

1 2
£ d 2 7 .

We are interested in the smallest integer k such that dk(f) = 0.
By Lemma 3, we have that

min{k|dk(f) = 0} = Îlog (f + 1)˚.

Therefore, there exists some x £ Îlog (f + 1)˚ such that

I M M Mi j j jx
I I I L I

1 2
0= .

That is,

I Mi j
k

x

k
I I

=

�
��

�
�� =

1

f .

By Lemma 2, Ii can be satisfied by M M Mj j jx1 2
, , ,K . o

We shall illustrate the above theorem by an example. Let Ii = {1,
2, 3, 4, 5, 6} with f = 6. Among the 2n - 1 available middle switches,

there exists Mj1
 such that I Mi j

n
nI

1
1

2 1 6£ ¥-
- , i.e., I Mi jI

1
2£ ;

then there exists Mj2
 such that I M Mi j j

n
nI I

1 2
1

2 1 2£ ¥-
- , i.e.,

I M Mi j jI I
1 2

0= . Therefore, the connection request Ii can be

satisfied by no more than two (i.e., Îlog (6 + 1)˚) available middle
switches.

Moreover, we can see that the number of available middle
switches in Theorem 1 is tight. In other words, in some network
states, 2n - 1 available middle switches are necessary if we want to
use no more than Îlog (f + 1)˚ middle switches to satisfy a connec-
tion request with fanout f. The following examples demonstrate
that when only 2n - 2 middle switches are available, we cannot
choose no more than Îlog (f + 1) ˚ middle switches to satisfy a con-
nection request with fanout f.

Assume we have a connection request Ii = {1, 2} (f = |Ii| = 2),
and 2n - 2 available middle switches. As shown in Fig. 3a, there
exists a network state where there is a “1” in each destination
set of n - 1 available middle switches and there is a “2” in each

                                

          (a)       (b)

Fig. 3. The worst case network states of 2n - 2 available middle switches
for some connection requests. (a) Ii = {1, 2}. (b) Ii = {1, 2, 3, 4, 5, 6}.
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destination set of the other n - 1 available middle switches. This
network state makes it impossible for us to choose one (i.e., Îlog (f
+ 1)˚) middle switch among the 2n - 2 available middle switches to
satisfy connection request Ii.

Now, we take a look at another example. Consider connection

request Ii = {1, 2, 3, 4, 5, 6} (f = |Ii| = 6), and 2n - 2 available middle
switches. As show in Fig. 3b, there exists a network state where
each destination set of the first n-1

2  available middle switches con-

tains a subset {1, 3, 4}, each destination set of the second n-1
2  avail-

able middle switches contains a subset {1, 5, 6}, each destination
set of the third n-1

2  available middle switches contains a subset

{2, 3, 5}, and each destination set of the fourth n-1
2  available middle

switches contains a subset {2, 4, 6}. It is easy to verify that there are
a total of (n - 1) 1s, (n - 1) 2s, º, (n - 1) 6s distributed among these
2n - 2 available middle switches. Since the intersection of any two
destination sets of these 2n - 2 available middle switches are not
empty, we cannot choose no more than two (i.e., Îlog (f + 1)˚) mid-
dle switches among these available middle switches to satisfy con-

nection request Ii.
We have the following theorem regarding the nonblocking

condition for general va,d(m, n, r) multicast networks.

THEOREM 2. A va,d(m, n, r) multicast network (d ≥ 2) is nonblocking if

m ≥ a(Îlog(r + 1)˚ - Îlog(d + 1)˚) + (n - 1)(2 + Îlog (d + 1)˚) + 1.

PROOF. We prove this theorem by considering the worst case net-
work state: The new input connection request Ii has a fanout
d and all other n - 1 input ports on the same input switch as
Ii are already connected to some output switches, among
which a input ports have a fanout r and (n - a - 1) input
ports have a fanout d. Clearly, the middle switches providing
connection paths for the other n - 1 input ports on this input
switch are not available for satisfying this new connection re-
quest. By Theorem 1, there are a total of aÎlog (r + 1)˚ + (n - a
- 1)Îlog (d + 1)˚ middle switches not available to the new con-
nection request. Also, by Theorem 1, if we still have 2n - 1
middle switches available, then we can satisfy the new con-
nection request. In addition, this 2n - 1 available middle
switches also guarantee that future connection requests from
this input switch can always be satisfied. This is because after
we satisfy Ii, we still have 2n - 1 - Îlog (d + 1)˚ available mid-
dle switches for any input port on this input switch and all
input ports are connected to some output switches. Later, if
any input port on this input switch wants to request a new
connection, it must release the previous connection, which
yields at least Îlog (d + 1)˚ extra available middle switches.
Therefore, in any case, we always have at least 2n - 1 avail-
able middle switches. By Theorem 1, we can satisfy any future
connection request from this input switch. Similarly, we can
apply the above argument to other input switches. Hence, the
nonblocking condition for a va,d(m, n, r) network is

m r n d n

r d n d

≥ + + - - + + -

= + - + + - + + +

a a

a

log log

log log log .

1 1 1 2 1

1 1 1 2 1 1

1 6 1 6 1 6
1 6 1 64 9 1 6 1 64 9

o

Next, we will discuss some interesting special cases of va,d(m, n, r)
networks. Theorem 3 gives a more explicit nonblocking condition
for a va,d network with certain a and d values.

THEOREM 3. In a va,2 (m, n, r) network, where d ≥ 2, if at most n r
r

b ( )
log ,

where 1 £ b(r) £ log r, input ports on each input switch can have

unrestricted multicast connections, and all other input ports can

have multicast connections with fanout at most 2b(r) - 1, the

nonblocking condition becomes m ≥ cnb(r), where c is a constant.

PROOF. Setting a b= n r
r

( )
log  and d= 2b(r) - 1 in Theorem 2, we have

that

m r d n d

n r
r r r n r

≥ + - + + - + + +

= + - + - + +

a

b
b b

log log log

log log .

1 1 1 2 1 1

1 1 2 1

1 6 1 64 9 1 6 1 64 9
1 6 1 6 1 64 9 1 6 1 62 7

Thus, there exists a constant c such that the network is
nonblocking if m ≥ cnb(r). o

Now, let’s look at an example of Theorem 3. Suppose that we
let b(r) = log log r in Theorem 3. Then, we have a = n r

r
log log
log  and d =

log r - 1. Therefore, the network is nonblocking if m ≥ 3n log log r
for r ≥ 16.

The analysis of the nonblocking condition for va(m, n, r) multi-
cast networks is similar to that for va,d(m, n, r) networks except
that, when |Ii| = 1, we can always choose one middle switch from
n instead of 2n - 1 available middle switches. This is because when
|Ii| = 1, say, Ii = {k}, k Œ {1, 2, º, r}, at most n - 1 middle switches
have k in their destination sets. We have the following theorem
concerning the nonblocking condition for the va(m, n, r) networks.

THEOREM 4. A va(m, n, r) multicast network is nonblocking if

m ≥ a Îlog(r + 1)˚ + (2n - a - 1) + (n - Îlog (r + 1)˚)Ua,

where,

Ua
a
a= =

>
%&'
0 0
1 0

PROOF. If the new input connection request is a one-to-one con-
nection, i.e., |Ii| = 1, the worst case network state is that all
other n - 1 input ports on the same input switch as Ii are al-
ready connected to some output switches, among which a
input ports have a fanout r and (n - a - 1) input ports have a
fanout 1. By Theorem 1, those a input ports with fanout r
can occupy at most a Îlog (r + 1)˚ middle switches, and
the remaining (n - a - 1) input ports with fanout 1 oc-
cupy (n - a - 1) middle switches. Therefore, there are a total
of aÎlog (r + 1)˚ + (n -a - 1) middle switches not available to
the new connection request. To guarantee that we can al-
ways satisfy this new one-to-one connection request, we
need at least n available middle switches. Hence, the
nonblocking condition is

m ≥ aÎlog (r + 1)˚ + (n - a - 1) + n.

On the other hand, if the new input connection request has a
fanout |Ii| > 1, the worst case network state is that all other
n - 1 input ports on the same input switch as Ii are already
connected to some output switches, among which a - 1 in-
put ports have a fanout r and (n - a) input ports have a
fanout 1. Then, by Theorem 1, to guarantee that we can al-
ways satisfy this new connection request, we need at least
2n - 1 available middle switches. This leads to the
nonblocking condition

m ≥ (a - 1)Îlog (r + 1)˚ + (n - a) + 2n - 1.

Combining these two cases, we obtain the nonblocking con-
dition stated in the theorem. o
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It is easy to see that the special case a = 0 in Theorem 4 gives
m ≥ 2n - 1 which matches the nonblocking condition for v(m, n, r)
permutation networks.

We are particularly interested in the restricted multicast net-
works with a > 0 which have the same order of network cost as
permutation networks. Theorem 5 gives the nonblocking condition
for such networks.

THEOREM 5. In a va,d(m, n, r) network, if at most c n
r

1
log  input ports on

each input switch can have unrestricted multicast connections,
and all other input ports can have multicast connections with

fanout c2, where c1 and c2 are constants, the nonblocking condition
becomes m ≥ cn, where c is a constant.

PROOF. First, when the restricted fanout d = c2 = 1, we set a = c n
r

1
log

in Theorem 4 and obtain

m
c n

r r n
c n

r r≥ + + - - - +1 11 3 1 1log log log log1 6 1 6 .

Thus, there exists a constant c such that m ≥ cn.

When the restricted fanout d= c2 ≥ 2, we set a = c n
r

1
log  and

d = c2 in Theorem 2, and obtain

m
c n

r r c n c≥ + - + + - + + +1
2 21 1 1 2 1 1log log log log1 6 2 74 9 1 6 2 74 9 .

Thus, there also exists a constant c, such that m ≥ cn. o

Recall that the nonblocking condition for the v(m, n, r) permu-
tation network is m ≥ 2n - 1. Since the network cost is proportional
to the number of middle switches, m, it is easy to see that the

va,d(m, n, r) networks that satisfy the condition in Theorem 5 have
the same order of network cost as permutation networks. Theorem 5
suggests that, at any time, each input switch can have up to cn

rlog

input ports out of its n input ports making unrestricted multicast
connections and the remaining input ports making constant fanout
multicast connections while keeping the network cost comparable
to a permutation network. Under this nonblocking condition, the
number of input ports that can request unrestricted multicast con-
nections at a time are generally adequate for many multicast appli-
cations. For example, in a parallel computing system, we can con-
sider all processors connected to an input switch as a cluster which
are cooperating to complete a common task. At any given time, not
all processors in the cluster need to perform full multicast, and we
can have up to cn

rlog  processors in the cluster performing full multi-

cast. Moreover, the only thing the higher-level software and algo-
rithm designers need to be concerned is to keep the number of
processors performing full multicasting in the cluster below the
threshold cn

rlog . This is a fairly simple rule for judging whether an

arbitrary multicast connection can be realized in a single pass
through the network.

Finally, we summarize the nonblocking conditions for several
typical va,d(m, n, r) networks along with permutation v(m, n, r)

network and full multicast v(m, n, r) network in Table 1.
From Table 1, we can see that the newly designed restricted

multicast networks can realize a substantial number of well-
defined multicast assignments while keeping network cost compa-
rable to v(m, n, r) permutation networks. Moreover, the multicast
capability of the networks is represented as a function of funda-
mental network structural parameters so that the trade-off be-
tween the network multicast capability and the network cost can
be determined. This enables different system designers to choose
the multicast networks which fit in their particular application
needs.

5 THE ROUTING ALGORITHM

In this section, we present a routing algorithm for satisfying con-
nection requests in a va,d(m, n, r) network.

Given a va,d(m, n, r) network satisfying the nonblocking condi-
tion in Theorem 2 or Theorem 4 and an input connection request Ii.
Then, there are at least k available middle switches for Ii where k =
2n - 1 if |Ii| ≥ 2, or k = n if |Ii| = 1. Take any k middle switches
from these available middle switches. Without loss of generality,
let these available middle switches be M1, M2, º, Mk. Let A[j] (1 £ j
£ r) denote the number of input connections with fanout greater
than d in the jth input switch. Table 2 shows the routing algorithm
for connecting Ii.

We now give some necessary explanations for the routing algo-
rithm in Table 2. In the algorithm, MASK stores a subset of Ii which
has not yet been assigned to any available middle switches at cur-
rent execution time. S stores the indexes of the selected middle
switches to satisfy the input connection request Ii, and H[p] stores a
subset of Ii which will be realized by middle switch p. The first
while loop in the algorithm is to find middle switches to satisfy the
connection request Ii. From Theorems 1, 2, and 4, we know that at
most max{1, log |Ii|} middle switches are needed for satisfying Ii.
At the end of the first while loop, S stores the indexes of selected
middle switches which together will satisfy Ii. In fact, we can show
that, at the end of the first while loop, the following conditions
hold:

1)� for any p Œ S, H[p] > Mp = f;
2)� for any p, q Œ S, and p π q, H[p] > H[q] = f;
3)� I H pi p S

=
Œ

[ ]U .

Therefore, Ii can be distributed to the set of middle switches in-
dexed by the elements of S. This is accomplished in the second
while loop of the algorithm. In other words, set H[p] is distributed
to middle switch p for all p Œ S in the second while loop.

The example in Fig. 4 shows how the routing algorithm works.

For n = r = 8, given a connection request Ii = {1, 2, 3, 4, 5, 6, 7, 8}
with fanout f = 8, and k = 2n - 1 = 15 available middle switches

with destination sets M1, M2, º, M15 shown in Fig. 4a. In the first
iteration, MASK is equal to the full set {1, 2, º, 8}, and we directly

compare the cardinalities of all Mjs for 1 £ j £ 15. Since all cardi-
nalities in this example are the same, we randomly choose one

TABLE 1
NONBLOCKING CONDITIONS FOR SEVERAL TYPICAL RESTRICTED MULTICAST NETWORKS
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from them, say, M1. Then, H1 = {4, 5, 6, 7, 8} stores the portion of Ii
which is assigned to middle switch 1. In the second iteration,
MASK becomes {1, 2, 3} which is the set of remaining elements in

Ii. Denote Mj > MASK as ¢Mj  (see Fig. 4b.) By comparing the car-

dinalities of ¢Mj s, we randomly choose one from them with the

minimum cardinality, say, ¢M4 . Then, H4 = {2, 3} stores the portion

of Ii which is assigned to middle switch 4. In the third iteration,
MASK becomes {1}. Denote ¢M MASKj I  as ¢¢Mj  (Fig. 4c). As can

be seen, those empty ¢¢Mj s clearly have the minimum cardinality.

We choose one of them, say ¢¢M8 . Then, H8 = {1} is the portion of Ii

assigned to middle switch 8. Finally, MASK becomes empty, three
(i.e., Îlog (f + 1)˚) available middle switches 1, 4, and 8 are chosen

for satisfying connection request Ii.
We now analyze the complexity of the above algorithm. The

time for one iteration of the first while loop is proportional to
|MASK| ◊ |T|. Since the number of available middle switches is
k = O(n), after each iteration, |MASK| reduces its value to half. We
know that initially |MASK| = |Ii| £ r and |T| = k. Thus, the total
time for the first while loop is proportional to |Ii| ◊ k, i.e., O(N).
Clearly, the second while loop also takes O(N) time. The rest of the
algorithm takes less than O(N) time. Thus, the time complexity of
the above algorithm is linear to the network size N. Moreover, by
employing the techniques used in [13], we can obtain a parallel
routing algorithm for the above routing process with time com-
plexity of O(log2 r).

6 CONCLUSIONS

In this paper, we have presented a class of interconnection net-
works for supporting multicast communications in parallel com-
puting systems. The newly designed networks can support a sub-
stantial number of well-defined multicast assignments in a
nonblocking fashion and still keep the same order of network cost
as permutation networks. We have also presented an efficient
routing algorithm for satisfying connection requests in such net-
works. Moreover, the multicast capability of the networks is repre-
sented as a function of fundamental network structural parameters
so that the trade-off between the network multicast capability and
the network cost can be determined.

APPENDIX

PROOF OF LEMMA 3. Consider three consecutive integers 2n + 1, 2n,
and 2n - 1. We have

d(2n + 1) = n, d(2n) = n - 1, and d(2n - 1) = n - 1.

In other words, for any integers n1 ≥ n2, we always have
d(n1) ≥ d(n2), which means that function d(n) is a nonde-
creasing function.

Define z(n) = min {k|dk(n) = 0}. Clearly, z(1) = z(2) = 1.
Also note that

d(2i - 1) = 2i-1 - 1 for i ≥ 1, and d(2i - 2) = 2i-1 - 2 for i ≥ 2.

Then,

TABLE 2
THE ROUTING ALGORITHM FOR va,d(m, n, r) NETWORKS

(a) (b)             (c)

Fig. 4. Routing example for connection request Ii = {1, 2, 3, 4, 5, 6, 7, 8}.



906 IEEE TRANSACTIONS ON COMPUTERS,  VOL.  47,  NO.  8,  AUGUST  19

z(2i - 1) = min{k|dk(2i - 1) = 0} = 1 + z(2i-1 - 1)

                                          = L = (i - 1) + z(21 - 1) = i,

and

z(2i - 2) = min{k|dk(2i - 2) = 0} = 1 + z(2i-1 - 2)

                                          = L  = (i - 2) + z(22 - 2) = i - 1.

Since z(◊) is nondecreasing, for any given integer n satisfying

2i - 1 £ n £ 2i+1 - 2, (1)

where i ≥ 1, we have that

i = z(2i - 1) £ z(n) £ z(2i+1 - 2) = i.

That is,

z(n) = i.           (2)

On the other hand, (1) is equivalent to

2i £ n + 1 £ 2i+1 - 1 < 2i+1,

it follows that

i £ log(n + 1) < i + 1.

Hence,

i = Îlog (n + 1)˚. (3)

Combining (2) and (3), we obtain z(n) = Îlog (n + 1)˚. o
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